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Thermodynamics of the one-dimensional parallel Kawasaki model:
Exact solution and mean-field approximations
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Dipartimento di Chimica e Farmacia, Università degli Studi di Sassari, 07100 Sassari, Italy

(Received 19 May 2014; published 15 August 2014)

The adsorption isotherm for the recently proposed parallel Kawasaki (PK) lattice-gas model [Phys. Rev. E
88, 062144 (2013)] is calculated exactly in one dimension. To do so, a third-order difference equation for the
grand-canonical partition function is derived and solved analytically. In the present version of the PK model,
the attraction and repulsion effects between two neighboring particles and between a particle and a neighboring
empty site are ruled, respectively, by the dimensionless parameters φ and θ . We discuss the inflections induced
in the isotherms by situations of high repulsion, the role played by finite lattice sizes in the emergence of
substeps, and the adequacy of the two most widely used mean-field approximations in lattice gases, namely, the
Bragg-Williams and the Bethe-Peierls approximations.
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I. INTRODUCTION

Due to their discreteness, which makes them amenable
to theoretical investigations as well as efficient tools in the
production of coarse-grained models, lattice gases [1,2] are
still widely used in computational physics and chemistry
[3–23]. In not-so-recent times, cellular automata (CA) were
introduced as highly parallel computational tools in the study
of fluids and complex systems on the mesoscopic scale
[24–27]. Although CA found a huge number of applications
in the field of chemical physics, ranging from hydrodynamics
[28] to adsorption and diffusion in microporous materials
[29,30], only a relatively small number of such models actually
satisfy detailed balance and can therefore be properly referred
to as equilibrium CA. This is because, in models which evolve
through a non-Newtonian dynamics, the full synchronicity in
the configurational update and the microscopic reversibility
appear as two conflicting counterparts.

We recently developed a fully synchronous CA rule
for adsorption and diffusion of mutually exclusive, locally
interacting particles in a lattice which satisfies detailed balance
[31,32]. So, as Little’s model [33–35] represents the CA
counterpart of the Ising model, the CA developed in Ref. [32]
can be taken as the synchronous counterpart of the Kawasaki
dynamics. Therefore, we refer to the evolution rule of our CA
as “parallel Kawasaki” (PK).

This paper is devoted to the analytical derivation of the
adsorption isotherm for a homogeneous, one-dimensional PK
lattice. One-dimensional discrete models are of interest in the
study of low-dimensional systems like, for example, single
walled carbon nanotubes filled with molecules or atoms whose
radius compared to the nanotube section is such that they
cannot cross each other [36–39] and zeolite channels (see, for
example, Refs. [40,41] and references therein).

This article is organized as follows: In Sec. II we summarize
the PK evolution rule and pseudo-Hamiltonian. In Sec. III
we develop a third-order finite difference equation for the
grand-canonical partition function, from which we obtain
an analytical relation between the density and the chemical
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potential, and we discuss the effect of finite size of the lattice in
Sec. IV. Finally, in Sec. V we compare the exact isotherms with
two approximate models. Mathematical details are provided
in the Appendix.

II. DESCRIPTION OF THE RULE

The characteristic parameters of the homogeneous PK
model are [32] the site connectivity ν (i.e., the number of neigh-
bors that can be accessed from each site), the site adsorption
energy ε (with ε � 0), the site-to-site energy migration barrier
ψ (with ψ � 0), and the interaction (dimensionless) parameter
between a particle and an occupied neighboring site φ (with
0 � φ < ∞). In this work we incorporate a further interaction
parameter, θ (with θ � 0), describing the interaction between a
particle and each empty site in its neighborhood. The condition
θ = 1 does not alter the tendency of a particle to point toward
empty neighbors. If this is the case, then such tendency is
determined only indirectly via the parameter φ (the parameter
φ modifies the tendency to point toward filled neighboring
sites and as a consequence modifies the tendency to point to the
empty ones as well). Putting θ > 1 emphasizes the tendency
to point toward empty sites; i.e., it emphasizes indirectly
the particle-particle repulsion, whereas 0 < θ < 1 suppresses
the tendency to point to empty sites and as a consequence
emphasizes the attraction among neighboring particles. The
introduction of θ enlarges the parameter space of the model,
thus enriching the range of possible behaviors of the system.
This can be proven as follows. As we will show in the part of
this work devoted to the equilibrium distribution of the model,
a term which enters the expression for the interaction field
around a particle is

F (φ,θ,Nr ) = νθ − Nr (θ − φ), (1)

where Nr is the number of occupied neighboring sites around
a particle located in site r . It is straightforward to check that,
apart from the trivial case φ = θ = 1, it is not possible to define
a φ′ such that F (φ′,1,Nr ) = F (φ,θ,Nr ) without introducing
an explicit dependence of φ′ on the neighborhood occupancy
Nr . In other words, there is no PK system with θ = 1 whose
properties are equivalent to a reference PK system with θ �= 1.
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This will become very clear in Sec. III, where we will show
the effects on the adsorption isotherms caused by θ �= 1.

