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Zero-mean circular Bessel statistics and Anderson localization
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We demonstrate that a circular Bessel density function describes the electromagnetic field statistics in the
Anderson localization regime using example numerical terahertz field data in strongly scattering media. This
density function for localized fields provides a measure that allows identification and description in a manner
akin to the Gaussian density function for weakly interacting scatterers, the mathematical framework to date for
statistical optics. Our theory provides a framework for improved understanding of wave propagation in random
media, random scattering media characterization, and imaging in and through randomly scattering media.
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I. INTRODUCTION

Zero-mean circular Gaussian statistics are ubiquitously
assumed for electromagnetic fields in statistical optics [1].
The validity of this model hinges on the field being made up
of a multitude of independent random phasors and weakly
interacting scatterers. For example, polarized thermal light
has circular complex Gaussian statistics because it contains a
large number of independent contributions from each atom
in the source. Coherent light can also produce Gaussian
statistics after multiple scattering events, as would occur
with transmission through certain random scattering media,
including, but not limited to, diffusers, particle suspensions,
and tissue [2]. Zero-mean circular Gaussian field statistics
have been verified experimentally in optically thick random
scattering media with weakly interacting scatterers, where
the mean free path length, a measure of the mean distance
between scattering events, is much larger than the wavelength
and long-range correlation effects are negligible [3,4]. In this
regime, all of the scattered fields in a random phasor sum
description of the field at a point in space can be assumed to
be statistically independent.

The statistics of a randomly scattered electromagnetic
field can be non-Gaussian, or equivalently, the intensity
density function can deviate from negative exponential, when
there are a limited number of contributing phasors or when
there are correlations between different phasors [5]. The
probability density functions for the total transmission and
angle-dependent transmission coefficient have been obtained
using Feynman diagrams [6,7] and random matrix theory
[8]. Instead of studying the effects of interference on wave
transport, another line of work focused on the properties
of the number of contributing random phasors, which led
to a family of K-distributions [9,10]. Such distributions
were found to be excellent models for various situations
where the intensity statistics are not negative exponential,
such as microwave radiation reflected by rough sea surfaces
[9], transmission through turbulent atmosphere [11–13], and
randomly corrugated waveguides [14].

Despite prior work on the deviation of intensity statistics
from negative exponential, an analytical density function
has not been achieved that can describe the field statistics
when they are not zero-mean circular Gaussian. Inspired
by previous work on the K-distribution (modified Bessel
function of the second kind) [9,15,16], we derive an analytical

density function for the real and imaginary parts of the field,
assuming only circularity, which is satisfied in media having a
sufficiently large number of random scatterers. The resulting
circular density function uses a Bessel function description,
and is referred to as a circular Bessel density function. The
circular Bessel density function contains a degree of freedom
that makes it effective in describing the numerical field
statistics obtained from strong scatter, including the Anderson
localization regime [17]. In this paper, we demonstrate that
analytic intensity and field density functions based on a circular
Bessel function field description are in excellent agreement
with numerical data in these strongly scattering regimes.

II. THEORY

The K-distribution applies to situations where the field is
the resultant sum of a randomly varying number of random
phasors, N . Its derivation is based on the underlying fluctuation
in N , where N is modeled by the negative binomial probability
mass function as [15]

p(N ) =
(

N + α − 1

N

)
[〈N〉/α]N

[1 + 〈N〉/α]N+α
. (1)

The parameter α governs the shape of Eq. (1). When α � 1, it
is centered around its mean value, 〈N〉. Thus, for sufficiently
large 〈N〉, any density function derived from Eq. (1) will
approach Gaussian statistics. When α � 1, p(N ) is peaked
at N = 0 and then decreases with increasing N , which is the
case for localization. This versatility in differing numbers of
contributing phasors, N , makes Eq. (1) applicable to a variety
of scattering regimes.

If the contributing random phasors are independent and
circular, the characteristic function for the total field amplitude
(A), ψA(ω), is the product of the characteristic functions of the
amplitudes of the N contributing phasors, ψA(ω) = JN

0 (aω),
where J0 is the zeroth order Bessel function of first kind and
a is the magnitude of each contributing random phasor [2].
After averaging ψA(ω) over N using Eq. (1) [15],

〈ψA(ω)〉N =
(

1 + ω2〈A2〉
4α

)−α

, 〈N〉 → ∞. (2)

The density function for A is the inverse zeroth-order Hankel
transform of Eq. (2), which in turn leads to the K-distribution
for the normalized intensity after a change of variables
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(I = A2) and normalization (Î = I/〈I 〉), giving [9,16]

p(Î ) = 2α

�(α)
(αÎ )(α−1)/2Kα−1(2

√
αÎ ), (3)

where � is the Gamma function, K denotes the modified
Bessel function of the second kind, and α is a parameter that
is obtained from the variance of Î , such that [16]

