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Thermostatistics of small nonlinear systems: Gaussian thermal bath
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We discuss the statistical properties of small mechanothermodynamic systems (one- and two-particle cases)
subject to nonlinear coupling and in contact with standard Gaussian reservoirs. We use a method that applies
averages in the Laplace-Fourier space, which relates to a generalization of the final-value theorem. The key
advantage of this method lies in the possibility of eschewing the explicit computation of the propagator,
traditionally required in alternative methods like path integral calculations, which is hardly obtainable in the
majority of the cases. For one-particle equilibrium systems we are able to compute the instantaneous (equilibrium)
probability density functions of injected and dissipated power as well as the respective large deviation functions.
Our thorough calculations explicitly show that for such models nonlinearities are irrelevant in the long-term
statistics, which preserve the exact same values as computed for linear cases. Actually, we verify that the
thermostatistical effect of the nonlinearities is constricted to the transient towards equilibrium, since it affects
the average total energy of the system. For the two-particle system we consider each element in contact with
a heat reservoir, at different temperatures, and focus on the problem of heat flux between them. Contrarily
to the one-particle case, in this steady state nonequilibrium model we prove that the heat flux probability
density function reflects the existence of nonlinearities in the system. An important consequence of that it is the
temperature dependence of the conductance, which is unobserved in linear(harmonic) models. Our results are
complemented by fluctuation relations for the injected power (equilibrium case) and heat flux (nonequilibrium
case).
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I. INTRODUCTION

Prompted by several results and applications in engineering
and biology [1], particularly at the nanometric scale, the
thermodynamical description of small dynamical systems in
contact with heat reservoirs has been in the limelight and
ultimately acted as one of the cornerstones of the so-called
stochastic thermodynamics [2]. Besides the interest piqued
by the smorgasbord of applications, most of the theoretical
interest resides in the fact that due to its the intrinsic finiteness,
fluctuations can be crucial to their statistical features, espe-
cially when the system is in a state of nonequilibrium giving
rise to deviations from standard thermodynamical results,
which were established within a macroscopic context [3].

Considering nonequilibrium, the instance of a mechanical
system in contact with two reservoirs at different temperatures
is perhaps the quintessential heat dissipative problem [4]
allowing the emergence of a steady (nonequilibrium) state
with heat flowing through the system and permits a long-term
treatment based on time averaging. Looking at the way the
elements of the system interact, the problem has been mainly
set forth in terms of either linear or nonlinear coupling. On
the one hand, linear coupling presents several simplifying ad-
vantages, namely, (1) it defines a pure nonequilibrium system;
(2) it has its heat flux definition completely established; (3)
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it is adaptable to different kinds of reservoirs; (4) it can be
easily expanded into an infinite chain with a nearly direct
application of the results of N = 2 block; (5) it might represent
results of Langevin colored noises by a renormalization of
the masses; and last but not least (6) linearity is still widely
assumed in problems of statistical mechanics and condensed
matter [5]. On the other hand, higher dimensional anharmonic
(i.e., nonlinear) coupling might be able to better diffuse energy
and enlarge the scope of any enquiry. Nonetheless, the range
of exact analytical solutions thereto behaves the other way
around, exhibiting a sharp decrease of its broadness [6,7],
which is plainly counterbalanced by its experimental relevance
(see, e.g., Ref. [8]).

At this point it is worth stressing it is systematically forgot-
ten that, conceptually, probability distributions in statistical
physics represent a mathematical tool for obtaining quantities,
commonly limited the first statistical moments, that act as
predictions to match with measurements made on a system [9].
In other words, we can reckon the probability distribution as
a compact way of presenting the statistical information about
an ensemble. For these reasons, methods pinpointed at the
description of the statistical moments or cummulants are man-
ifestly the most convenient approach as they enable a straight-
forward comparison of the theoretical prediction with experi-
mental results, e.g., mean first-passage times and temperatures
as averages of kinetic energy of particles among many
others.

