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A Langevin process describing diffusion in a periodic potential landscape has a time-dependent diffusion
constant, which means that its average mean-squared displacement (MSD) only becomes linear at late times. The
long-time, or effective diffusion, constant can be estimated from the slope of a linear fit of the MSD at late times.
Due to the crossover between a short time microscopic diffusion constant, which is independent of the potential,
to the effective late-time diffusion constant, a linear fit of the MSD will not in general pass through the origin and
will have a nonzero constant term. Here we address how to compute the constant term and provide explicit results
for Brownian particles in one dimension in periodic potentials. We show that the constant is always positive and
that at low temperatures it depends on the curvature of the minimum of the potential. For comparison we also
consider the same question for the simpler problem of a symmetric continuous time random walk in discrete
space. Here the constant can be positive or negative and can be used to determine the variance of the hopping
time distribution.
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I. INTRODUCTION

Brownian motion is one of the most ubiquitous transport
phenomena in nature; thermally induced molecular collisions
in a solvent impart momentum to small particles and they
hence acquire a random velocity [1]. In overdamped systems,
where inertia is overcome by viscous damping, this velocity
becomes rapidly uncorrelated in time. In this case the particle’s
velocity becomes an effective white noise and its position is
what is mathematically known as pure Brownian motion. The
diffusion equation describing the probability density function
(PDF) of pure Brownian motion in an isotropic medium in d

dimensions is

∂p(x,t)

∂t
= κ∇2p(x,t). (1)

The term κ above is the short-time or microscopic diffusion
constant. A key quantity that can be extracted from single-
particle tracking is the mean-squared displacement (MSD)
whose average is given by

〈(Xt − X0)2〉 = 2dκ(t)t. (2)

Here κ(t) is the effective time-dependent diffusion constant.
The late-time or effective diffusion constant is defined via the
limit

κe = lim
t→∞ κ(t). (3)

In the case of pure Brownian motion we have κ(t) = κ = κe.
In nature Brownian particles also interact with their envi-

ronment via long-range interactions that can be generated by
electrostatic and other interactions. As well as the noise leading
to Brownian motion, the particle also feels a force, or drift, due
to this potential. For instant a particle diffusing in a cellular
cytoplasm will locally diffuse, but also interact via steric
interactions with the cells organelles. The local or short-time
diffusion constant is solely determined by the nature of the
solvent, however at late times the diffusion constant will be

modified due to the potential felt by the particle. In the presence
of drift due to an external force it is easy to see that κ(0) = κ ,
i.e., the small time limit of the effective diffusion constant is
given by the microscopic diffusion constant. However at late
times the diffusion constant will be modified by the potential
acting on the particle. The value of κe can be computed exactly
in one dimension for any potential [2]. However, except for
a particular case in two dimensions [3], in higher dimensions
no results are known. The problem of diffusion in a random
potential has been extensively studied; in the cases where the
diffusion constant exists one can use field theoretic methods
such as the perturbation theory and the renormalization group
to estimate it for both Gaussian [4,5] and non-Gaussian
potentials [3,6–8]. A review of these results can be found
in Ref. [9]. More recently, due to increasing interest in the
physics of nonequilibrium steady states, there have been many
studies of diffusion in tilted periodic potentials, which are
periodic potentials plus a constant linear potential leading to
an component with a constant applied force [10].