σ 2
Î

= 1 + 2/α. (4)

We now derive the probability density functions for the field
from Eq. (2). Let φR and φI denote the real and imaginary
parts of the field, respectively, so the field amplitude is A =√

φ2
R + φ2

I . Assuming that the phase of each random phasor
contributing to the total field is uniformly distributed over
2π , the resultant total field will be circular [2]. Then, the
characteristic functions for φR and φI will be equal to that of
the amplitude A [15], given in Eq. (2), and p(φR) and p(φI )
can be obtained by an inverse Fourier transform as

p(φR,I ) = 1

2π

∫ ∞

−∞
〈ψA(ω)〉Ne−iωφR,I dω (5)

= 2

�(α)

√
α

π〈A2〉

⎛
⎝

√
αφ2

R,I

〈A2〉

⎞
⎠

α−0.5

×Kα−0.5

⎛
⎝2

√
αφ2

R,I

〈A2〉

⎞
⎠ . (6)

We define the normalized real/imaginary part of the field as
φ̂R,I ≡ φR,I /

√
〈A2〉. Because φ̂R,I ≡ φR,I /

√
〈A2〉 is mono-

tonic and invertible, the probability density function for φ̂R,I

can be obtained via a change of variables using Eq. (6), giving

p(φ̂R,I ) = 2√
π�(α)

α(α+0.5)/2
(
φ̂2

R,I

)(α−0.5)/2
Kα−0.5

(
2
√

αφ̂2
R,I

)
.

(7)

We call Eq. (7) the circular Bessel density function. It is a
counterpart to the well-known zero-mean circular Gaussian
density function, and is suitable under circumstances where the
central limit theorem does not hold. With this analytical density
function for field secured, we proceed to investigate its validity
in describing localized fields using numerical simulations.

III. RESULTS

The two-dimensional simulation geometry we considered,
shown in Fig. 1, was an 8 mm long by 2 mm wide region
of lithium niobate, LiNbO3 (LN), with randomly distributed
50 μm diameter dielectric-filled holes. The left and right
boundaries were perfectly matched layers (PML), to absorb
the scattered waves, and the top and bottom boundaries were
perfect electric conductors (PECs). The boundary on the left
was the input plane and that on the right was the output plane.
In the simulations, a transverse magnetic 0.75 THz plane
wave, having an effective wavelength of 62 μm in LN with
a dielectric constant of 41.7, with H in the ẑ-direction, was
incident from the left (hence, propagating in the x̂-direction).
Circular holes were distributed throughout the LN region using

FIG. 1. (Color online) The random medium simulation geometry
(not to scale) was composed of randomly distributed 50 μm diameter
cylindrical holes in an 8 mm long by 2 mm wide LN region
(εr = 41.7): PML—perfectly matched layer; PEC—perfect electric
conductor. A 0.75 THz plane wave with H in the ẑ-direction was
incident from the left.

a Gaussian density function with a mean x-spacing of 〈x〉
and a mean y-spacing of 〈y〉, and variances of σ 2

x and σ 2
y ,

respectively. By varying the variance of the Gaussian hole
distribution, the holes can be distributed quasiperiodically or
highly randomly, as in the cases presented here. The holes
were filled with various dielectrics, with dielectric constants
ranging from 1 to 20, where smaller values provide stronger
scatter. Due to the large contrast in the dielectric constants of
LN and free space, this disordered waveguide geometry has
been shown to be an excellent platform to study Anderson
localization [18]. Numerical solutions were obtained using
finite element method simulations (COMSOL Multiphysics).
We investigated two hole distributions, both with a mean
fill fraction of 0.42, 〈x〉 = 67 μm and 〈y〉 = 69 μm, and
〈x〉 = 78 μm and 〈y〉 = 60 μm, corresponding to low and high
transmission for the periodic cases, respectively.