In experiments, we are often interested in analyzing the
behavior of a single sample system that is assumed in a
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steady state1 and for which a reliable empirical distribution
function is unlikely. In that case, the steady state condition
makes a time-averaging procedure utterly valid, nay, adequate
and outperforming in opposition to the standard (statistical)
probabilistic mechanics framework [10–13].

The present work aims at introducing a comprehensive
description of thermostatistical laws for small nonlinear
mechanical models in contact with heat reservoirs. Our account
is split into two main parts: first, the analysis of the one-particle
problem in contact with a reservoir, which after some time
attains a state of equilibrium, is made in Sec. II. We center our
efforts on carrying out a statistical description of power and
heat in their injected and dissipated forms, performing calcu-
lations in the Laplace-Fourier space, and using diagrammatic
representations as well. In addition, we describe the response
of thermostatistical quantities to variations of mechanical and
thermal parameters of the problem. In Sec. III we survey a
two-particle nonequilibrium steady state, namely, the statistics
and probabilistics the heat flux between elements of the system.
Finally, we dedicate Sec. IV to the comparison of the effect of
nonlinearities in the thermostatistical features of equilibrium
and nonequilibrium problems.

II. ONE-PARTICLE CASE

Let us first assume the following model of a single particle
in contact with a heat reservoir at temperature T . The position,
x, and velocity, v ≡ ẋ, of the particle are governed by the
stochastic differential equations

ẋ(t) = v(t),

m ẍ(t) = −k1 x(t) − k3x
3(t) − γ ẋ(t) + η(t), (1)

where the initial conditions can be set to x(t = 0) = 0 and
v(t = 0) = 0 without any loss of generality. The stochastic
variable η is a proxy for the interaction of system with
the reservoir, which must be statistically defined beforehand.
Doing it in terms of its cumulants, it is well known that
a stochastic variable is specified by either its first two
cumulants altogether or else all of them are needed [14]. The
present paper studies the former, distinguishing the Gaussian
noise and which defines a Wiener-like (Brownian) process
dW (t) ≡ ∫ t+dt

t
η(t ′). The latter, which has a wide field of

applicability as well, will be scrutinised in a subsequent
paper. A driftless Gaussian noise, which leads to a Lévy-Itô
continuous measure process [15], is described in terms of its
cumulants as

〈η(t1) · · · η(tn)〉c = 0 (if n �= 2),
(2)〈η(t1) η(t2)〉c = 2 γ T δ(t1 − t2).

1Within this context equilibrium can be regarded as the utmost
steady state. That is to say, in a general steady state there is entropy
production to keep the probability current constant, whereas in a
equilibrium state the average overall entropy production cancels out.

As we shall see shortly, the Laplace transform of the
cumulants,

〈η̃(s1) · · · η̃(sn)〉c

=
n∏

i=1

∫ ∞

0
exp

[
−

n∑
i=1

si ti

]
〈η(t1) · · · η(tn)〉c , (3)

plays a central role in obtaining the results. Accordingly, for
the present case we have

〈η̃(s1)η̃(s2)〉c = 2 γ T

s1 + s2
, (4)

and zero otherwise. In applying the aforementioned initial
conditions, the Laplace transform of Eq. (1) is expressed in a
recursive form as

x̃(s) = η̃(s)

R(s)
− k3

R(s)
lim

ε→0+

∫ +∞

−∞

dq1

2π

∫ +∞

−∞

dq2

2π

×
∫ +∞

−∞

dq3

2π

x̃(i q1 + ε) x̃(i q2 + ε) x̃(i q3 + ε)

s − (i q1 + i q2 + i q3 + 3ε)
,

ṽ(s) = s x̃(s), (5)

where

R(s) ≡ m s2 + γ s + k1 = m (s − ζ+)(s − ζ−), (6)

the zeros of which are

ζ± = −θ

2
± i

2

√
4 ω2 − θ2, (7)

where θ = γ /m and ω2 = k1/m. The recursive structure can
be best understood looking at Fig. 1 where we depict Eq. (5)
in a diagrammatic way.