The presence of a potential acting upon a Brownian particle
will cause the effective trajectory to be nonpure Brownian
and non-Gaussian. The effective diffusion constant must
switch over from the microscopic one to the effective one,
meaning that κ(t) will vary with time. It can be shown that
κe < κ , essentially due to trapping in the local minima of
the potential, so κ(t) must decrease with time toward its
asymptotic value. Consequently the MSD is concave rather
than linear as in the case of Brownian motion, for instance see
Fig (1), which is for particles diffusing in a cosine potential.
The concave form of the MSD is superficially reminiscent
of the subdiffusive behavior 〈[X(t) − X(0)]2〉 ∼ tα where
α < 1 [11]. It is thus conceivable that a slow crossover from
the microscopic diffusion constant to the effective one could
be misconstrued as anomalous subdiffusion if the trajectories
are not observed over a time sufficient to attain the asymptotic
linear diffusive regime of the MSD. The nature of the crossover
is thus important to understand, both for discerning between
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FIG. 1. κ(t)t estimated from the MSD in a numerical simulation
of 105 Langevin particles in the potential in Eq. (67) given by V (x) =
cos(x), β = 3, and l = 4.0 (continuous) black line. Shown as thick
dashed line is the linear fit of κ(t)t for t > 1 yielding the estimate
κe = 0.04258 and C = 0.15432. The analytical predictions are κe =
0.04198 and C = 0.15778.

anomalous and ordinary diffusion and because the crossover
may contain information about the potential that the particle is
subjected to. In this paper we will address the question of how
an ultimately diffusive system attains the diffusive regime.

To start with, we consider the finite time correction for
continuous time random walks (CTRWs). The finite time
corrections here are quite easy to compute but the results are
nonetheless illuminating and somewhat surprising. Further-
more, at a coarse-grained level a Brownian particle diffusing
in a periodic potential can be viewed as a CTRW. We then use
a Kubo-like formula, first given in Ref. [6], to analyze finite
time corrections for diffusion in a periodic potential and give
explicit results for the case of one dimension. Our results are
also verified with numerical simulations based on the direct
integration of the Langevin equation for an ensemble of tracer
particles.

II. CONTINUOUS TIME RANDOM WALKS

To start with we consider the simple problem of CTRWs in
one dimension on the set of integers. The waiting time at each
site has the same distribution p(τ ). After waiting for time τi at
site i the process hops to the left or right with probability 1/2.
In terms of the number of jumps N (t) taken up till time t the
mean-squared displacement is just given by〈

X2
t

〉 = N (t), (4)

where N (t) is itself a random variable depending on the
waiting times, and the average 〈·〉 is over the random variables
corresponding to a jump to the left or right. The full average
is given by 〈

X2
t

〉 = N (t), (5)

where the average · indicates the average with respect to
the waiting times. Now consider an exponentially distributed
random time T with rate s. Consider the random variable

N (T ), the number of jumps made before the time T occurs.
The probability that a single jump occurs before time T is
given by p1 = Prob(T > τ ), which is given by

p1 =
∫ ∞

0
dτ

∫ ∞

0
dτ ′s exp(−sτ ′)p(τ )θ (τ ′ − τ )

=
∫ ∞

0
dτ p(τ ) exp(−sτ ) = p̃(s), (6)

were θ is the Heaviside function and p̃(s) is the Laplace
transform of p(τ ). Now using the memoryless property of
the exponential distribution we see that the probability that
there are n steps taken before T is given by

P (n) = p̃(s)n[1 − p̃(s)], (7)

from which we find that

E[N (T )] = p̃(s)

1 − p̃(s)
, (8)

where E(·) denotes the average over T . Recalling that the
probability distribution function of T is given by ρ(t) =
s exp(−st) means that Eq. (8) can be written as

Ñ (s) = 1

s

p̃(s)

1 − p̃(s)
. (9)

Therefore 〈
X2

t

〉 = L−1

{
1

s

p̃(s)

1 − p̃(s)

}
, (10)

where L−1{·} indicates the inverse Laplace transform with
respect to parameter s.