It is useful at this point to briefly summarize the PK
evolution rule for a homogeneous lattice when we incorporate
the parameter θ in the algorithm. Detailed balance is obeyed
in the PK dynamics (PKD) by means of the following three
prescriptions: (1) Empty sites can be pointed toward and
reached by a particle in a neighboring site, whereas occupied
sites can be pointed toward but cannot be reached; (2) if two
or more particles are competing to occupy the same site,
none of them will be allowed to reach it; and (3) if one of
more particles are pointing toward a site occupied by another
particle, that particle must stay at rest. Details about the the
physical implications of such prescriptions can be found in
Ref. [31].

We shall now define the neighborhood of each site, along
with the probability each particle has to attempt a jump into a
neighboring site. Let us indicate as r a generic site of the lattice
L. The ν sites connected to every site, say r , are listed in the
set I(r), and they are called neighbors of r . The probability of
a lone particle, located in the site r , to attempt a jump into site
r ′ is defined as

p(r,r ′) = eβ(ε−ψ)

ν
, r �= r ′, (2)

which is nonzero only for r ′ ∈ I(r). In Eq. (2), β = (kBT )−1

with kB as the Boltzmann constant and T as the temperature,
and p(r,r ′) � 1 because ε � 0 and ψ � 0. The probability of
the host site itself, namely, r , to be chosen as the destination
site reads consequently

p(r,r) = 1 −
∑

r ′∈I(r)

p(r,r ′). (3)

Now, let us suppose that the presence of other particles in
the neighborhood of a particle in r alters the probability of
the particle in r to point toward each one of the sites in its
neighborhood. More specifically, we assume such probability
to be no longer p(r,r ′) but p̃(r,r ′) instead (called direction
probability), defined as

p̃(r,r ′|η(r)) = p(r,r ′)
Z(r,η(r))

[n(r ′)θ + n(r ′)φ], (4)

valid for r �= r ′, and

p̃(r,r|η(r)) = p(r,r)

Z(r,η(r))
, (5)

for the case r = r ′, where n(r) represents the occupancy of
site r (taking value 1 if r is occupied and zero otherwise), n(r)
means 1 − n(r), and η(r) = ∪r ′∈I(r)n(r ′) is the configuration of
the occupancies in the neighborhood of site r (the occupancy
of site r itself is excluded in this definition). In Eq. (4) the
tendency of the particle in r to point toward site r ′ is modified
either by the dimensionless parameter φ � 0 if r ′ is filled or
by θ > 0 if r ′ is empty instead. This defines the interaction
between a particle and its neighboring sites. The denominator
Z(r,η(r)) in Eq. (4) is defined as

Z(r,η(r)) = p(r,r) +
∑

r ′∈I(r)

p(r,r ′)[n(r ′)θ + n(r ′)φ] (6)

and is a key quantity since it represents the local probability
space available to the particle located in r . The interaction
parameters φ and θ modify the probability of particle i to
escape its current host site. Repulsive and attractive effects can
be obtained in several ways. For example, a mutually repulsive
effect among neighboring particles can be obtained by setting
0 � φ < 1 and θ > 1, and attraction can be mimicked by
reverting those ranges. Setting φ = 1 and θ = 1 will mimic
a situation of noninteraction (except mutual exclusion, which
is ensured by the evolution algorithm).

Once we have defined all the basic quantities, we are ready
to express mathematically the evolution rule according to
prescriptions 1–3.

At each time step, at every site (independently of the other
sites), say r , whose neighborhood occupancies are configured
as η(r), we pick a random boolean ξ (r,r ′) [with r ′ ∈ I(r)]
which is 1 with probability p(r,r ′|η(r)) and zero otherwise.
Note that ξ (r,r) + ∑

r∈I(r) ξ (r,r ′) = 1, so that every particle
can choose only one target site at a time. The evolution rule
for the site occupancies reads

nt+τ (r) − nt (r) = ω+1(r)nt (r) − ω−1(r)nt (r), (7)

where t is the discrete time (t = 0,τ,2τ, . . . ) and τ is the
duration (in s) of a time step. The quantities ω+1 and ω−1 in
Eq. (7) are, respectively, creation and annihilation operators
acting simultaneously on every lattice site. They are described
in detail in Ref. [31].