A. Energy considerations

We start by conducting an energy analysis of the system,
which shows that in solving the problem from the exact
dynamics of the system standard statistical mechanical av-
erages are recovered. Recall that because the system reaches
an equilibrium state it is clear the long-term values could be
obtained using the Boltzmann distribution. Yet, we shall tackle
the computations differently; seeing that we will need the time
dependence of the equations further ahead, in order to keep

FIG. 1. Diagrammatical representation of Eq. (5). Here double
circles depict a x̃ term, which make the fork represent the triple
integral, and the simple circles picture the term η/R.
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a uniform approach we resort to a final-value theorem which
brackets the Laplace transform with time averages [16]

lim
z→0

z Ã(z) = Ā, (8)

where

Ā ≡ lim
T →∞

1

T

∫ T

0
A (t) dt (9)

and

A(t) = lim
ε→0

∫ ∞

−∞

dq

2π
e(i q+ε)t Ã(i q + ε). (10)

With Eqs. (5) and (8) on hand we can compute the average
values of v2, x2, and x4, which are related to the average
kinetic,

K = 1
2mv2,

and potential energy of the particle,

V = 1
2k1x2 + 1

4k3x4.

Explicitly, for the kinetic energy we read

K = m

2
lim

z, ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

z

z − (i q1 + i q2 + 2ε)

×〈ṽ(i q1 + ε) ṽ(i q2 + ε)〉

= m

2
lim

z, ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

z

z − (i q1 + i q2 + 2ε)

×(i q1 + ε) (i q2 + ε) 〈x̃(i q1 + ε) x̃(i q2 + ε)〉 . (11)

Plugging Eq. (5) into Eq. (11) we verified that only the zeroth
order in k3 yields a result different to zero, and therefore we
have

K = m

2
lim

z, ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

z

z − (i q1 + i q2 + 2ε)

× (i q1 + ε) (i q2 + ε)

R(i q1 + ε) R(i q2 + ε)
〈η̃(i q1 + ε) η̃(i q2 + ε)〉

(12)

= T

2
. (13)

This result should not be unexpected; by the time-averaging
we obtain predictions for the values of the observables in
the long-term steady (equilibrium) state. In such a state the
velocity must be Gaussian irrespective of the form of either
potential of the spring.

The verification of the equipartition theorem obviously does
not occur for the time average of the nonquadratic potential
energy. Making explicit the potential energy we have

V = k1

2
lim
z→0

lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

z

z − (i q1 + i q2 + 2ε)

×〈x̃(i q1 + ε)x̃(i q2 + ε)〉 + k3

4
lim
z→0

lim
ε→0

∫ ∞

−∞

dq1

2π
. . .

×
∫ ∞

−∞

dq4

2π

z

z − (i q1 + i q2 + i q3 + i q4 + 4ε)

× 〈x̃(i q1 + ε) x̃(i q2 + ε) x̃(i q3 + ε) x̃(i q4 + ε)〉 ,

(14)

FIG. 2. Path of integration for the q variables.

whence, once again, a recursive relation is obtained by
replacing the transforms x̃ by their expression from Eq. (5). At
this stage, we make use of the previous equation to address two
important points: First, the only contributing terms are those
for which the successive integration over distinct qj make∑l

j=1(i qj + ε) in the factor z/[z − ∑l
j=1(i qj + ε)] to vanish.

If not, these contributions zero out when the limit z → 0
is evaluated; second, in representing the integration contour
diagrams, the noise averages such as 〈η̃(i q1 + ε) η̃(i q2 + ε)〉
represent contractions on the diagrams, which allow represent-
ing the contributing terms as simple residue integrations on the
path given in Fig. 2. Hereinafter, we represent the contraction
involving two noises in the Laplace space η̃(i q1 + ε) and
η̃(i q2 + ε′) as (q1 	 q2).