We first demonstrate localization of THz waves by ana-
lyzing the total transmitted power and intensity statistics at
the output plane. The power transmitted through the random
medium, T , is the integral of the Poynting vector over the plane
of the detector. Let T̂ = T/〈T 〉 denote the normalized power
transmission, where 〈T 〉 is the ensemble average of T . The
characteristic function of T̂ was originally derived assuming
weak scatter, under general assumptions of flux conservation
and time invariance [7,8]. The probability density function of
T̂ , written as the inverse Laplace transform of its characteristic
function, has been shown to be [7]

p(T̂ ) =
∫ i∞

−i∞

1

2πi
eξT̂ −gln2(

√
1+ξ/g+√

ξ/g)dξ, (8)

where g is the dimensionless conductance that is related to
the variance of T̂ by σ 2

T̂
= 2/(3g) [7,8]. A typical indicator of

localization is a dimensionless conductance less than 1 [19,20],
a measure of the variance of the transmission statistics. It was
later shown experimentally that Eq. (8) can also be applicable
in the localization regime, for both electromagnetic [20–23]
and acoustic [24] waves.

From our simulation results, we obtained an estimate of
g from the variance of T̂ . We compared p(T̂ ) obtained
from our numerical data with Eq. (8), using the estimated
g and a numerical integration. We did this for holes with
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FIG. 2. (Color online) Probability density function of normalized
total transmission power, p(T̂ ), from numerical data (symbols) and
Eq. (8) (curves) on linear (a) and semi-log (b) scales. The randomly
located 50 μm diameter holes in LN (εr = 41.7) had dielectric
constants of 20, 10, and 1, and a fill fraction of 0.42. The hole Gaussian
density function had 〈x〉 = 67 μm, 〈y〉 = 69 μm and σx,y = 7 μm.
As the hole dielectric constant decreases (increasing scatter), g

decreases as well.

three distinct dielectric constants (εr ), 1, 10, and 20, with
the results shown in Fig. 2 [23]. As the dielectric constant
increases, it approaches the dielectric constant of the LN
background, 41.7, reducing the effective scattering strength.
For each dielectric constant, the statistical data was formed
from the numerical field data from 90 randomly generated
hole distributions. Figure 2 shows how p(T̂ ) evolves as g

transitions from 42.02 (red) to 1.26 (green) to 0.02 (blue),
corresponding to a transition from diffusive transport to
localization with increasing strength of scatter. In the diffusive
regime there are many “conducting channels” in the random
medium, all contributing to the total transmission. Thus, p(T̂ )
is Gaussian as a result of the central limit theorem with
weaker scatter (large hole dielectric constant). As localization
is approached (with smaller hole dielectric constant), the
number of “conducting channels” diminishes, leading to a
larger variance in p(T̂ ). These characteristics of p(T̂ ) are all
clearly observed in Fig. 2. In the case of free space holes
(εr = 1), g = 0.02 indicates the localization regime. Note that
our numerical results fit the theoretical model of Eq. (8) well
in all three cases, from weak through strong scatter.

We provide a rough estimate of the localization length,
ξ ∼ N�s , where N is the number of propagating modes in our
geometry and �s is the scattering mean free path [20,25,26].
We assume that the random medium can be homogenized such
that the geometry can be represented as a waveguide filled with
a medium with an effective dielectric constant determined by
Maxwell-Garnett mixing theory [27,28]. Thus, the number of
modes is equal to N = 2w/λe, where w is the width of the
waveguide (2 mm) and λe is the effective wavelength in the
homogenized medium. For εr = 1,10,and 20, we find that N

is equal to 45, 51, and 56, respectively. The scattering mean
free path is given by �s = 1/(ρσs), where ρ is the density
of scatterers and σs is the scattering cross section of a single
scatterer. After obtaining the scattering cross section from a
numerical simulation of the scattered field for a single scatterer,
we find the scattering mean free path, �s , to be 31.7 μm,
39.7 μm, and 91.6 μm for εr = 1,10,and 20, respectively.
With both N and �s calculated, the localization length is
be found to be 1.4 mm, 2.0 mm, and 5.1 mm, when εr is
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FIG. 3. (Color online) Probability density function for the nor-
malized intensity, Î : negative exponential (green); theoretical result
from Eq. (9) (red); K-distribution (3) (blue); numerical data (black
dots). The scatterers were 50 μm diameter dielectric holes in LN,
where (a) εr = 1 with g = 0.32 and α = 0.12, and (b) εr = 20 with
g = 42 and α = 37. In both figures, the Gaussian-distributed holes
had 〈x〉 = 78 μm, 〈y〉 = 60 μm, and σx,y = 7 μm.

equal to 1, 10, and 20, respectively. The calculation of the
dimensionless conductance, the plot of the probability density
function of the normalized total transmission, the estimate of
the scattering mean free path, and the localization length all
serve as important indicators of localization and allow us to
establish that LN with randomly placed free space holes can
localize THz waves.

