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Temperature dependence of heat conduction in the Fermi-Pasta-Ulam-β lattice
with next-nearest-neighbor coupling
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We show numerically that introducing the next-nearest-neighbor interactions (of appropriate strength) into the
one-dimensional (1D) Fermi-Pasta-Ulam-β (FPU-β) lattice can result in an unusual, nonmonotonic temperature
dependent divergence behavior in a wide temperature range, which is in clear contrast to the universal divergence
manner independent of temperature as suggested previously in the conventional 1D FPU-β models with nearest-
neighbor (NN) coupling only. We also discuss the underlying mechanism of this finding by analyzing the
temperature variations of the properties of discrete breathers, especially that with frequencies having the intraband
components. The results may provide useful information for establishing the connection between the macroscopic
heat transport properties and the underlying dynamics in general 1D systems with interactions beyond NN
couplings.
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I. INTRODUCTION

Due to the desire to predict the temperature T dependence of
the thermal conductivity κ for real materials [1], i.e., κ(T ), and
design (control) the solid-state thermal device [2], the study
of temperature dependent heat transport properties has always
been a very hot research topic [3–6]. However, for simple
one-dimensional (1D) lattice systems, our understanding in
this respect, both from theoretical and numerical viewpoints,
is still scarce [7–9].

The theoretical study of κ(T ) in 1D lattices can trace back
to the work of Peierls [10], who first bought the Boltzmann
equations for phonons to provide a correct description as
κ ∼ 1/T at low temperatures. Nevertheless, this conclusion
only applies to the harmonic lattice with weakly nonlinear
perturbations. Later Aoki et al. [11] applied a scaling analysis
to the celebrated momentum conserving system, the 1D
Fermi-Pasta-Ulam-β (FPU-β) lattice, and derived the high
temperature limiting behavior κ ∼ T 1/4. These temperature
dependent behaviors at low and high temperatures have also
been verified by the effective phonon theory and numerical
simulations [12–14] (for the effective phonon theory applied
to the momentum nonconserving systems, refer to the recent
progress [15]).

However, the above studies do not take into account another
key effect of κ , i.e., the size L dependence of κ . The theoretical
analysis for κ(T ) usually assumed κ to be independent of L,
and the numerical simulations were actually performed with a
fixed and small system size. Then if κ is dependent on L, the
general conclusion may be quite different.

In fact, it has now been realized by extensive studies
[16–21] that for 1D momentum conserving lattices, κ generally
depends on the system size and follows a power-law manner:
κ ∼ Lα . The exponent α is believed to be constant and
universal, although there is no general consensus on its
accurate value. However, a recent study of our group [22]
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has reported that introducing the next-nearest-neighbor (NNN)
interactions into 1D lattices can cause a breakdown of the
universality. We also emphasized in that work that different
microscopic dynamics may result in different macroscopic
heat transport behavior.

Therefore, up to now the studies of κ(T ) and κ(L) have
been done in fact separately. So it would be desirable and
interesting to combine them together to provide a whole picture
of κ , i.e., to establish the function κ(L,T ). For the 1D FPU-β
lattices with nearest-neighbor (NN) coupling only, Aoki et al.
[11] have suggested such a function as κ � 1.2LαT −1 for
low temperatures and κ � 2LαT 1/4 for high temperatures,
respectively, with α (α = 0.37 ± 0.03) being assumed to be
universal, independent of the temperature. This result indicates
that the manner of κ(T ) would not be affected by the properties
of κ(L) for the universality of α. But as pointed out by
Ref. [22] that when the NNN interactions are introduced, α

is shown not to be a universal constant, it is then reasonable
to conjecture that the proposed formulas in Ref. [11] are no
longer applicable.

In this paper we shall address the question that for
general 1D lattice systems, whether or not (and if yes, how)
the power-law size dependence of κ would depend on the
temperature, i.e., to investigate α(T ). With the 1D FPU-β
lattices including the NNN interactions, we shall show that the
divergent exponent α is no longer a constant value independent
of the temperature, but instead follows a nonmonotonic
temperature dependent manner. This result, together with the
size dependence of κ , then provides a more complete picture
of the heat conduction behavior in 1D lattice systems.