We can follow the same method as in Ref. [32] to find out
that the equilibrium configuration of occupancies satisfies

P (η) ∝
∏
r∈L

[e−βεZ(r,η(r))]n(r). (8)

If we put the right-hand side of relation (8) in the form
of e−βHβ (η), where Hβ(η) is the configurational pseudo-
Hamiltonian, we get

Hβ(η) = Nε − 1

β

∑
r

n(r) ln

{
e−βε − e−βψ

ν

×
∑

r ′∈I(r)

[1 − θ + (θ − φ)n(r ′)]
}
. (9)

The inner summatory in the right-hand side of Eq. (9)
is equivalent to ν − F (φ,θ,Nr ), where the function F has
been defined in Eq. (1). We remark that, since the sum
in the definition of the direction probability, Eqs. (6) and
(4), runs over the neighbors that can be reached with a
single jump, and since the equilibrium distribution does not
contain information about any extra interaction besides the
neighboring interactions, in its present form the algorithm
satisfies detailed balance if and only if every particle is allowed
to attempt a jump from its current site to any of the sites it
interacts with.

III. EXACT SOLUTION FOR A
ONE-DIMENSIONAL SYSTEM

In this section we present the key points in the derivation
of the exact expression for the adsorption isotherm of the PK
model. Further details can be found in the Appendix.
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Let us consider a one-dimensional PK lattice L := 1, . . . ,L

of L sites. No periodic boundary conditions are assumed to
hold; i.e., two sites, zero and L + 1, are added, respectively,
at the left of site 1 and at the right of site L and are assumed
to remain always empty. The aim of this section is to obtain
a recurrence equation [42] for the grand-canonical partition
function

�L =
L∑

N=0

λNWN,L, (10)

where λ = eβ(μ−ε) with μ as the chemical potential and ε

as the site adsorption energy (assumed homogeneous); N is
the number of particles in the lattice; and the weight WN,L

contains the contributions of the particle-particle interactions
to the total canonical partition function, QN,L = WN,Le−βεN ,
when the number of particles and the number of sites have the
values N and L, respectively. The weight WN,L (its definition
can be found in the Appendix) contains three-body interactions
of the form

Z(ni−1,ni,ni+1) = 1 − eβ(ε−ψ)

ν
[ν(1 − θ )

+ (ni−1 + ni+1)(θ − φ)]ni , (11)

where the barriers ψ , θ , and φ are homogeneous throughout
the entire lattice and ν = 2 for a one-dimensional system.
Equation (11) represents the statistical weight of the three-
body interaction involving the ith site (with occupancy ni) and
its two neighboring sites, i − 1 and i + 1. We see immediately
from Eq. (11) that the many-body nature of the PK interactions
does not allow us to apply directly the formulas of Aranovich
et al. [42], derived for the case of pair interactions. In PK
lattices the energy of a pair of interacting particles depends
on the state of the neighborhoods of both of them and cannot
be reduced to a sum of pair interactions. We anticipate that
this will raise the order of the resulting difference equation
for � from 2 [42] (the pair interaction case) to 3. Through
combinatorial arguments [42,43], in the Appendix we derive
a recurrence equation for WN,L:

WN,L+1 − WN,L − (1 − y − 2x)WN−1,L − 2xWN−1,L−1

−x2WN−2,L−2 = 0, (12)

where

y = eβ(ε−ψ)(1 − θ ), x = eβ(ε−ψ)

ν
(θ − φ). (13)

To retrieve an ordinary difference equation in terms of the
grand-canonical partition functions �L, we simply multiply
Eq. (12) by λN and then sum all the terms over N = 0, . . . ,L +
1. Since WN,L = 0 for N < 0 and N > L, by using Eq. (10)
we get

�L+1 − [1 + λ(1 − y − 2x)]�L − 2λx�L−1

−λ2x2�L−2 = 0. (14)

Equation (14) is a third-order ordinary homogeneous differ-
ence equation, with general solution

�L = C1ω
L
1 + C2ω

L
2 + C3ω

L
3 , (15)

β
μ

(a)
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FIG. 1. Adsorption isotherms (T = 300 K) for the one-
dimensional PK lattice with null adsorption energy ε when (a) θ = φ,
and when (b) the particle-particle attraction parameter φ is varied with
θ = 1.

where the functions Ck and ωk (k = 1,2,3) do not depend on
L. In particular, in the limit of L → ∞ we have

ρ∞ = 2λ

{
1 − y − 2x + 24/3[1 − y + x + λ(1 − y − 2x)2]

(B0 + 3
√

3B1)1/3

− 24/3B3B2

(B0 + 3
√

3B1)4/3
+ 22/3B2

(B0 + 3
√

3B1)2/3

}/
{

2[1 + λ(1 − y − 2x)] + 24/3B3

(B0 + 3
√

3B1)1/3

+ 22/3(B0 + 3
√

3B1)1/3

}
. (16)

All the functions Ck , ωk , and Bk are reported in the Appendix.
The expression in the right-hand side of Eq. (16) is

quite complicated and is not amenable to immediate physical
interpretation. We can, however, study Eq. (16) numerically.
Since our aim is to study how the adsorption profiles change
when we change the value of the interaction parameters θ and
φ, in all the numerical examples we will consider ε = ψ = 0.
Moreover, the temperature is fixed at the arbitrary value of
300 K.

