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Asymptotic properties of a bold random walk
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In a recent paper we proposed a non-Markovian random walk model with memory of the maximum distance
ever reached from the starting point (home). The behavior of the walker is different from the simple symmetric
random walk only when she is at this maximum distance, where, having the choice to move either farther or
closer, she decides with different probabilities. If the probability of a forward step is higher than the probability of
a backward step, the walker is bold and her behavior turns out to be superdiffusive; otherwise she is timorous and
her behavior turns out to be subdiffusive. The scaling behavior varies continuously from subdiffusive (timorous)
to superdiffusive (bold) according to a single parameter γ ∈ R. We investigate here the asymptotic properties of
the bold case in the nonballistic region γ ∈ [0,1/2], a problem which was left partially unsolved previously. The
exact results proved in this paper require new probabilistic tools which rely on the construction of appropriate
martingales of the random walk and its hitting times.
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I. INTRODUCTION

The appellative anomalous diffusion is associated to a
scaling relation E[x2(t)] ∼ t2ν with ν �= 1/2. It may arise in
random walks via diverging steps length, as in Lévy flights [1]
or via long-range memory as in self-avoiding random walks
[2,3]. Diverging steps length and long-range memory are two
different ways of violating the necessary conditions for the
central limit theorem when applied to random walks.

In some cases, the mechanism which gives origin to
anomalous scaling can be different, special deterministic or
random environments [4,5] or multiparticle interactions [6].
Moreover, diffusion can be strongly anomalous (E[|x(t)|q] ∼
tqν with ν depending on q) in complex systems [7–9].

There is a very large number of phenomena which exhibit
anomalous diffusion as well a variety of models which
have been used to describe them (for a review of both see
Refs. [10–14]). Nevertheless, exact solutions of nontrivial
models with memory are quite scarce [15–21]. Motivated
by this lack of exact solutions, we presented in Ref. [22]
a model which is exactly treatable although genuinely non-
Markovian. The model shows anomalous scaling which can
be subdiffusive, superdiffusive, and also ballistic according to
a single parameter γ ∈ R.

It is the aim of this work to investigate the asymptotic
properties in the range γ ∈ [0,1/2], a problem which was
left partially unsolved in Ref. [22]. This range corresponds
to a nonballistic superdiffusive behavior except at the two
extremes were it is ordinary simple symmetric random walk
(SSRW) (γ = 0) and ballistic (γ = 1/2).

II. MODEL AND RESULTS

The model, as defined in Ref. [22], is one-dimensional,
steps all have the same unitary length, time is discrete, and
the walker can only move left or right at any time step. The
behavior of the random walker is modified with respect to
SSRW only when she is at the maximum distance ever reached
from her starting point (home). In this case, she decides with
different probabilities to make a step forward (going farther
from home) or a step backward (going closer to home).

More precisely, the model is the following: the walker
starts from home (x(0) = 0), then, at any time she can make a
(unitary length) step to the right or to the left, i.e.,

x(t + 1) = x(t) + σ (t) (1)

with σ (t) = ±1. Then let us define

z(t) = max
0�s�t

|x(s)|, (2)

which is the maximum distance from home she ever attained.
We assume that the walker has no preference for the

direction of the first step (σ (0) = ±1 with equal probability),
and as well that she has no preference when she is not at
the maximum distance (σ (t) = ±1 with equal probability if
|x(t)| < z(t)). On the contrary, when she is at the maximum
distance (|x(t)| = z(t)), she can choose to step away from
the origin with probability p[z(t)] or toward the origin with
probability 1 − p[z(t)], i.e., σ (t) = sign[x(t)] with proba-
bility p[z(t)] and σ (t) = −sign[x(t)] with probability 1 −
p[z(t)]. It is assumed that the probability p(z) depends on z

according to

p(z) = zγ

1 + zγ
, (3)

where γ ∈ R.
Therefore, the walker performs a SSRW when |x(t)| < z(t);

however, when she is at the maximum distance from home
(|x(t)| = z(t)), she boldly prefers to move farther if γ > 0
or timorously prefers to move closer if γ < 0. Moreover,
if her attitude is neutral (γ = 0), the model is globally
SSRW since p(z) = 1/2 and all steps are always equally
probable.