The late-time behavior of the MSD can be extracted from
the small s behavior of the Laplace transform, where we can
use

p̃(s) = exp(−sτ ) ≈ 1 − sτ + s2

2
τ 2, (11)

in the case where the two first moments of the distribution for
τ exist. This gives

〈
X2

t

〉 = L−1

{
1

s2τ
+ 1

s

[
τ 2 − 2τ 2

2sτ 2

]}
. (12)

Now inverting the Laplace transform gives

〈
X2

t

〉 ≈ t

τ
+

[
τ 2 − 2τ 2

2τ 2

]
. (13)

This means that asymptotically the MSD is simply a straight
line, measuring the slope gives the value of 2κe while the
intercept with the y axis gives 2C. The MSD is usually
determined from a finite ensemble of trajectories and even
from a single trajectory by slicing up the trajectory and using
different points for the origin of the process. The resulting
experimental curve can be fitted, for example using a least
squares linear fit.

Immediately we see that the effective diffusion constant is
given by

κe = 1

2τ
, (14)
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which is intuitively obvious to understand, and shows the
necessity of a finite average of τ to see diffusive behavior.
An interesting point to make here is that in experiments one
may not necessarily be able to obtain the temporal resolution
necessary to see individual jumps and thus measure the average
trapping time τ , however this can be obtained from the
diffusion constant via Eq. (14).

The time-dependent diffusion constant κ(t) therefore
behaves at late times as

κ(t) = κe + 1

t

[
τ 2 − 2τ 2

4τ 2

]
. (15)

The late-time correction to the diffusion constant can be
positive or negative depending on the sign of

C = τ 2 − 2τ 2

4τ 2 . (16)

Usually in fitting procedures to estimate κe the value of the
constant C is ignored. Here we see that it contains information
about the variance of trapping times. Using the estimate for τ

from the fit of κe enables one to obtain and estimate for the
variance var(τ ) from the estimate of C.

Despite the simplicity of the above calculation, there are a
number of interesting features that emerge. In the case where
τ has an exponential distribution p(τ ) = μ exp(−μτ ) we find
that C = 0. However in this case we can find the full temporal
dependence as

p̃(s) = μ

μ + s
, (17)

which yields 〈
X2

t

〉 = L−1
{ μ

s2

}
= μt, (18)

i.e., the asymptotic diffusive regime sets in immediately.
We also note that the term C can be written as

C = var(τ ) − τ 2

4τ 2 = 1

4

(
c2
v − 1

)
, (19)

where var(τ ) is the variance and cv = √
var(τ )/τ is the

corresponding coefficient of variation of the parental waiting-
time distribution. Therefore if τ has a large variance (so that
cv > 1) the late-time correction to κ(t) tends to be positive,
however if the distribution is highly peaked (and cv < 1) then
the correction will be negative. The finite time correction for
peaked distributions is easy to understand by considering the
deterministic hopping case where p(τ ) = δ(τ − τ0) up to an
infinitesimal dispersion of the distribution about τ0. Working
in terms of the average jump number we find that

N (t) = t

τ0
− 1

2
. (20)

However we know that

N (t) = t

τ0
− R

(
t

τ0

)
, (21)

where R(u) is the noninteger part of u. The temporal average
value of of this term is given by,

R

(
t

τ0

)
=

∫ 1

0
duu = 1

2
, (22)

which trivially explains the result for very peaked distributions,
the constant C is essentially negative due to the rounding effect
of a discrete random walk.

Another distribution that is interesting to analyze is the
power-law distribution given by

p(τ ) = ατα
0

τ 1+α
, (23)

with τ0 a cut-off timescale below which p(τ ) = 0. The above
analysis above goes through when τ 2 is finite, that is when
α > 2. In this case we find

C = −α2 + 2α + 1

4α(α − 2)
= − (α − √

2 − 1)(α + √
2 − 1)

4α(α − 2)
. (24)

Therefore there is a window of values of α such that 2 <

α <
√

2 + 1 such that C > 0, and for all other values of α >√
2 + 1 we have C < 0.
Now consider the case where α ∈ (1,2), that is to say the

mean exists but the variance diverges. In this case we find that

p̃(s) = 1 − sτ + sατα
0 α

∫ ∞

sτ0

exp(−u) − 1 + u

uα+1
. (25)