II. MODELS

The system considered is a 1D lattice including both
the NN and the NNN interparticle interactions [22], whose
Hamiltonian can be represented by

H =
∑

i

[
p2

i

2μ
+ V (xi+1 − xi) + γV (xi+2 − xi)

]
, (1)
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where xi is the displacement of the ith particle from its
equilibrium position and pi its momentum. The potential takes
the FPU-β type as V (x) = 1

2x2 + β

4 x4 and with β = 1 to be
the main focus here. The mass μ is set to be unit. The main
feature of the system is that the parameter γ (0 � γ � 1)
is tunable, which specifies the comparative strength of the
NNN coupling to the NN coupling. A particular case of γ = 0
corresponds to the conventional FPU-β systems with NN
coupling only. For general cases of γ �= 0, we then give the
lattices including the NNN interactions.

We note that introducing the NNN interactions can en-
able the systems to exhibit some particular microscopic
dynamical features. For example, a crucial modification to
the multibreather properties [23] and a nontrivial intrinsic
phase structure [24] of solutions have recently been observed
in the Klein-Gordon lattices and in the discrete nonlinear
Schrödinger lattices, respectively, when the NNN interactions
are considered. Such unusual microscopic dynamical details
should certainly be taken into account when studying heat
conduction in these systems.

We would also like to mention that including the NNN
interactions can give rise to a higher order linear phonon
dispersion relation. Such a particular dispersion relation has
a turning point at γ = 0.25, where it has been found that
[22] the discrete breathers can clearly show both intraband
and extra-band components, under some nonlinearities of
appropriate strengths. This nontrivial feature has also been
suggested to be crucial to the nonuniversal heat conduction
of this system [22]. Therefore in the following we shall give
our main focus in the case of γ = 0.25 to investigate α(T ).
Such a consideration may enable us to clearly explore the role
of the NNN interactions in temperature dependence of heat
conduction.

III. METHODS

We employ the reverse nonequilibrium molecular dynamics
(RNEMD) method to perform our simulations. This approach
was first proposed for monoatomic fluids [25] and then
extended to be applicable to molecular fluids [26]. The VASP

[27,28] and lamps [29] codes modified to this method are also
available. For the method applied to 1D lattice systems, one
can refer to Ref. [22] for a detailed implementation.

To adopt the RNEMD method, one should first apply the
periodic boundary conditions to the lattice, which will make
the lattice form like a circle. Then the circle is divided into M

(M = 80 used in this article) bins of equal size, each containing
n = N

M
particles.

The main idea of the RNEMD method is to produce the
temperature gradient by imposing the heat flux along the
lattice, which can be realized by exchanging the kinetic energy
(usually momentum swapping) between the predenoted cold
and hot bins. In practice, we give each bin a serial number
and assign the cold bin to be bin 1 and, accordingly, the hot
one to be bin M/2 + 1. Then we artificially interchange the
momentum of the hottest particle in bin 1 with that of the
coldest particle in bin M/2 + 1 at a frequency fexc. After
several times interchanges, the kinetic energy of the system
will redistribute with a difference. As a consequence, the
relaxation of energy difference will drive two heat fluxes to

flow from the hot bin to the cold bin along the two semicircular
sides (with an effective length of L = N

2 − n) bridging them.
Then when the stationary state is eventually reached, the heat
flux 〈J 〉 across each side can be measured, and the temperature
profile of the system will be established and can be represented
by the time averaged kinetic temperature of each bin, denoted
by 〈Tk〉 for bin k. The instantaneous local kinetic temperature
is then calculated by Tk ≡ 1

nμkB

∑nk
i=n(k−1)+1 p2

i , where kB is
the Boltzmann constant (set to be unit) and the sum runs over
all n particles in bin k.