The main results of both the present paper and Ref. [22],
concerning the asymptotic behavior of z(t), are summarized by
the following limits which hold in probability for large times
(t → ∞):

(i) γ ∈ (−∞,0): z(t)/tν → (1/2ν)ν where the scaling
exponent is ν = 1/(2 − γ ),

(ii) γ = 0: z(t)/t1/2 → 1/T 1/2 where T is a random
variable described below,
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(iii) γ ∈ (0,1/2): z(t)/tν → (1/2ν)2ν/Lν where ν =
1/(2 − 2γ ) and L is a Lévy variable,

(iv) γ = 1/2: z(t)/t → 1/(4L + 1) where L is the same
Lévy variable,

(v) γ ∈ (1/2,∞): z(t)/t → 1.
We will show in the next that the Laplace transforms of

probability densities of L and T are

E[e−λL] = e−√
2λ, E[e−λT ] = 1

cosh(
√

2λ)
. (4)

Accordingly, L is a Lévy variable with parameter 1, and it
corresponds to the first hitting time of a barrier in 1 by a
continuous Brownian motion with unitary diffusion constant,
starting in 0. The variable T is the first exit time from the
interval [−1,1] by the same Brownian motion. Explicitly, the
probability density of L is

ρ(L) =
√

1

2πL3
exp

(
− 1

2L

)
. (5)

Thus, in the range γ ∈ (0,1/2), one has

lim
t→∞ E

[(
z(t)

tν

)q]
=

(
1

2ν2

)qν
�(qν + 1/2)

�(1/2)
, (6)

where � is the gamma function, q is a real positive constant,
and ν = 1/(2 − 2γ ).

The subdiffusive range γ ∈ (−∞,0) and the ballistic range
γ ∈ (1/2,∞) were already fully solved in Ref. [22] where both
ν and the exact (constant) values of the limits were determined.

In this paper we focus on the remaining range γ ∈ [0,1/2],
which in Ref. [22] was solved only for what concerns the
scaling exponent ν.

For γ = 0 the model reduces to SSRW, all of which is
already known. Nevertheless, for sake of comparison, we
obtain again here already known results by our method. The
range γ ∈ (0,1/2) corresponds to a nonballistic superdiffusive
behavior (1/2 < ν < 1). We prove here that the ratio z(t)/tν

is distributed as (1/2ν)2ν/Lν for large times. For γ = 1/2
one has a ballistic behavior, but the large time limit of z(t)/t

is not 1 as in the range γ ∈ (1/2,∞). We show here that it
is distributed as 1/(4L + 1), meaning that the walker spends
only a finite but random fraction of her time moving linearly
away from home.

III. MATHEMATICAL METHODS

Let us now outline our mathematical approach. Trajectories
are decomposed in active journeys and lazy journeys.

The lazy journey starts at time t when a walker, which is on
a maximum x(t) = z(t) or x(t) = −z(t), leaves it (first step)
and continues for m time steps until she reaches again one
of the two maxima. The total number of time steps of this
journey is 1 + m where m is the random time necessary to hit
the frontier of the interval [−z(t),z(t)] starting from one of the
two positions z(t) − 1 or −z(t) + 1. During all the lazy journey
the maximum remains the same (z(t + m + 1) = z(t)), and,
very importantly, the m steps of the walk necessary for hitting
the frontier are those of a SSRW. Notice, in fact, that all the m

steps are made choosing the direction with equal probability.

The active journey starts at the time t + m + 1 when the
walker arrives on a maximum, and it has a duration of n

time steps which she makes remaining on a maximal position.
The n steps are all made in the opposite direction with respect
to the origin. In numbers, |x(t + m + 1 + s)| = z(t + m +
1 + s) = z(t) + s for 0 � s � n while |x(t + m + n + 2)| <

z(t + m + 1 + n), this last being the first step of a new lazy
journey. The active journey has a minimum duration of zero
time steps (n = 0 when the walker immediately leaves the
maximum after having arrived). During the active journey the
maximum increases by n.

A cycle journey, starting in a position |x(t)| = z(t), is
composed by a lazy journey followed by an active journey;
its duration is 1 + m + n, and the maximum increases by n.

Notice that m = m(z) is a random variable whose distribu-
tion only depends on z. In fact, m(z) is the SSRW first hitting
time of one of the barriers z or −z starting from position
x = z − 1 or x = −z + 1. On the contrary, the distribution of
n = n(z) depends on both z and γ through p(z).

Let us indicate by k (not to be confused with time t) the
progressive integer number identifying cycle journeys, each
composed by a lazy journey followed by an active journey.
Also, let us indicate by z(k) the value of the maximum when
the cycle journey number k + 1 starts.