Now in the limit where s → 0 we can approximate the above
by

p̃(s) = 1 − sτ + sατα
0 α

∫ ∞

0

exp(−u) − 1 + u

uα+1
, (26)

as the integral on the left-hand side converges around u = 0
for α < 2. This gives, for late times,〈

X2
t

〉 ≈ L−1

{
1

s2τ
+ αH (α)sα−3τα

0

τ 2

}
= t

τ
+ αH (α)τα

0 t2−α

τ 2
(3 − α)
, (27)

where

H (α) =
∫ ∞

0
du

exp(−u) − 1 + u

uα+1
= 
(−α). (28)

This can then be simplified, using the factorial property of the

 function 
(z) = (z − 1)
(z − 1), to obtain〈

X2
t

〉 ≈ L−1

{
1

s2τ
+ αH (α)sα−3τα

0

τ 2

}
= t

τ
+ τα

0 t2−α

(α − 1)(2 − α)τ 2 . (29)

We see that as the diffusion tends towards the point where it
becomes anomalous (subdiffusive), the finite time corrections
become more important. This is thus an example of a
censorship phenomenon for the transition between diffusive
and subdiffusive transport. As the transition is approached the
finite time corrections to the MSD decay more and more slowly
and become of the order of the leading, diffusive, term. The
effective diffusion constant close to the transition point thus
becomes impossible to measure if one does not know how to
include finite time corrections in the fitting procedure used to
extract κe. A concrete example of this was demonstrated for
the case of a particle diffusing in a potential given by the square
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of a Gaussian function [7], a system that exhibits a transition
from a normal to anomalous diffusive regime.

Consider now the case α = √
2 + 1, where C in Eq. (19) is

equal to zero, and address the question of the thermalization
dynamics for this critical value of α. For 2 < α < 3, i.e., when
the second moment of the waiting-time distribution in Eq. (23)
exists, while the third one does not, we have

p̃(s) ≈ 1 − τs + τ 2

2
s2 − ατα

0 h(α)sα, (30)

where

h(α) = −
∫ ∞

0

du

uα+1

(
e−u − 1 + u − u2

2

)
= −
(−α). (31)

Consequently, we have that for 2 < α < 3,

〈
X2

t

〉 ≈ L−1

{
1

τs2

[
1 +

(
τ 2

2τ
− τ

)
s − ατα

0 h(α)

τ
sα−1

]}
.

(32)

Upon inverting the Laplace transform we find that

〈
X2

t

〉 ≈ t

τ
+

[
τ 2 − 2τ 2

2τ 2

]
− τα

0 t2−α

τ 2(α − 1)(α − 2)
. (33)

The latter equation implies that in the critical case α = √
2 + 1

the long-time relaxation proceeds as

κ(t) ≈ 1√
2(

√
2 + 1)τ0

(
1 − τ

√
2

0

t
√

2

)
, (34)

i.e., the diffusion coefficient approaches its equilibrium value
from below and as a power law with the exponent

√
2. We

note that a similar singular behavior—i.e., the change of
the dynamical exponent characteristic of the thermalization
kinetics—is not specific to the power-law distribution in
Eq. (23) but may show up for any underlying waiting-time
distribution p(τ ) in which, by tuning some parameters, one
manages to tune the coefficient of variation

√
var(τ )/τ of the

underlying distribution p(τ ) to be equal to 1.

III. BROWNIAN PARTICLES IN PERIODIC POTENTIALS

Now having considered the finite time correction for
continuous time random walks on discrete space, where we
have seen that the spatial discreteness can lead to a trivial
rounding type error, let us consider a Langevin process
diffusing in a periodic potential.