If θ = φ = 1, the inner sum in the right-hand side of
Eq. (9) becomes zero, so that the particles interact with each
other only via mutual exclusion and the model is equivalent
to the one described in our previous work [31]. However, the
above mentioned sum does not become zero if θ = φ �= 1 and
the isotherm is therefore expected to differ from the case of
absence of explicit particle-particle interactions. This is shown
in Fig. 1(a), where we report the dimensionless chemical
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potential, βμ, necessary to reach every possible loading, ρ∞,
for an infinitely large one-dimensional system when equal
values are assigned to the parameters θ and φ (the numerical
values are reported above each curve). As we can see, a change
in such a value induces a shift in the isotherm.

In Fig. 1(b) we set θ = 1 and study the behavior of the
isotherm under several values of φ, ranging from a situation of
extreme particle-particle repulsion (φ = 0) to one of modest
repulsion (φ = 10−1). In the case of infinite repulsion (φ = 0),
an infinite step in the chemical potential prevents the infinite
one-dimensional system from being loaded more than 2/3.
This is because the infinite repulsion sets up (i.e., the energy
diverges) when both the neighbors of a particle are occupied,
whereas in the case of a single occupied neighbor the energy
is still finite. Therefore, in the one-dimensional PK model
a particle is not allowed to have two occupied neighbors if
φ = 0, and this causes an infinitely large μ step to appear
at ρ∞ = 2/3. For small (but non-null) values of φ the μ

step becomes finite, indicating that a finite (but high) amount
of energy must be supplied to load the system more than
2/3. This happens because the energy of a particle tends to
become very high when both of its neighbors are occupied.
Analogous steps have been observed in the adsorption isotherm
of several experimental systems [44–47] and might indicate
the presence of a liquid-solid phase transition (which in the
standard Kawasaki is located at ρc = 1/2 rather than 2/3), but
their nature is not clearly understood [42].

We remark that the infinite repulsion scenario is produced
by φ = 0 as well as by θ → ∞ and that the limiting case of an
infinite chemical potential at ρ∞ = 2/3 exists only when ε =
0. For ε slightly less than zero the infinite chemical potential
barrier at ρ∞ = 2/3 becomes a finite step, and as ε departs
from zero to lower values the step tends to become less steep
and finally disappears with a trend comparable with the one
shown in Fig. 1(b) [32].

In Fig. 2 we show how the adsorption isotherm varies with
both θ and φ. In Fig. 2(a) the extreme repulsion situation
dictated by φ = 0 forces the system to be loaded by 2/3 at
most, and increasing the parameter θ from very low values
(10−5) to higher values (103) causes the chemical potential
profile to be shifted to lower energies, which is compatible
with the interpretation of θ as a parameter to model the affinity
between particles and empty sites. In Fig. 2(b), the parameter
φ is still low (10−5) so a step around loading 2/3 is expected.
However, the step does not appear until θ becomes several
orders of magnitude larger than φ. This can be seen clearly in
Figs. 2(b) and 2(c): the μ step does not exist at all when θ = φ,
an inflection appears at θ = 10−3 (i.e., when θ = 102φ), a
small step appears at θ = 10−1 (i.e., when θ = 104φ), and it
becomes larger when we further increase by several orders of
magnitude the ratio θ/φ.

IV. FINITE SIZE EFFECTS

It is interesting to study how the isotherm behaves when
L < ∞ and to compare such behavior with the case of a
finite, standard one-dimensional Kawasaki lattice [42]. In
particular, we want to check for the presence of substeps
in the adsorption isotherm—such substeps can be found
in the standard Kawasaki [42] as well as in a number of
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μ
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θ = 10
−3

θ = 10−5

φ = 10−5

β
μ

ρ∞

(c)

θ = 10
9

θ = 10
7

θ = 10
5

θ = 10

φ = 103

FIG. 2. Adsorption isotherms for the one-dimensional PK lattice
with null adsorption energy ε for several values of the parameters θ

and φ. Temperature is fixed at 300 K.