Our task is thus to compute these integrals in order to
obtain the leading contributions that ultimately allow finding
the function for which the terms correspond to the elements
of the generating function. In this case that calculation is very
much simplified by the Gaussian nature of the reservoirs and
the direct application of the Isserlis-Wick theorem [17]. In the
Supplemental Material [18] we show the computations related
to the first terms of V . The same procedure dare be used to
compute any order of xnvm (n,m � 0). Up to second order in
k3 the potential energy reads

V =
∞∑

n=0

kn
3 Vn

= 1

2
T − 3

4

k3 T 2

k2
1

+ 6
k2

3 T 3

k4
1

+ O

[ (
k3 T

k2
1

)3 ]
, (15)

which gives V = T/2 for the standard harmonic case (k3 =
0) and according to equilibrium statistics. This expansion
enables identifying the dimensionless argument 
 ≡ k3 T

k2
1

that
characterizes the order of the expansion. The average total
energy of the system easily yields

E = K + V

= T − 3

4

k3 T 2

k2
1

+ 6
k2

3 T 3

k4
1

+ O

[ (
k3 T

k2
1

)3 ]
. (16)

It is important to stress that Eq. (16) is exact; exact in the
sense that no simplifying argument nor Edgeworth expansion
have been used. If we are interested in getting higher order
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contributions of 
, it is only necessary to continue applying
the Isserlis-Wick theorem.

We have hitherto shed light on a main statistical property
of the system which can directly link to measurements in
experiments, but what if we were interested in the probabilistic
properties? Is this method capable of providing us with
distribution? The answer to this question is yes. That is to
say, should we be concerned with the probabilistic steady state
behavior of the system? Instead, all we have to do is to assume
that our quantity A (t) is nothing but

p(x,v,t) = 〈δ(y(t) − x) δ(u(t) − v)〉. (17)

Introducing the last equation in A (t) and using the Fourier
representation of the Dirac δ we can write the equilibrium
distribution as

peq (x,v) =
∞∑

n,m=0

∫ +∞

−∞

dQ

2π

dP

2π
ei (Qx+P v)

× (−iQ)n

n!

(−iP )m

m!
〈ynum〉, (18)

where we anew use the time-averaging technique to compute
〈xnvm〉. That approach has proven worthwhile in a variety of
cases, especially when a Fokker-Plank approach does not hold
[12,13]. The first terms of 〈xnvm〉 we computed to obtain the
average energy concur with the expected probability equilib-
rium distribution peq (x,v) = Z−1 exp[−(m v2/2 + m x2/2 +
m x4/4)/T ].

B. Energy fluctuations and thermostatistical greeks

Let us now turn our attention to the other main statistical
moment of the energy, the variance,

σ 2
E ≡ (

E − E
)2

= K2 + V2 − K2 − V2
,

which up to second order in k2
3 gives

σ 2
E = T 2 − 3

2

k3

k2
1

T 3 + 18
3

4

k2
3

k4
1

T 4 + O

(
k3

3

k6
1

T 5

)
.

Assuming standard relation between the energy fluctuations
and the heat transferred to the particle we can explicit the
specific heat of the nonlinear particle, σ 2

E = Cx T 2 where

Cx = 1 − 3

2

k3

k2
1

T + 18
k2

3

k4
1

T 2 + O

(
k3

3

k6
1

T 3

)
, (19)

up to second order in k3 T/k2
1. It is easily understood that

the nonlinear particle has got a smaller specific heat because
the first anharmonic correction is negative. What is the
rationale beyond that? By introducing a small higher-order
positive term in the expression defining the energy of the
spring we are implicitly augmenting its stiffness and thus
turning it less elastic, or in other words, diminishing the
response function, Cx , to energy fluctuations caused by the
contact with the thermostat. In respect of Eq. (19) two
further observations can be made: (1) in the limit T → 0,
Cx = 1 �= 0, thus violating the third law of thermodynamics,
as characteristically done by classical systems; (2) the specific

heat of the nonlinear classical Brownian particle is a function
of the temperature only when the system in anharmonic.
These features underscore the mixing between mechanical
properties of a system and the thermal properties of the
reservoir conveyed in Ref. [13], which are absent when the
system is of a linear(harmonic) nature.