Here we examine a locally Brownian particle whose
probability density function (PDF) obeys the Fokker-Planck
equation

∂

∂t
p(x,t) = κ∇ · [∇p(x,t) + βp(x,t)∇φ(x)] = −Hp(x,t),

(35)

where the second equality defines the operator H . Here φ is
a potential that is periodic and finite, so the diffusion constant
at late times exists. In any dimension the late-time effective

diffusion constant is given by [6,13]

κe = κ − κ2β2

d

∫
dxdx0∇φ(x) · H−1(x,x0)∇φ(x0)peq(x0),

(36)

where H−1 is the operator inverse to H obeying

HH−1(x,x0) = δ(x − x0). (37)

This result can be demonstrated by adapting a method
introduced by Derrida [12] for discrete random walks to the
case of Langevin processes [13] or by direct manipulation of
the Langevin equation [6] to obtain a Kubo-like formula for
the late-time diffusion constant. However, if we consider a
periodic potential in a region of space much larger than the
period length and assume that the particle is in equilibrium
(specifically we mean that the position of the particle modulo
the period is in equilibrium), it can be shown, directly from
the Langevin equation [6], that

κ(t) = κe + κ2β2

dt

∫
dxdx0∇φ(x)

×{H−2[1 − exp(−tH )]}(x,x0) · ∇φ(x0)peq(x0).

(38)

In the above, peq(x) is the equilibrium probability distribution
over a region of large but finite size L and we have used the
operator notation where

[AB](x,x0) =
∫

dx′A(x,x′)B(x′,x0) (39)

and the operator [H−2](x,x′) = [H−1H−1](x,x′) and in the
same notation the operator H acts on a function f via

[Hf ](x) =
∫

dx0Hδ(x − x0)f (x0). (40)

To start our analysis of these formulas we consider the
correction to the late-time, effective diffusion constant by
the presence of a potential in one dimension. We write
κe = κ − �κ where

�κ = κ2β2
∫

dxdx0
dφ(x)

dx
H−1(x,x0)

dφ(x0)

dx0
peq(x0), (41)

and where the equilibrium distribution over the interval [0,L]
is given by

peq(x) = exp[−βφ(x)]

L〈exp(−βφ)〉 . (42)

In the above we have defined the spatial average of the
Boltzmann weight

〈exp(−βφ)〉 = 1

L

∫ L

0
dx exp [−βφ(x)] . (43)

Now we define

f (x) =
∫

dx0H
−1(x,x0)

dφ(x0)

dx0
peq(x0), (44)

and thus f obeys

Hf = −κ
d

dx

(
df

dx
+ β

dφ

dx
f

)
= dφ(x)

dx
peq(x0). (45)
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This second-order differential equation can be integrated to
give

f (x) = 1

κβL〈exp(−βφ)〉

× exp[−βφ(x)]

[
x + c

∫ x

0
dx ′ exp[βφ(x ′)] + b

]
,

(46)

where c and b are two integration constants that must be
determined. To determine the constants we now consider a
periodic potential with period l such that l � L. The function
f must therefore be periodic with the same period, and this
gives

c = − l∫ x+l

x
dx ′ exp [βφ(x ′)]

= − 1

〈exp(βφ)〉 . (47)

At this point we do no have to identify the constant b as we
have

�κ = κ2β2
∫

dx
dφ(x)

dx
f (x), (48)

and the term proportional to b in f (x) will contribute 0 to �κ

due to the periodicity of the potential. Performing the integrals
we find

�κ = κ2β2

κβL〈exp(−βφ)〉
L

β

(
〈exp(−βφ)〉 − 1

〈exp(βφ)〉
)

,

(49)

which simplifies to give

�κ = κ − κ

〈exp(βφ)〉〈exp(−βφ)〉 , (50)

and, eventually,

κe = κ

〈exp(βφ)〉〈exp(−βφ)〉 . (51)

This is a standard result on one-dimensional diffusion, which
has been known for a long time and has been derived with
a wide variety of different methods [2]. Interestingly the
derivation we present here is based on the direct evaluation
of the MSD, whereas in all the other derivations we are aware
of [2] a mean first passage time argument is used and then
turned around to give the diffusion constant.