experimental systems [48,49]. The full explication of the
grand-canonical partition function for a finite system, �L,
through Eqs. (15), (A11)–(A18), and (A22)–(A24) in the
relation ∂ ln �L/∂ ln λ provides a formula for ρL which is
enormously more complicated than ρ∞. Again, such exact
solutions will be studied numerically. In Fig. 3 the effect of
a finite value of L is shown in a case where a step in the
adsorption isotherm is expected, i.e., θ = 1 and φ = 10−5. In
the standard Kawasaki case, substeps were likely to appear at
even (and relatively small) values of L, i.e., with periodicity 2.
Such a feature was strictly related to the fact that, for L even,
a first substep was expected at ρc = 1/2, plus an additional
substep was expected at ρc = 1/2 + 1/N due to the fact that
a further particle can be adsorbed either in the site at the end
point of the lattice that has only one (rather than two) occupied
neighbor or in any of the other sites of the lattice that has two
occupied neighbors. The presence of substeps in the PK lattice
can be explained in a similar manner. However, as one can see
in Fig. 3, in the PK case oscillations appear for L = 3k and
3k + 1 (k = 1,2, . . . ).
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FIG. 3. Size effect on finite PK lattices with null adsorption energy ε. Temperature is fixed at 300 K.

More specifically, for the case of L = 3k a first step
occurs at ρ1 = N1/L with N1 = 2Q(L

3 ) [where Q( A
B

) is the
quotient between the integers A and B], corresponding to a
configuration where Q(L

3 ) pairs of sites (separated by at least
one empty site) are occupied. For example, for L = 9 such a
configuration can be realized in one of the four ways

��������� (17)

��������� (18)

��������� (19)

��������� (20)

or in one of the six ways

��������� (21)

��������� (22)

��������� (23)

��������� (24)

��������� (25)

��������� (26)

In configurations (17)–(26) two kinds of clusters can be
observed: clusters made of one site only (one-site clusters
or clusters of order 1) and clusters made of two consecutive
sites (two-site clusters or clusters of order 2). If w (with
w = 1,2, . . . ) indicates the order of a cluster, and Ew indicates
the energy of a w-site cluster calculated at the same conditions
as in Fig. 3 (i.e., ε = ψ = 0, θ = 1, and φ = 10−5), we have

βE1 ≈ 0.693, βE2 ≈ 1.386. (27)

The addition of one particle results in three kinds of clusters.
Three-site clusters are obtained, e.g., by insertion in the ninth
site of configuration (17) or in the seventh site of configuration

(18), resulting in

������ ���︸ ︷︷ ︸
w=3

(28)

Four-site clusters are obtained, e.g., by inserting a particle in
the third site of configuration (22):

����︸ ︷︷ ︸
w=4

����� (29)

Five-site clusters are obtained, e.g., by inserting a particle in
the third site of configuration (17):

�����︸ ︷︷ ︸
w=5

���� (30)

The energies E3, E4, and E5 are one order of magnitude higher
than E1 and E2:

βE3 ≈ 12.899, βE4 ≈ 24.412, βE5 ≈ 35.925. (31)

To get from N1 to N2 = 2Q(L
3 ) + 1 particles, the energy

spent to accommodate one further particle is at least the one
necessary to the formation of a three-site cluster, resulting in
the transition at the density

ρ
(1)
3k = 2Q

(
L
3

)
L

. (32)

An alternative route proceeds through the formation of a four-
site cluster and is not preferred due to the greater amount
of energy required. After the addition N1 → N1 + 1, all the
lattice sites that remained empty have equivalent energy, and
thus at the density

ρ
(2)
3k = 2Q

(
L
3

) + 1

L
(33)

we have another transition to saturation, which is steeper
than the previous one. Such behavior is expected, since the
energy required for the addition N1 + 1 → N1 + 2 is more
than doubled with respect to the amount necessary for N1 →
N1 + 1. For example, addition of one particle into the empty
end point of configuration (17) [which leads to configuration
(28), made of two clusters of order 2 and one of order 3] takes
β�E ≈ 11.513, and addition to a further particle into the third
empty site of configuration (28) [leading to one cluster of order
5 and one of order 3] requires β�E ≈ 33.153.
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For the case of L = 3k + 1 we have two steps at the
densities

ρ
(1)
3k+1 = 2Q

(
L
3

) + R
(

L
3

)
L

= 1 − Q
(

L
3

)
L

(34)

and

ρ
(2)
3k+1 = 1 − Q

(
L
3

)
L

+ 1

L
, (35)

where R( A
B

) = A − BQ( A
B

) indicates the remainder of the

division between the integers A and B. At the density ρ
(1)
3k+1

the most stable configuration is made of Q(L
3 ) pairs and an

isolated particle. An example for L = 10 is

���������� (36)

The particle addition which involves the minimum amount of
energy is the addition into the ninth site, leading to a four-site
cluster. In this case we do not have an alternative route allowing
us to form a (less expensive) three-site cluster instead of a
four-site one, and therefore the transition at the density ρ

(1)
3k+1

is expected to be the steepest one in this case.
The case of L = 3k + 2 is analogous to the case with an

odd number of lattice sites in the ordinary Kawasaki algorithm.
A unique transition point is located at the density

ρ
(1)
3k+2 = 1 − Q

(
L
3

)
L

, (37)

where the most stable configuration is made of only pairs, with
no empty end points. For example, for L = 11 we have

����������� (38)

The empty sites are all equivalent and we have a single step in
the adsorption isotherm.