We proceed to investigate the intensity probability density
function, p(Î ), at the output plane, where Î is the intensity,
the x̂-component of the Poynting vector normalized by
its ensemble average. As long as the nth moment of the
normalized intensity and total transmission are related by
〈Î n〉 = n!〈T̂ n〉 for all positive integers n, p(Î ) can be obtained
from p(T̂ ) by [7]

p(Î ) =
∫ ∞

0

1

T̂
e−Î /T̂ p(T̂ )dT̂ , (9)

where p(Î |T̂ ) = T̂ −1 exp(−Î /T̂ ) is the conditional density
for Î , given T̂ , arrived at by virtue of the moment dependence
between Î and T̂ , and Bayes’ rule has been used.

We plot numerical p(Î ) data at the output plane in Fig. 3 for
the localization [Fig. 3(a)] and diffusive [Fig. 3(b)] regimes.
Density functions obtained from numerical results are fitted to
Eqs. (3) and (9). The negative exponential density function is
also drawn for comparison.

For the case of strong scatter in Fig. 3(a), we observe that
both Eqs. (3) and (9) fit our numerical data well, while the
negative exponential density function decays much faster. This
is the first observation that the K-distribution, given by Eq. (3),
can model intensity statistics of Anderson localized waves. In
this randomly scattering medium, the number of random pha-
sors that contribute to the total field at a certain position within
the random medium is itself random. The number of contribut-
ing phasors vanish at positions outside of localization regions,
where the field is evanescent, and the number becomes non-
zero when the position is within a localization region. These
localized regions include concatenated or spatially overlapping
localized modes, known as necklace states, that can transmit
energy through the random medium [29]. The K-distribution
(3) fits the data well because Eq. (1) is an effective model for
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FIG. 4. (Color online) Probability density function for the natural
logarithm of normalized intensity, lnÎ : fit to Eq. (10) with α = 0.267
(green dashed); fit to Gaussian with mean μ = −3.05 and variance
σ 2 = 8.37 (red); numerical data (black dots). The numerical data are
the same as in Fig. 3.

the number of random phasors that contribute to the field in the
strong scatter case. Similarly, in randomly corrugated waveg-
uides having weak scatter and a small number of contributing
random phasors, it was found that the output plane field magni-
tude statistics could be described using the K-distribution [14].

For the case of weak scatter in Fig. 3(b), all three models fit
the data well, indicating, as expected, a negative exponential
probability density function for intensity. Equation (3) fits
because it approaches a negative exponential density function
for α � 1, while Eq. (9) fits because p(T̂ ) is Gaussian, with
a mean of unity and small variance (approximately a Dirac
delta function) in the diffusive regime. Then, p(T̂ ) sifts out
exp (−Î ) in Eq. (9), making the density function for Î negative
exponential.

The distribution for the logarithm of the normalized
intensity in the localization regime has been predicted to be
log-normal [26,30,31]. From Eq. (3), we can do a change of
variables and obtain the K-distribution for lnÎ as

p(lnÎ ) = elnÎ 2α

�(α)
(αelnÎ )(α−1)/2Kα−1(2

√
αelnÎ ). (10)

In Fig. 4, we plot the numerical distribution of the natural
logarithm of the normalized intensity data and compare it
with both Eq. (10) and the Gaussian density function for
lnÎ . The log scale provides an expanded view for normalized
intensities less than one, which in Fig. 3 represents a small
portion of the overall plot. The excellent agreement between
the data and Gaussian fit provides additional evidence for
Anderson localization. On this scale, the K-distribution
also fits the data reasonably well. The random phasor sum
model leading to the K-distribution for intensity allows the
derivation of an analytic form for the field density function
which, until now, has not been achieved. The similarity and
difference between Eq. (10) and the Gaussian density function
can be analyzed by studying the asymptotic forms of the
modified Bessel function of second kind, Kν(z),

Kν(z) ∼ 1

2
�(ν)

(
z

2

)−ν

, z → 0, (11)

Kν(z) ∼
√

π

2z
e−z, z → ∞. (12)
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FIG. 5. (Color online) Magnetic field statistics at the output
plane, on both linear and semi-log scales for clarity: (a) and (b)
are for strong scatter (εr = 1), where the theoretical line is calculated
using Eq. (7); (c) and (d) show the weak scatter case (εr = 20), with
the red line being the fit to a Gaussian density function. The numerical
data are the same as in Fig. 3.

Substituting Eqs. (11) and (12) into Eq. (10), we obtain

p(lnÎ ) ∼ elnÎ , Î → 0, (13)

p(lnÎ ) ∼ e−e(lnÎ )/2
, Î → ∞. (14)

In Eqs. (13) and (14) we only retain the term that dominates
the asymptotic behavior of p(lnÎ ). We observe from Eq. (13)
that p(lnÎ ) grows as exp (lnÎ ) as lnÎ increases from negative
infinity. This growth is slower than the form of any Gaussian
density function. When lnÎ approaches infinity, Eq. (14)
indicates that p(lnÎ ) decays as exp {− exp [(lnÎ )/2]}, which
is faster than any Gaussian decay. Figure 4 clearly shows these
features.