We now consider the finite time corrections. Our results on
CTRWs suggest that the first term in the finite time integral
Eq. (38) will be the leading correction, i.e.,

κ(t) ≈ κe + C

t
, (52)

where

C = κ2β2

d

∫
dxdx0∇φ(x)[H−2](x,x0) · ∇φ(x0)peq(x0).

(53)

Staying again in one dimension, this can be written as

C = κ2β2
∫

dxg(x)f (x), (54)

where f (x) is as defined by Eq. (44) and we have used the fact
that H−1† = H †−1 (where † denotes the adjoint) to introduce

g(x) =
∫

dx0H
†−1(x,x0)

dφ(x0)

dx0
. (55)

This means that rather than solve a fourth-order differential
equation, we need only solve two second-order ones. The first
equation for f is already solved in Eq. (46) and the equation
for g is given by

− κ

(
d2g

dx2
− β

dφ

dx

dg

dx

)
= dφ

dx
. (56)

This equation integrates to give

g(x) = 1

κβ

{
x − 1

〈exp(βφ)〉
∫ x

0
dx ′ exp[βφ(x ′)] + b′

}
,

(57)

where the periodicity of g has again been used to determine
one of the constants of integration.

We thus see that the two functions f and g are related and
we can write

f (x) = 1

κβL〈exp(−βφ)〉 exp[−βφ(x ′)][R(x) + b]

g(x) = 1

κβ
[R(x) + b′] (58)

where

R(x) = L

{
x

L
− 1

L〈exp(βφ)〉
∫ x

0
dx ′ exp[βφ(x ′)]

}
. (59)

Before we proceed, it is interesting to note that R(x) in
Eq. (59) has a probabilistic interpretation. The first term in
the brackets on the right-hand side of Eq. (59) defines the
so-called hitting probability in absence of an external potential
(see, e.g., Ref. [17])—the probability that a free diffusion on
the interval [0,L], starting at x, will first hit the point x = L

without ever hitting the left extremity of the interval. In turn,
the second term on the right-hand side of Eq. (59) is exactly
the analogous hitting probability for diffusion in presence of
the potential −φ(x) (see, e.g., Ref. [18]).

The problem we are now faced with is that of determining
the constants b and b′. First let us consider the general solution
to an equation of the form Eq. (44) for the function f (x). It
can be rewritten up to a constant multiplicative factor, which
we drop for notational convenience, as

f (x) =
∫ ∞

0
dt

∫
dx0[exp(−tH )](x,x0)

dφ(x0)

dx0

× exp[−βφ(x0)]. (60)

The integral over t will converge as the function
dφ(x0)
dx0

exp[−βφ(x0)] is orthogonal to the left eigenfunction
(which is constant) of eigenvalue 0 of the Fokker-Planck
operator H . However we have

[exp(−tH )](x,x0) = p(x,x0,t), (61)
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where p is the transition density for the process. Conservation
of probability

∫
dx p(x,x0,t) = 1 then gives∫

dxf (x) =
∫ ∞

0
dt

∫
dx0

∫
dxp(x,x0,t)

dφ(x0)

dx0

× exp [−βφ(x0)]

=
∫ ∞

0
dt

∫
dx0

dφ(x0)

dx0
exp[−βφ(x0)] = 0,

(62)

where we have used periodic boundary conditions. This means
that the constant b′ associated with the function g does not
contribute to the calculation and we have

C = 1

L〈exp(−βφ)〉
∫

dx exp[−βφ(x)][R2(x) + bR(x)],

(63)

where b is determined by
∫

dxf (x) = 0 and thus

b = −
∫

dx exp[−βφ(x)]R(x)

L〈exp(−βφ)〉 . (64)

Now if we denote averages with respect to the equilibrium
Gibbs-Boltzmann measure via

〈A(x)〉eq =
∫ L

0 dx exp[−βφ(x)]A(x)

L〈exp(−βφ)〉 , (65)

we can write

C = 〈R2(x)〉eq − 〈R(x)〉2
eq . (66)

Note also that due to the periodicity of φ and R with respect
to l the above averages can be computed over an interval of
length l. An interesting consequence of this result is that the
value of C is always positive, in contrast to the CTRW case.
Another interesting feature of this formula for C is that it is
independent of κ .