V. APPROXIMATE SOLUTIONS

We checked the agreement between exact isotherms and the
ones produced under two of the most widely used approximate
solutions in lattice-gas theory, namely, the Bragg-Williams
(BW) and the Bethe-Peierls (BP) approximations. Under the
BW approximation [50], we have

βμ = βε − eβ(ε−ψ)ρ(φ − θ )

1 + eβ(ε−ψ)[θ − 1 + (φ − θ )ρ]
+ ln

ρ

1 − ρ

− ln{1 + eβ(ε−ψ)[θ − 1 + (φ − θ )ρ]}, (39)

whereas under the BP approximation [51] we construct the
isotherm by solving numerically, for every value of the
chemical potential μ, the set of equations

P (1,n) = 1

q

(
ν

n

)
eβμ(n+1)zne−βε

×
{

1 − eβ(ε−ψ)

ν
[ν(1 − θ ) + n(θ − φ)]

}
,

P (0,n) = 1

q

(
ν

n

)
eβμnzn, (40)

and
ν∑

n=0

P (1,n) = 1

ν

ν∑
n=0

n [P (0,n) + P (1,n)] . (41)

where P (1,n) and P (0,n) represent, respectively, the probabil-
ity of a site to have n occupied neighbors when it is occupied
or empty, ν still indicates the number of first neighbors and
has value 2 for a one-dimensional system, z accounts for the
influence of the rest of the lattice, and the factor q is obtained
through the normalization condition

ν∑
n=0

[P (0,n) + P (1,n)] = 1. (42)

Comparisons are made in Fig. 4. We notice immediately
the qualitative inadequacy of the BW approximation for
intermediate to high loadings, which mirrors the fact that
no correlations between a site and its neighborhood are
included in any way, so the difference between the exact
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FIG. 4. Exact adsorption isotherms (solid lines) for the infinite
PK model with θ = 1, T = 300 K, and several values of φ, together
with the curve resulting from both the Bragg-Williams (BW, dashed
lines) and the Bethe-Peierls (BP, dotted lines) approximation.
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and the BW isotherm can be taken as a measure of deviation
from ideality. The qualitative agreement provided by the BP
approximation instead can be considered satisfactory, since
inflections are produced at the same critical loading as the
exact isotherm, indicating that the very little information about
correlations between the central site and the neighboring ones
introduced in the BP equation [i.e., the term z in Eq. (40)]
is enough for the approximate model to reproduce the
behavior of the isotherm under highly nonideal conditions.
Not surprisingly, the agreement is almost quantitative for
the most extreme case, namely, φ = 0. This is due to
the presence in the approximate equations of the term
{1 − eβ(ε−ψ)

2 [2(1 − θ ) + n(θ − φ)]} (with n = 0,1,2), which
causes the pseudo-Hamiltonian to diverge when ε = 0 and
ψ = 0.

VI. CONCLUSIONS

The present paper is aimed, on the one hand, to validate
the simulation results presented in our previous work [32]
and, on the other hand, to contribute to the still-ongoing
production and study of one-dimensional lattice gases [52–55].
We derived a third-order finite difference equation for the
grand-canonical partition function of the one-dimensional
homogeneous parallel Kawasaki lattice gas. By solving it, we
obtained analytical expressions for the adsorption isotherm
when the interactions are represented through the dimension-
less parameters φ, describing the tendency of a particle to point
toward a neighboring filled site, and θ , which instead describes
the tendency of a particle to point toward a neighboring
empty site. The importance of θ �= 1 can be seen in the shift
of the adsorption isotherms when θ = φ and when φ = 0
with θ �= φ. We studied the solution for an infinite lattice
and in particular the conditions leading to a step in the
adsorption isotherm. Although it is common to observe steps
in the isotherms of heterogeneous lattices [56,57], here the
steps are purely related to situations of high particle-particle
repulsion. We discussed the role of the lattice size in the
production of further substeps in the adsorption isotherm,
which are found to exist both in the standard Kawasaki
model [42] and in several experimental systems [48,49].
Differently from the standard Kawasaki model, where the
isotherm substeps belong to two categories depending on the
loading at which they are observed, in our model the number
of such categories is found to be 3. Finally, the qualitative
validity of the Bethe-Peierls approximation is assessed in
capturing the isotherm shape and reproducing the critical
loading (in particular, the agreement is semiquantitative in
the case of extreme repulsions), whereas the Bragg-Williams
model turns out to be inadequate for all but the lowest
loadings.