Using magnetic field data at the output plane, we obtained
the p(φ̂R,I ) results in Fig. 5, given on both linear and semi-log
scales for clarity. Figures 5(a) and 5(b) show the localized
case and Figs. 5(c) and 5(d) that for Gaussian fields and weak
scatter. We can see that Eq. (7) is an excellent model for the
data, making it the first analytical expression to describe the
probability density function of the real and imaginary parts of
fields in the localization regime.

Consider now the field statistics inside the random medium
for both the diffusive and localization regimes. Referring to
Fig. 1, numerical field data from the x = 2, 4, 6, and 8 mm
planes inside the random medium resulted in the probability
density functions in Fig. 6. We show only the real part of the
field for clarity, the imaginary density function is the same.
We find identical normalized field statistics at different depths
inside the random medium, even in the case of localization.

The circular Bessel density function, Eq. (7), has been
written in terms of normalized field. However, it has one free
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FIG. 6. (Color online) Statistics of the real part of the magnetic
field taken at different depths inside the random medium: (a) strong
scatter (εr = 1); (b) weak scatter (εr = 20). The red line shows the
theoretical prediction using Eq. (7). The numerical field data are the
same as that used to generate the results in Fig. 3.

variable, α, that can be traced back to Eq. (1). It is exactly the
different shapes of Eq. (1) for different α that gives Eqs. (3) and
(7) their versatility to model wave statistics under all scattering
conditions, with only the minimal assumption of circularity.
In Fig. 6(a), the invariance of the normalized field statistics as
a function of depth is attributed to the contribution of necklace
states to the variance (and α) in the localization regime.

All field densities in Fig. 6(b) are identical because of the
normalization. We know that for zero-mean circular Gaussian
statistics, p(φR,I ) = exp(−φ2

R,I /2σ 2)/
√

2πσ 2, and the ampli-

tude is Rayleigh distributed and given by p(A =
√

φ2
R + φ2

I ) =
A exp[−A2/(2σ 2)]/σ 2 [2]. Given that 〈A〉 =

√
σ 2π/2, we can

eliminate σ 2 in p(φR,I ) by using φ̂R,I = φR,I /〈A〉 as the new
random variable, and obtain p(φ̂R,I ) = 0.5 exp(−πφ̂2

R,I /4).
Thus, as long as the fields are zero-mean circular Gaussian,
the real and imaginary parts of the field can always be
normalized so that they have a probability density function
that is independent of position, assuming fully developed
statistics. Notice that the maximum value of the density
function in Fig. 5(c), located at φ̂R,I = 0, is exactly 0.5.

IV. CONCLUSION

The fundamental equations of physics, such as Maxwell’s
equations and the Schrödinger equation, use a field or wave

function solution that forms the basis for the intensity or
probability. Their solutions are typically represented using
phasors. Our work contributes to the random phasor sum model
by predicting the field density function when the number of
contributing random phasors is finite. This holds not only for
photon scattering in a variety of random media, but should
also hold for electrons and other particles scattering in random
potentials.

We have shown that the numerical field statistics in the
localization regime can be well described by the circular
Bessel density function. The basis of the circular Bessel
density function is the random variation in the number of
contributing phasors in the total field, which in turn is tied to
the physical picture of Anderson localization. Although the
log-normal distribution appears to be a more precise model
for intensity in the localization regime, the K-distribution and
the circular Bessel density function, obtained from a modified
random phasor sum model, are statistical descriptions that
unveil the intrinsic connection between intensity and field,
thus far unavailable with the log-normal description. The
discovery of the circular Bessel density function for fields
builds a theoretical foundation for experiments that directly
measure field [18,32]. This density function may also be a
basis for the development of a moment theorem analogous to
that developed for Gaussian statistics [33], which will facilitate
the intensity-based characterization of random media, and
imaging through and within random media. The parameter
α in the circular Bessel density function is related to the
scintillation index (σ 2

Î
), which has recently been shown to

describe a fundamental length scale of waves in random media
[34]. Thus, the field density function we derived may also
bridge the gap between field statistics and the formation of
freak waves in weakly scattering random media. Having an
analytical density function that works in a variety of scattering
regimes may also prove interesting in the study of random
lasers [35], for example, in the design of highly directional
random lasers [36].
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