Now consider the case where the potential is given by

φ(x) = V

(
2πx

l

)
, (67)

where V has period 2π giving φ a period l. Making the change
of variables z = 2πx/l in the integral expressions for C we
have

〈R2(x)〉eq

= l2

(2π )2
∫ 2π

0 dz′ exp[−βV (z′)]

∫ 2π

0
dz exp[−βV (z)]

×
[
z −

∫ z

0 dz′ exp[βV (z′)]
1

2π

∫ 2π

0 dz′ exp[βV (z′)]

]2

. (68)

and

〈R(x)〉eq = l

(2π )
∫ 2π

0 dz′ exp[−βV (z′)]

∫ 2π

0
dz exp[−βV (z)]

×
[
z −

∫ z

0 dz′ exp[βV (z′)]
1

2π

∫ 2π

0 dz′ exp[βV (z′)]

]
. (69)

This means that C = cl2, where c is a constant independent
of l. In the limit β → ∞, for sufficiently smooth potentials,
both κe and C can be evaluated the saddle point method.
The effective diffusion constant takes the Arrhenius, and more
precisely Kramers [14], form

κe = κ2πβ
√

|V ′′(zmax)|V ′′(zmin)

× exp{−β[V (zmax) − V (zmin)]}, (70)

where zmax and zmin are respectively the points where the
potential takes its maximal and minimum values respectively.
In the same regime the constant C is given by

C = l2

(2π )2βV ′′(zmin)
. (71)

We therefore see that the diffusion constant at low tem-
peratures is dominated by an Arrhenius-like term involving
the maximal energy barrier in the system, while the prefactors
depends on the curvature of the maximum and minimum of
the potential. The constant term C however only depends on
the the curvature of the minimum of the potential.

The predictions can be tested by simulating the Langevin
equation. The particles are initially started at the same point
and are then allowed to diffuse during an equilibration time
where the variable x modulo the period l can equilibrate.
The initial conditions X(0) for each particle used for the
computation of the MSD 〈[X(t) − X(0)]2〉 = 2κ(t)t are given
by this equilibration step. Two sources of error are present in
the simulation: the use of a finite time step dt and also the
statistical fluctuations due to using a finite number of particles
in the simulations. In the cases where κe and C are sufficiently
large, that is to say larger than 0.1 for κe and 0.1 for C, the
fluctuations (the difference in the fits for κe and C between
two distinct simulations for the same number of particles but
different random seed for the simulations) are of the order of
5% of the measured values if we take 105 particles. The time
step is taken to be dt = 0.0005 (we checked that the results did
not differ beyond the 5% error in going between dt = 0.001
and dt = 0.0005). The MSD at each time is computed by
ensemble averaging over each individual particle’s squared
displacement. From the MSD we plot the resulting estimate
for κ(t)t . An example is shown in Fig. 1. We see that after a
certain time the MSD curve becomes linear, in this case for
t > 1. From the linear fit in this region the resulting estimates

2π 4π 6π2πξ
0

0

φ (x)

φ (x)

V

0V

0

0

0

V  > 0

V  < 0

FIG. 2. A homogeneous potential φ(x) = 0 perturbed by a narrow
barrier with height V0 > 0 or a well of depth V0 < 0.
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FIG. 3. (Color online) The scaled relaxation amplitude
12C/ξ 2(1 − ξ )2l2 in (73) versus βV0 for ξ = 0.9.

for κe and C are extracted and we find that they are in excellent
agreement with our analytical predictions.