The range of possible applications of our model of
adsorption covers the field of the theoretical treatment of
problems related to adsorption and diffusion phenomena
in one-dimensional nanochannels. The behavior of water
adsorbed in materials like Na-ABW, Li-ABW, and bikitaite
[58,59] as well as in AFI-type zeolites [60]; the use of EUO
zeolites as hydrocarbon traps for the automobile exhaust
cold-start problem [61]; and the properties of adsorbed
molecules in the one-dimensional channels of zeolite L [62]

are some examples of systems that can be investigated through
computational techniques, by means of molecular dynamics
and Monte Carlo on the molecular scale and, in our opinion,
by means of the PK model on the mesoscopic scale. Moreover,
besides the analytically solved model presented here, which
can cover the problem of adsorption in one-dimensional
guest-host systems in which the guest is represented by one
chemical species only, a great advantage of the PK model
with respect to standard Kawasaki lattice-gas approaches is
represented by its intrinsically synchronous nature, which
makes it amenable to numerical implementation in paral-
lel architectures, thus enabling the simulation of diffusion
and adsorption properties on very large space and time
scales.
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APPENDIX: APPENDIX: DERIVATION
OF THE ADSORPTION ISOTHERM

The statistical weight WN,L mentioned in Eq. (10) can be
expressed as

WN,L =
∑

n1,...,nL

(N,L)
KL−1

1 Z(nL−1,nL,0), (A1)

where we introduced the notation∑
n1,...,nL

(N,L) =
1∑

n1=0

· · ·
1∑

nL=0

δ

(
N −

L∑
i=1

ni

)
, (A2)

and KL
1 is a shorthand notation for the product of all the local

statistical weights from site 1 to site L:

KL
1 = Z(0,n1,n2)

[
L−1∏
i=2

Z(ni−1,ni,ni+1)

]
. (A3)

The function Z(ni−1,ni,ni+1) is defined in Eq. (11). Since
ni = 0 ∨ 1 (the same holds for ni−1 and ni+1 as well), it is
convenient to rewrite Eq. (11) as

Z(ni−1,ni,ni+1) = 1 − niy − ni(ni−1 + ni+1)x, (A4)

where x and y are defined in Eq. (13). Now, let us add a
further site after site L, while keeping N constant, so that the
N particles are now distributed over sites from 1 to L + 1,
with sites zero and L + 2 always empty. We can divide the set
of the possible configurations into two subsets where the site
L + 1 is empty and filled, respectively. In the configurations
with empty L + 1 all the N particles are distributed over sites
1 to L, and the partition function for this subset is again WN,L.
In the configurations with filled L + 1, instead, there is one
particle in the site L + 1, and the remaining N − 1 particles

022118-7



PAZZONA, DEMONTIS, AND SUFFRITTI PHYSICAL REVIEW E 90, 022118 (2014)

are distributed over sites 1 to L. We will indicate the partition
function of this subset as W ∗

N−1,L, where the asterisk indicates
that the N th particle is always located at L + 1:

WN,L+1 =
∑

n1,...,nL+1

(N,L+1)
KL−1

1 Z(nL−1,nL,nL+1)

×Z(nL,nL+1,0)

=
∑

n1,...,nL

(N,L)
KL−1

1 Z(nL−1,nL,0)Z(nL,0,0)

+
∑

n1,...,nL

(N−1,L)
KL−1

1 Z(nL−1,nL,1)Z(nL,1,0)

= WN,L + W ∗
N−1,L, (A5)

where we used the fact that Z(nL,0,0) = 1. In turn, the set of
configurations over which W ∗

N−1,L is defined can be further
divided into two subsets, one (W ∗∗

N−2,L−1) with both the sites L

and L + 1 occupied and another one with L empty and L + 1
occupied:

W ∗
N−1,L =

∑
n1,...,nL−1

(N−2,L−1)
KL−2

1 Z(nL−2,nL−1,1)

×Z(nL−1,1,1)Z(1,1,0)

+
∑

n1,...,nL−1

(N−1,L−1)
KL−2

1 Z(nL−2,nL−1,0)

×Z(nL−1,0,1)Z(0,1,0)

= W ∗∗
N−2,L−1 + (1 − y)WN−1,L−1, (A6)

where we used Z(nL−1,0,1) = 1 and Z(0,1,0) = 1 − y. Along
with the same criterion the partition function W ∗∗

N−2,L−1 can be
further decomposed:

W ∗∗
N−2,L−1 =

∑
n1,...,nL−2

(N−2,L−2)
KL−3

1 Z(nL−3,nL−2,0)

×Z(nL−2,0,1)Z(0,1,1)Z(1,1,0)