In analyzing the response of the (average) total energy of
the system we can go farther afield borrowing the concept
of Greeks used in option pricing. Originally, these quantities
were introduced to quantify the sensitivity of the appraised
value of an option, V , with respect to the parameters used to
price it (for further details please consult, e.g., Ref. [19]). In
the present case we set forth the following Greeks:

ν ≡ ∂E
∂T

≈ 1 − 3

2

k3

k2
1

T 2 + 18
k2

3

k4
1

T 4,

ρ ≡ ∂E
∂k1

≈ 3

2

k3

k3
1

T 2 − 24
k2

3

k5
1

T 3 + 891

2

k3
3

k7
1

T 4,

� ≡ ∂E
∂k3

≈ −3

4

T 2

k2
1

+ 12
k3

k4
1

T 3 − 891

4

k2
3

k6
1

T 4, (20)

υ ≡ ∂E
∂γ

= 0,

� ≡ ∂E
∂m

= 0,

(all up to second order in k3) wherewith we intend to
describe the sensitivity of the mean energy with respect to the
parameters of the problem. Let us elaborate upon these results.
From ν, ρ, and �, we can grasp once again the relevance of
the anharmonicity in the blending of thermal and mechanical
properties of the problem. In other words, in the linear case we
verify that ν is constant, hence independent of T , respecting
the classical theory, whereas for anharmonic systems we have
a temperature-dependent response. Additionally, ρ clearly
shows that the value of the average energy depends on the
value of k1 when nonlinearities exist and that ν and � show
smaller and negative sensitivity of E when k3 �= 0. Last, we
verify Cx = ν as expected. In both cases, we have smaller
values for k3 �= 0 than the harmonic instance. This is explained
by observing that as we increase the stiffness of the spring we
are making the system more inefficient in terms of transfer of
energy between the bath and the particle. With respect to other
response measures we can still introduce the displacement
coefficient,

α ≡ (x2)−
1
2
∂
√

x2

∂T

= 1

2T
− 3

2

k3

k2
1

+ 39

2

k2
3

k4
1

T ,

which signals the decreasing of the amplitude of movement in
stiffening the spring.

C. Power considerations

As is well known, the energy of a particle at time � is
related to the balance between the injected and dissipated heat
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fluxes [2], JI (�) and JD(�), respectively,

E (�) ≡ JI (�) + JD (�) =
∫ �

0
η (t) v (t) dt − γ

∫ �

0
v (t)2 dt. (21)

In the long term (large �), because the system reaches an equilibrium state, it is expected that

lim
��θ

〈JI (�) + JD (�)〉 = 〈E〉 = E, (22)

as the problem becomes ergodic after the transient.
Applying the Laplace method we have verified that for the injected heat flux,

lim
��θ

〈JI (�)〉 = γ

m
T �.

This result arises from the zeroth order contribution in k3,

〈JI,0(�)〉 = lim
��θ

lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

exp [(i q1 + i q2 + 2ε) �]

(i q1 + i q2 + 2ε)
(i q1 + ε)

1

R(i q1 + ε)
〈η̃(i q1 + ε) η̃(i q2 + ε)〉 ,

= γ

m
T � (23)

and from the fact that 〈JI,n(�)〉 = 0 for any other order of the expansion in k3. As regards to the dissipated flux we have obtained
a different picture where the terms 〈JD,n(�)〉 do not vanish (n > 0). However, the only term which exhibits time dependence is
the zeroth order term, namely,

〈JD, 0(�)〉 = − lim
��θ

lim
ε→0

γ

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

exp [(i q1 + i q2 + 2ε) �] − 1

(i q1 + i q2 + 2ε)

(i q1 + ε) (i q2 + ε)

R(i q1 + ε) R(i q2 + ε)
〈η̃(i q1 + ε) η̃(i q2 + ε)〉

= − γ

m
T � + T , (24)

and, for the sake of conciseness, we just show here the first order contribution yielding

〈JD, 1(�)〉 = lim
��θ

lim
ε→0

lim
ε′→0

2 γ k3

m5

∫ ∞

−∞

dq1

2π
. . .