Compared with the usual method that directly brings the two
ends of the lattice in contact with two heat baths at different
temperatures, the RNEMD method has its advantages: It can
suppress the boundary effects by imposing the periodic bound-
ary conditions and therefore leads to a faster convergence to
the stationary state. Such a comparison has been well verified
in Ref. [22] where it has been shown that the RNEMD method
can enable us to get a more accurate measurement of α at a
relatively small L for the conventional FPU-β system with
NN coupling only (γ = 0). We note that these advantages
may benefit from the coarse-grained procedure, i.e., we have
performed the measurement in several bins rather than per
particle.

The simulation is actually performed as follows. For each
temperature considered, the system is first fully thermalized to
the focused temperature, then the RNEMD method is used
to evolve the system by a velocity-Verlet algorithm [30]
(with a time step 0.005–0.01). After a long enough time of
the evolution, we then examine the temperature distribution
along the system, measure the heat flux, and finally derive
the heat conductivity according to the Fourier’s law, during
the next evolution time. The heat conductivity is obtained
from κ = −〈J 〉/∇T , with the temperature gradient ∇T being
evaluated over the bins between the cold and the hot one.

The difficulty of studying the heat conduction problem via
the RNEMD method lies in the case of low temperatures
because a lower T may need more time to ensure the system
relaxed to the stationary state, which may be beyond our
calculation with the existing computing resources. Therefore
the lowest temperature considered is T = 0.25. Besides, due
to the different relaxation time for the high and low temper-
atures, the exchange frequency fexc in adopting the RNEMD
method should be different, i.e., a low (high) fexc is used for
a low (high) temperature. For the focused temperature range
0.25 � T � 100, fexc is set from 0.0125 to 0.1 (note that in
Ref. [22] fexc = 0.1 was used) and the evolution time is about
2×107 − 1×109, which has been verified to be long enough
for the systems to reach the stationary state.

IV. RESULTS

Now let us see the simulation results. We show the
temperature profiles first. As some examples the temperature
profiles for T = 0.25 and T = 30 with the effective system
size L = 19968 are plotted in Figs. 1(a) and 1(b), from which
a well-behaved temperature profile that varies smoothly along
the lattice can be clearly seen for both cases. It is worth
mentioning that such a temperature profile has also been
verified for other temperature values. Based on this fact,
we are able to measure the heat conductivity according to
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(a) (b)

(c) (d)

FIG. 1. (Color online) (a) and (b): The temperature profile for
two typical average system temperatures T = 0.25 and T = 30,
respectively. (c) and (d): The corresponding dependent properties of
the heat conductivity κ on system size L; The best fitting (the dashed
lines) suggest κ ∼ Lα with α = 0.38 ± 0.01 and α = 0.28 ± 0.01,
respectively.

Fourier’s law. Next, in order to obtain α for each temperature
from T = 0.25 to T = 100, we carefully examine the size
dependence of κ . The results for the temperatures focused in
Figs. 1(a) and 1(b) are plotted in Figs. 1(c) and 1(d), from
which the divergence of the heat conductivity with the system
size as κ ∼ Lα can be clearly recognized; they suggest that
α = 0.38 ± 0.01 for T = 0.25 and α = 0.28 ± 0.01 for T =
30, respectively. Such divergence behaviors have also been
verified for other temperature values, which is in agreement
with the generally accepted power-law divergent behaviors of
the heat conductivity in 1D momentum conserving lattices
with symmetric interparticle interactions [7,8].

We then present the results of α(T ). The dependence of α on
T is plotted in Fig. 2 (the data of the solid ones). Therein two
data points are extracted from Figs. 1(c) and 1(d) while others
are calculated additionally in the same way. From Fig. 2 one
can see that as T increases from 0.25 to 100, a three order of
T , α decreases first, reaches its minimum value at Ttr = 1.5,

FIG. 2. (Color online) The dependence of α on the average
system temperature T for FPU-β model (the solid circle) and
the purely quartic FPU model (the hollow circle). Both models
include the NNN couplings with a fixed ratio γ = 0.25. The error bars
give the standard error for evaluating α by linearly fitting ln κ versus
ln L. The vertical dashed line indicates the turning point Ttr = 1.5;
the horizontal line indicates α = 1/3 for the FPU-β model without
including the NNN couplings.

then increases up to about 0.28 at T = 100 with a trend of
saturation. Obviously, for 0.25 � T � 100 considered here, α
changes continuously and nonmonotonically with T implying
that a universal α, independence of T , does not exist, which
is in clear contrast to the universality of α (α = 1/3, the most
generally accepted α value, we have also denoted it in the
figure for comparison), as suggested in the previous studies for
the conventional FPU-β systems with NN coupling only (γ =
0) [7,8,11]. More importantly, such an unusual temperature
variation of α thus suggests that the studies of κ(L) and κ(T )
should not be taken into account separately, and the function
of κ(L,T ) is more complicated when the NNN interactions
are included.