+
∑

n1,...,nL−2

(N−3,L−2)
KL−3

1 Z(nL−3,nL−2,1)

×Z(nL−2,1,1)Z(1,1,1)Z(1,1,0)

= (1 − y − x)2WN−2,L−2

+ (1 − y − 2x)W ∗∗
N−3,L−2, (A7)

where we used Z(nL−2,0,1) = 1, Z(0,1,1) = Z(1,1,0) = 1 −
x − y, and Z(1,1,1) = 1 − y − 2x. Now that we have found
that WN,L+1 can be expressed as

WN,L+1 = WN,L + (1 − y)WN−1,L−1 + W ∗∗
N−2,L−1, (A8)

we can lower the order of Eq. (A8) in both N and L to obtain

WN−1,L = WN−1,L−1 + (1 − y)WN−2,L−2 + W ∗∗
N−3,L−2,

(A9)

that can be combined with Eqs. (A8) and (A7) to eliminate the
terms W ∗∗

N−2,L−1 and W ∗∗
N−3,L−2, thus obtaining Eq. (12).

The ωk in the right-hand side of Eq. (15) are the solutions
to the third-degree equation

ω3 − [1 + λ(1 − y − 2x)]ω2 − 2λxω − λ2x2 = 0, (A10)

associated to Eq. (15), which has one real (ω1) and two
complex roots (ω2, ω3):

ω1 = 1
6 (2G1 + G2 + G3), (A11)

ω2 = 1

12
(4G1 − G2 − G3) + i

√
3

12
(G2 − G3), (A12)

ω3 = 1

12
(4G1 − G2 − G3) − i

√
3

12
(G2 − G3), (A13)

where G1, G2, and G3 are functions of λ, x, and y:

G1 = 1 + λ(1 − y − 2x), (A14)

G2 = 22/3(B0 + 3
√

3B1)1/3, (A15)

G3 = 24/3[1 + 2λ(1 − y + x) + λ2(1 − y − 2x)2]

(B0 + 3
√

3B1)1/3
. (A16)

In Eqs. (A14)–(A16) the quantities B0 and B1 read

B0 = 2 + 3λ2[5x2 − 2x(1 − y) + 2(1 − y)2]

+ 6λ(1 − y + x) + 2λ3(1 − y − 2x)3, (A17)

B1 = (λ3x2{4λ2(1 − y − 2x)3 + 4(1 − y − x)

− λ[13x2 − 4x(1 − y) − 8(1 − y)2]})1/2. (A18)

Since �L is real, and since we have ω∗
2 = ω3, where ∗ denotes

the conjugation operation, then we require also C∗
2 = C3.

Therefore, by means of the boundary conditions

�0 = 1, (A19)

�1 = 1 + λ(1 − y), (A20)

�2 = 1 + 2λ(1 − y) + λ2(1 − y − x)2, (A21)

we can determine C1, Re(C2) = Re(C3), and Im(C2) =
−Im(C3), which read

C1 = {
4G2

1 + G2
2 − G2G3 + G2

3 + 6(G2 + G3)�1

− 2G1(G2 + G3 + 12�1)

+ 36�2
}
/
[
3
(
G2

2 + G2G3 + G2
3

)]
, (A22)

Re(C2) = {
(G2 + G3)(G2 + G3 − 3�1)

+G1(G2 + G3 + 12�1) − 2G2
1

− 18�2
}
/
[
3
(
G2

2 + G2G3 + G2
3

)]
, (A23)

Im(C2) = {
2G2

1(G2 + G3) − G2
2(G3 + 3�1)

−G2(G2
3 − 18�2) + G1

[
G2

2 + G3(G3 − 12�1)

− 12G2�1
] − 3G3(G3�1 − 6�2)

}
/[√

3
(
G3

2 − G3
3

)]
. (A24)
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The general solution (15) can be differentiated with respect to λ to obtain an expression for the density, ρL. In the limit of L → ∞
the solution ω1 prevails, so that

ρ∞ = lim
L→∞

1

L

∂ ln �L

∂ ln λ
= ∂ ln ω1

∂ ln λ
. (A25)

By introducing the quantities B2 and B3 as

B2 = 1 + x + λ[5x2 − 2x(1 − y) + 2(1 − y)2] − y + λ2(1 − y − 2x)3 − 1

B1
(
√

3λ2x2{λ[13x2

− 4x(1 − y) − 8(1 − y)2] − 3(1 − x − y) − 5λ2(1 − y − 2x)3}), (A26)

B3 = 1 + 2λ(1 − y + x) + λ2(1 − y − 2x)2, (A27)

we can write the formula in the right-hand side of Eq. (16).
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