∫ +∞

−∞

dq5

2π

exp [(i q1 + i q2 + 2ε) �] − 1

(i q1 + i q2 + 2ε)

× 1

R(i q1 + ε) R(i q2 + ε)
∏5

l=3 R(i ql + ε′)
(i q1 + ε) (i q2 + ε)

〈η̃(i q2 + ε) η̃(i q3 + ε′) η̃(i q4 + ε′) η̃(i q5 + ε′)〉
(i q1 + ε) − (i q3 + i q4 + i q5 + 3ε′)

= −3

4

k3 T 2

k2
1

. (25)

The subsequent computation of higher order terms in k3 allows verifying Eq. (22). Interpreting the results of Eqs. (23)–(25) we
learn that modifying the linearity of the model only implies changes in the transient time average behavior of the system, i.e.,
after reaching equilibrium. In other words, for an arbitrarily large time � the constant terms of the total injected and dissipated
energy, which add up to define the average total energy of the system, will be arbitrarily small and thus negligible.

The fact that the problem becomes ergodic after a transient tells us very little about modifications in the distributions. In order
to check it, we compute the remaining moments and get the probability distribution for the total injected and dissipated heat
which matches the large deviation function of the power [20] . Since it has to do with the product of different quantities, namely,
η̃ by ṽ, the case of the injected power turns out easier by adopting a diagrammatic representation of all the integrals involved to
get each raw moment 〈J n

I (�)〉. Let us focus on second order moment,

〈
J 2

I (�)
〉 = lim

��θ
lim
ε→0

∫ �

0
dt

∫ �

0
dt ′

∫ ∞

−∞

dq1

2π
· · ·

∫ ∞

−∞

dq4

2π
exp[(i q1 + i q2 + 2ε) t + (i q3 + i q4 + 2ε) t ′]

× (i q2 + ε) (i q4 + ε)∏2
l=1 R(i q2 l + ε)

〈η̃(i q1 + ε) η̃(i q2 + ε) η̃(i q3 + ε) η̃(i q4 + ε)〉 , (26)

as an illustrative example.

Applying the Isserlis-Wick theorem we can split the 4-q
correlation into three different products of two-q correlations,
namely:(q1 	 q2) (q3 	 q4), which represents 〈JI (�)〉2, and
(q1 	 q3) (q2 	 q4) and (q1 	 q4) (q2 	 q3), which yield the
cumulant of second order. The diagrammatic representation,

depicted Fig. 3 for n = 2 and n = 3 works as follows: bearing
in mind the factorisation in time of the exponential term in
the integral, we assume a number n of nodes, representing jI

in Laplace space, that can connect to the other nodes in three
different ways:
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A B C

D E F

G H

FIG. 3. Diagrammatic representation of the integrals involved in
the calculation of the second and third order cumulants.

(1) By full straight links, when the pair of η̃s is composed
of one η̃ coming from the pure noise and the other from the
velocity, independent of the time [e.g., (q1 	 q2) or (q1 	 q4)
for 〈J 2

I (�)〉];
(2) By dotted links, when the pair is composed of η̃s

coming from the pure noise [e.g., (q1 	 q3) for 〈J 2
I (�)〉];

(3) By wavy links, when the pair is composed of η̃s coming
from the the velocity [e.g., (q1 	 q3) for 〈J 2

I (�)〉].
A node can have two full straight lines, but if one of the

links is a dotted (wavy) line the other must be a wavy (dotted)
or straight line. The nodes can self-connect creating a loop;
in this case the value is γ T �/m for every of them. When
all the nodes are only connected by straight lines forming a
closed chain the result of such diagram is equal to zero. Last,
the cumulant of order n, which must be linear in � so that
one we recover the key extensive property of the cumulants,
is defined by the diagrams that form closed chains with n − 2
links. Accordingly we have〈