The above is the main result of this paper. Interestingly, in
addition to the behavior in the intermediate temperature region,
the result in Fig. 2 also implies two limiting behaviors: an in-
creased α in the low temperature range and a saturated α in the
high temperature limit. For the former case, at present we have
no idea that whether the α value will keep increasing towards
up to α = 1 just as the harmonic case or will decrease down to
α = 0 following the weakly anharmonic case as suggested in
Ref. [31]. To answer this question, one should have to carefully
investigate whether the possibility of a finite temperature phase
transition [32] would take place in this system, the discussion
of which is beyond the scope of the present work.

However, we can say more for the high temperature limiting
case. In this limit the system is equivalent to the anhar-
monic limiting lattice (β = ∞). β = ∞ is not suitable for
simulations. In practice one can realize it by discarding the
quadratic term of the potential in the Hamiltonian [Eq. (1)],
since in this case the quadratic term is negligible compared
with the quartic term. Therefore the anharmonic limiting lattice
is equivalent to the model having Hamiltonian with quartic
term only, usually called as the purely quartic FPU model.
The results of α(T ) for the purely quartic FPU lattice with
γ = 0.25 are also plotted in Fig. 2 for comparison (the data of
the hollow ones). It can be seen that a value about α � 0.30,
slightly larger than the saturated value (α � 0.28), clearly
confirms the saturated behavior in the high temperature limit.
In fact for the purely quartic FPU lattice, regardless of the
interactions with or without NNN couplings, the Hamiltonian
has its scaling property, i.e., H/T = H ′/T ′ under the scaling
pi = (T/T ′)1/2p′

i , xi = (T/T ′)1/4x ′
i [11,33]. Such a scaling

property thus leads to a universal heat conduction behavior
independent of the temperature, which also supports the
saturated α. We note that the mechanism of the saturated
behavior may result from the scattering between solitary waves
[33]. The details to support this mechanism will be presented
in our further studies.

V. DISCUSSIONS

In this section we discuss the underlying mechanism of
α(T ) that was observed in the intermediate temperature region.
The mechanism of heat conduction in 1D lattices is a pre-
dominant complicated problem, the solution of which should
take into account many factors, such as the phonon-phonon
interactions and the effects of other nonlinear excitations—
the solitary waves [34] and the discrete breathers (DBs)
[35]. Based on our current knowledge on this issue and
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FIG. 3. (Color online) (a) and (b): Snapshots of two typical
examples of DBs that randomly emerge in the lattice after a long
enough time for absorption. The initial system temperature for both
cases is fixed at T = 1.5. (c) and (d): The corresponding power
spectrum P (ω) (take arbitrary units, the same hereinafter) of the
DBs. The boxed region in (d) implies that kind of DBs having the
intraband components.

understanding of the specified model: Introducing the NNN
interactions can result in unusual DBs properties at a fixed
temperature [22]; in the following we shall only limit our
focus on relating the mechanism to the temperature dependent
DBs properties.

We first recall that DBs can be mainly classified into two
categories, i.e., the extra-band ones [36,37] and the intraband
ones [38–41], according to whether their frequencies are
within the linear phonons band. The effects of the extra-band
DBs may mainly be localizing the system energies; however,
the intraband DBs can be scattering with phonons since they
have frequencies lying in the phonons band. For examples, we
have shown some evidences for the roles the extra-band and
intraband DBs may play in heat conduction in Refs. [42] and
[22], respectively.