The explicit calculations carried out here are of course
relevant to one dimension. However from the general form
of Eq. (38) we see that in any dimension if the constant C

exists then by dimensional analysis we must have that C = cl2,
where c is independent of the periodicity l of the potential. In
addition, using the explicit form of H , we see that the constant
C must be independent of κ .

Closed form expressions are not available for the constant
C for arbitrary potentials, However, exploiting the exact
results in Eqs. (66), (68), and (69) for the amplitude C of
the relaxation term, we consider a simple, but instructive,
case (see Fig. 2) where the potential φ(x) is homogeneous,
φ(x) = 0, for 0 � x < 2πξ with 0 < ξ < 1, and is perturbed
by a narrow rectangular barrier (well), φ(x) = V0, in the region
2πξ � x � 2π , where V0 > 0 in the case of a barrier and
V0 < 0 for a well. For this case it is straightforward to find
from Eq. (51) that the diffusion coefficient is given explicitly
by

κe = κl2

(2π )2[ξ + (1 − ξ ) exp(βV0)][(ξ + (1 − ξ ) exp(−βV0)]

= κl2

(2π )2[ξ 2 + (1 − ξ )2 + 2ξ (1 − ξ ) cosh(βV0)]
. (72)

Note that κe is an even function of V0, which means that the
diffusion coefficient κe is the same for both the case of periodic
barriers and for the case of the wells with the same, by absolute
value, V0. Therefore, knowing just the diffusion coefficient κe,
we are unable to distinguish if the diffusion takes place in
presence of barriers or in the presence wells—even if we know

ξ , upon extracting κe from the numerical data we are only able
to infer the absolute value of V0 but not its sign. Consider next
what information one can extract by studying the amplitude
of the relaxation term. From our Eqs. (66), (68), and (69) we
obtain

C = ξ 2(1 − ξ )2l2

12

(
exp(βV0) − 1

ξ + (1 − ξ ) exp(βV0)

)2

. (73)

A salient feature of the result in (73) is that C, in a striking
contrast to the diffusion coefficient κe, is a strongly asymmetric
function of βV0, as one observes in Fig. 3. Namely, one
gets a very different values of C for V0 < 0 and V0 > 0, so
that studying the amplitude of the relaxation term we can
distinguish between diffusion in presence of barriers or and
diffusion in presence of wells.

IV. CONCLUSIONS

In many experimental situations diffusion constants are
determined by a linear fit of an experimentally generated MSD
curve. In general Brownian particles are subjected to external
forces and this extra drift means that they do not behave as
pure Brownian motion. The effect of interaction means that
the average MSD only becomes proportional to t at late times.
In this region the diffusion constant can be extracted via a
fitting procedure, for instance a linear fit (which may not
necessarily be the best way to fit such data [15,16]) will yield
a slope proportional to 2κe and also a constant 2C where
it intercepts the vertical axis. If the particle is Brownian in
an external conservative force field, we have shown that this
constant must be positive and in one dimension we have found
an analytical expression for it. We believe that these results
could be useful in analyzing single-particle tracking data, as
the constant term, which is usually ignored or not discussed,
contains potentially interesting information about the potential
landscape seen by the Brownian particle. In particular we
have seen that at low temperatures, knowing C enables one
to estimate the curvature of the local minima of the potential
responsible for slowing diffusion down, while in the Kramers
expression for the diffusion constant this information is mixed
with the Arrhenius term, which contains information about the
energy barrier.

A number of questions remain open; here we have examined
the leading-order correction to the average MSD, which turns
out to be a constant. The next-order corrections would be
interesting to analyze as they would allow one to estimate
when one achieves the effective linear regime of asymptotic
diffusion. Another important question is what happens in the
case where the potential is not periodic but, for instance,
random but statistically stationary. In this case the leading-
order correction is probably time dependent [6].
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