Then the time t is linked to the progressive number k by
the stochastic relation

t(k + 1) = t(k) + 1 + m[z(k)] + n[z(k)], (7)

while the value of the maximum is given by

z(k + 1) = z(k) + n[z(k)], (8)

where m[z(k)] and n[z(k)] are all independent random vari-
ables.

For the sake of completeness let us also write the initial
condition. At the start (x(0) = z(0) = 0) the walker moves left
or right so that x(0) = ±1 and z(1) = 1. Then, starting from
the maximum z(1) = 1, she begins an active journey (which
can also be of n(1) = 0 steps if she immediately steps back to
the origin) so that

t(1) = z(1) = 1 + n(1). (9)

In principle one should simply solve the two equations (7)
and (8) with initial condition (9) in order to obtain the scaling
behavior of z(t). Obviously, this asks for some work since we
need to characterize probabilistically m(z) and n(z).

Let us start with m(z) which by definition is the SSRW exit
time from the interval [−z,z] starting in z − 1 or −z + 1. By
translational invariance, m(z) can be also considered as the
SSRW exit time from the interval [−2z + 1,1] starting in 0.

The third Wald identity [23], when applied to SSRW
trajectories w(s) starting in w(0) = 0, states that for any
stopping time τ

E

[
eθw(τ )

[cosh(θ )]τ

]
= 1. (10)

Considered that eθw(s)/[cosh(θ )]s is a martingale, this equality
is a simple consequence of the strong Markov property.
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Equation (10) also holds if θ is replaced by −θ so that

E

[
Aeθw(τ ) + (1 − A) e−θw(τ )

[cosh(θ )]τ

]
= 1 (11)

for any real A.
Suppose a < 0 < b and assume that that τ = τ (a,b) is the

first exit time of w(s) from the interval [a,b] so that w(τ ) = a

or w(τ ) = b. One can choose the real constant A in order that
the numerator in (11) has the same value in w(τ ) = a and
w(τ ) = b obtaining

E[[cosh(θ )]−τ ] = cosh(θc)

cosh(θd)
, (12)

where c = (a + b)/2 and d = (b − a)/2.
Then, having defined λ = ln[cosh(θ )], one can rewrite the

above equality as a Laplace transform of the distribution of the
stopping time τ = τ (a,b)

E[e−λτ ] = cosh[θ (λ) c]

cosh[θ (λ) d]
, (13)

where θ (λ) = ln(eλ + √
e2λ − 1).

We simply use a = −2z + 1 and b = 1 so that c = 1 − z

and d = z. Thus, the Laplace transform of the probability
density of the exit time m(z) is

E[e−λm(z)] = cosh[θ (λ) (z − 1)]

cosh[θ (λ) z]
. (14)

From (14) one can derive the expected values of all powers
of m(z). For large values of z one finds E[m(z)] � 2z and
E[m2(z)] � (8/3)z3, which implies that the standard deviation
is σm(z) � (8/3)1/2z3/2. All these quantities diverge for large
values of z.

In the limit of large z, nevertheless, the Laplace trans-
form remains finite and well defined; one has, in fact,
E[e−λm(z)] → e−θ(λ). Moreover, for small values of λ one has
that θ (λ) � √

2λ, meaning that the probability density of m(z)
is substantially a truncated Lévy density.

Let us now evaluate the probability πγ (n|z) that the walker
makes at least n(z) = n steps during the active journey, i.e.,
πγ (n|z) = prob [n(z) � n]. Straightforwardly,

πγ (n|z) =
n−1∏
s=0

p(z + s), (15)

where p(z + s) = (z + s)γ /[1 + (z + s)γ ].
At variance with m(z), the variable n(z) depends on γ . In

this paper we focus on the range γ ∈ [0,1/2] and, in order
to describe the probabilistic behavior of n(z), we have to
distinguish two different subranges.

The first is γ = 0, for this value (ordinary SSRW) one has
p(z) = 1/2 and πγ (n|z) = (1/2)n. Accordingly, E[n(z)] = 1
and all averages E[n(z)δ] are finite, and they are independent
from z for any positive δ.

The second case corresponds to the range γ ∈ (0,1/2],
included in (0,1), which, in turn, can be treated at once. We
directly obtain from (15)

[p(z)]n � πγ (n|z) � [p(z + n − 1)]n. (16)

In fact, ν being positive, p(z) is the smallest among the
elements of the product and p(z + n − 1) the largest.