To study T dependent DBs properties, we should identify
DBs for each initial system temperature first. One can employ
the following method [37,43]: A lattice of N = 200 particles
(for facilitating the calculation) is initially thermalized to
the focused temperature with Nose-Hoover heat baths [44],
then the heat baths are removed and the absorbing boundary
conditions are imposed. If DBs exist, after a long enough
time for absorption leading all the mobile excitations, such
as phonons and solitary waves absent, the DBs may show
up eventually in the lattice. We have indeed seen the DBs.
As some examples, two typical DBs snapshots for initial
temperature T = 1.5 that can stably exist in the lattice are
shown in Figs. 3(a) and 3(b), from which one can see that
both types of DBs have a center region, suggesting that both
of them can localize energies. However, the latter one looks
more like an envelope soliton and has a tail away from the
central region. This tail should not be the phonons since we
have performed an absorption procedure for a long enough
time; then if they are phonons, they should be absorbed and
the tail should be absent. Further detailed examination of the
frequencies of the tail has indeed confirmed that its frequencies
are within the linear phonons band [see the boxed region in
Fig. 3(d)], implying that the latter type of DBs contains the

FIG. 4. (Color online) Comparison between the frequencies of
the intraband components indicated in Fig. 3(d) (the dashed lines) and
the phonons frequencies (the solid lines). For a better visualization,
in all plots, the values of P (ω) have been rescaled between 0 and 1.

intraband components. We have also checked the frequencies
of the DBs shown in Fig. 3(a) for comparison and confirmed
that their frequencies are indeed mainly outside the phonons
band [see Fig. 3(c)].

It would be interesting to make a comparison between the
frequencies of these intraband components and the phonons
frequencies. Figure 4 shows such a picture, from which one
can see that all of the frequencies of the intraband components
are penetrating inside the linear phonons spectrum [38]. This is
just the popular numerical evidence that is often used to detect
the DBs with intraband components (see also Refs. [39–41]).

Now that we have obtained and identified the DBs, the
next step is to calculate the P (ω) for all particles along
the lattice for each initial temperature, which just gives the
temperature dependent DBs properties of our systems. Our
main results are summarized in Fig. 5, among which (a)–(c)
present the power spectrum P (ω) of the residual thermal
fluctuations (can be regarded as DBs) after a long time’s
absorption for initial temperatures T = 0.25, T = 1.5, and
T = 30, respectively. The time used for absorption here is

FIG. 5. (Color online) The power spectrum P (ω) of the residual
thermal fluctuations for three typical initial system temperatures: (a)
T = 0.25; (b) T = 1.5; (c) T = 30, respectively. The inset in (b) is
a zoom for the boxed intraband components (ω � 2). (d) The energy
portion ε of the residual thermal fluctuations within the phonon band.
The vertical dashed line indicates the turning point Ttr = 1.5.
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about 106; however, we mention that we have also taken a
much longer time’s absorbing (about 107) and found the results
remain unchanged, suggesting that the absorbing time used
here is indeed long enough. To measure the power spectrum
P (ω) for each initial temperature, we take 100 instances of
simulation where different initial conditions are considered,
for the average. From Figs. 5(a)–5(c) one can see a significant
portion of the DBs frequencies appearing within the linear
phonon band (ω � 2) for initial temperature T = 1.5, which
is in clear contrast to the cases of T = 0.25 and T = 30 [refer
to the inset of Fig. 5(b) for a more clear recognition]. This
result is also consistent with the analysis in Fig. 3(d).

Interestingly, Figs. 5(a)–5(c) suggest that those intraband
modes are nearly absent for T = 0.25 and T = 30 but
emerging most for T = 1.5, implying that the temperature
dependent properties of the DBs with intraband components
is nonmonotonic. Another piece of information is that the
spectrum walk towards the direction of high frequencies
with the increase of T , indicating that the energies of DBs with
extra-band components (ω > 2) change monotonically with T .
Then our result here shows different temperature dependent
properties of the intraband and the extra-band modes of DBs,
i.e., the former is nonmonotonic but the latter is monotonic,
which we emphasize. We will show in the following that it is
crucial to the nonmonotonic properties of α(T ) observed in our
system, in contrast to the universal α as suggested previously
in the conventional FPU-β system with NN coupling only,
since the latter system has been shown to excite the DBs with
extra-band components only [22].

A detail in Fig. 5(b) that should be mentioned is that the
frequencies of these collective modes are actually discrete
and emerging randomly; the reason for them looking like
continuous is mainly due to the fact that we have taken 100
instances of simulation for the average here. In addition, their
magnitudes are expected to be relatively small (less than 1% in
the figure) because these modes may have strong interactions
with phonons since their frequencies are within the phonon
band. Such interactions thus lower their magnitudes. We also
remind that the absorbing boundary conditions are imposed
along the lattice, which may also cause the reduction of
the magnitudes. However, we should emphasize that such
relatively small magnitudes would not affect their effects on
heat conduction in the case of thermal equilibrium when the
absorptions are not imposed.

Now we have shown numerically that introducing the NNN
interactions of γ = 0.25 can enable systems to excite DBs with
both the extra-band and intraband components. We have also
understood that the temperature dependent properties of DBs
with intraband components are nonmonotonic. Then a question
arises: Is there any relationship between this temperature
dependence of DBs and the nonmonotonic manner of α(T )
that we observed in Fig. 2? To answer this question, following
Ref. [22], we define ε = ∫ 2

0 P (ω)dω/
∫ ∞

0 P (ω)dω, the ratio of
the energy of the collective modes within the linear phonon
band to the total energy of DBs, to measure the relative
proportion of intraband modes and investigate how ε depends
on T . To evaluate ε, for each system initial temperature
focused in Fig. 2, we have calculated the corresponding
power spectrum in the same way as those in Figs. 5(a)–5(c)

and summarized ε(T ) in Fig. 5(d). From the figure one
can see that as T decreases from 100 to 0.25, ε increases
first, reaches its maximum value at Ttr = 1.5, then decreases.
Then combining the temperature dependence of α, a positive
correlation between α(T ) and ε(T ) can be easily recognized
[see Figs. 2 and 5(d)].

Given the above positive relationship between α(T ) and
ε(T ), here we would like to suggest such a possible picture
[45]: Suppose the scattering between phonons and the intra-
band modes can be described by ε, then with the change of T ,
this scattering will become stronger and stronger (weaker and
weaker) for 0.25 � T � Ttr (Ttr � T � 100). As a stronger
(weaker) scattering will finally limit (facilitate) the heat
transport in the thermodynamic limit, our results in Figs. 2
and 5(d) are in very good accord with this picture.

VI. CONCLUSIONS

To summarize, we have numerically studied the tempera-
ture dependence of heat conduction behavior of the 1D FPU-β
lattice when the NNN interactions are considered. For a fixed
coupling ratio γ = 0.25, we have found that in the wide
temperature range (0.25 � T � 100) considered, although a
power-law divergence of the heat conductivity with the system
size, i.e., κ ∼ Lα , can still be seen, and the value of α does
not show universality any more: It nonmonotonically changes
with the temperature. This result is in contrast to the existence
of a fixed α independent of the temperature as suggested in the
conventional FPU-β lattice with NN coupling only. Such an
unusual result, together with the size dependence of the heat
conductivity, then provides a more complete picture of the heat
conduction behavior.

In order to well understand this temperature variation
of heat conduction, we have also numerically investigated
how the properties of DBs depend on the temperature. The
temperature dependent properties of DBs with the intraband
components is shown to be nonmonotonic with a turning point
at Ttr = 1.5, in contrast to that of the extra-band modes. Such
a nonmonotonic manner shows a positive correlation with the
temperature dependent properties of α, which is consistent
with the assumption that DBs, especially those with intraband
components, can provide a phonon scattering mechanism
contributing to heat conduction. This finding is suggestive for
our understanding of heat conduction from the microscopic dy-
namic viewpoints, although a detailed mechanism of phonon-
DBs interactions has not been given here. Finally, one open
question left is why for both α and the intraband modes there
exists such a turning temperature point of Ttr = 1.5, which we
are interested in and wish to understand via further studies.
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