Then assume n = I [βzγ ] (the integer part) where β is real
and strictly positive. The inequality (16) can be rewritten as

[p(z)]I [βzγ ] � πγ (n|z) � {p(z + I [βzγ ])}I [βzγ ]. (17)

Then, since γ ∈ (0,1), one gets that the limit for z → ∞
of both bounds is e−β . Given that πγ (n|z) = prob [n(z) �
I [βzγ ]], one finally has

prob [n(z) � βzγ ] � e−β. (18)

The approximated equality (18) means that for large values
of z the limit n(z)/zγ → ξ holds where ξ is a random variable
distributed according to an unitary exponential probability
density. Since n(z) � ξzγ , one can easily compute E[n(z)] �
zγ and E[n(z)δ] ∼ zδγ for any positive δ.

Summarizing, the relation E[n(z)δ] ∼ zδγ holds for all γ ∈
[0,1) and, thus, in the range [0,1/2].

Let us consider again equation (8), one has for any positive α

E[z(k + 1)α] � E[z(k)α] + αE[z(k)α−1+γ ], (19)

where the omitted terms are of lower order in z(k) since
the conditional expectation of n[z(k)]δ given z(k) satisfies
E[n[z(k)]δ] ∼ z(k)δγ 	 z(k)δ . Choosing α = 1 − γ in (19),
we immediately obtain E[z(k)1−γ ] � (1 − γ )k. Then, choos-
ing α = l(1 − γ ), we get by iteration E[z(k)l(1−γ )] � (1 −
γ )lkl where l is any positive integer number.

Thus, E[z(k)l(1−γ )] � E[z(k)]l(1−γ ) � (1 − γ )lkl , which
implies that the relation

z(k) � (1 − γ )1/(1−γ ) k1/(1−γ ) (20)

holds deterministically in the range γ ∈ [0,1), i.e., the large k

limit of the ratio of the two sides of (20) is one.
On the other hand, from Eq. (7) we have by a direct sum

t(k) = z(k) + k2L(k) + k − 1, (21)

where we have defined

L(k) = 1

k2

k−1∑
i=1

m[z(i)]. (22)

Then we can use (14) and straightforwardly obtain

E[e−λL(k)] =
k−1∏
i=1

cosh[θ (λ/k2) (z(i) − 1)]

cosh[θ (λ/k2) z(i)]
, (23)

where z(i) is given by (20). This expression can be rewritten
as

E[e−λL(k)] = [e−θ(λ/k2)]k−1R(k), (24)

where

R(k) =
k−1∏
i=1

1 + e−2θ(λ/k2) (z(i)−1)

1 + e−2θ(λ/k2) z(i)
. (25)

It is easy to check that in the limit of large k one has
[e−θ(λ/k2)]k−1 → e−√

2λ Moreover, some lengthy but straight-
forward calculations lead to R(k) → 1 for γ ∈ (0,1), while for
γ = 0 they lead to R(k) → 2/(1 + e−2

√
2λ).

In conclusion, for γ ∈ (0,1),

lim
k→∞

E[e−λL(k)] = e−√
2λ, (26)
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which implies that L = limk→∞ L(k) is a (parameter = 1)
Lévy variable which has an infinite expectation. Another way
to see this result is to consider it as a direct consequence of the
generalized central limit for leptokurtic variables [1].

On the other hand, for γ = 0,

lim
k→∞

E[e−λL(k)] = 1

cosh(
√

2λ)
, (27)

which corresponds to a variable T = limk→∞ L(k) with finite
expectation and standard deviation (1 and

√
2/3, respectively).

This variable is the exit time from the interval [−1,1]
of a continuous Brownian motion, with unitary variance,
starting in 0 (see, for example, Ref. [24], p. 212). Since
limk→∞ L(k) equals L for γ ∈ (0,1/2] and it equals T

for γ = 0, the above two relations (26) and (27) coincide
with (4).

Now, consider Eq. (21) for large values of k and take
into account that limk→∞ L(k) = T for γ = 0 and that

limk→∞ L(k) = L for γ ∈ (0,1/2]. Also taking into account
(20), one has the asymptotic relations: t(k) � k2T for γ = 0,
t(k) � k2L for γ ∈ (0,1/2) and t(k) � z(k) + k2L = k2/4 +
k2L for γ = 1/2. These relations are obtained neglecting terms
of lower order with respect to k2.

Finally, taking again into account (20), one obtains for large
times (which imply large k): z(t)/t1/2 → 1/T 1/2 for γ =
0, z(t)/tν → (1/2ν)2ν/Lν where ν = 1/(2 − 2γ ) for γ ∈
(0,1/2) and z(t)/t → 1/(4L + 1) for γ = 1/2. These results
complete the characterization of the asymptotic behavior of
z(t) initiated in Ref. [22].
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