J 2
I (�)

〉 = A + B + C

=
( γ

m
T �

)2
+ 0 + 2

γ

m
T 2� (27)

and〈
J 3

I (�)
〉 = D + 3 × E + 3 × F + 6 × G + 2 × H

=
( γ

m
T �

)3
+ 6

γ 2

m2
T 3�2 + 0 + 0 + 12

γ

m
T 3�,

(28)

where in each term we have preserved the leading term in
�, which rules its long-term behavior. The computations are
carried on for higher moments of the injected energy flux until
the respective moment-generating function (MGF) is identified
with the help of tabulated series [21]

MJI (�) (λ) ≡ 〈exp [λJI (�)]〉

= exp

[
γ �

2 m
(1 − √

1 + 4 T λ)

]
. (29)

Since we can identify the total injected(dissipated) heat as
the large deviation variable of the respective powers the

distribution is finally obtained making use of the Gärtner-Ellis
Theorem [20,22], which by means of a Legendre transform
relates MJI (�) (λ) to the large deviation function,L (JI ), and
thus,

L (JI ) ∼ H (JI ) exp

[
− (JI − γ T �/m)2

4 T JI

]
, (30)

where we scrapped the time dependence of JI and H (x)
denotes the Heaviside function. Heed that in this case we do
not explicit the propagator as in calculations based on path
integration [6,23]. That results in a clear advantage when we
deal with problems associated with non-Gaussian reservoirs.
In the case of the absolute dissipated power, |JD|, we did not
manage to establish a diagrammatic representation yet. Never-
theless, a monotonous calculation of the first terms shows that
they equal those obtained for JI , as expected and depicted
in Fig. 4 where we reckon that the distributions coincide.
Additionally, it becomes intuitive to think that nonlinear effects
are most stressed during the transient when the particle is
building up energy towards its average equilibrium value. This
is again plain in Fig. 5, after the transient τ ∼ 10, the systems
attains a linear regime of injection and dissipation of energy
independently of the value of k3.

Despite the equality of L(JI (D)), it is quite clear from
the respective definitions that the injected and the dissipated
powers cannot have the same distribution. Actually, they must
be quite different because jD ≡ −γ v2 is nonpositive defined,
whereas jI ≡ η v assumes any real value. In respect of the
dissipated power distribution, p (|jD|), we use the Gaussian
nature, with variance T/ (2 m), of the velocity in equilibrium
and applying the law of the probability conservation under
changes of variable we obtain

p (|jD|) =
√

m

2π γ T |jD| exp

[
− m

2γ T
|jD|

]
, (31)

which is reminiscent of a χ -squared distribution with one
degree of freedom. Regarding the injected power distribution,

FIG. 4. (Color online) Long-term distribution function of the
total injected (black squares) and dissipated (red circles) heats vs total
injected(dissipated) heat. The green line is given by Eq. (30). The
parameters used are � = 300, k1 = 1, k3 = 2/100, m = 1, γ = 1,
and T = 10.
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FIG. 5. (Color online) Injected and dissipated heats vs time. The
parameters used are the following k1 = 1, m = 1, γ = 1/10 and
T = 1, and k3 = 0 or k3 = 1/2, i.e., significantly nonlinear. It is clear
that after the transient both heats grow at a rate γ T /m = 1/10, which
agrees with the slopes of the dashed green lines. N.B.: In order to
obtain a greater separation between the curves we have set slightly
different initial conditions, namely, x = 1.

p (jI ), the calculation is more complex. Let us start by
computing the correlation function between the stochastic term
η and the velocity in equilibrium. This gives

Cη v(τ ) ≡ 〈η (t) v (t + τ )〉 − 〈η (t)〉〈v (t)〉

= 2T
γ

m
exp

[
− γ

2 m
τ

]{
cos

[√ k

m
−

(
γ

2 m

)2

τ

]

− γ

m

[
4

k

m
−

(
γ

m

)2]− 1
2

sin

[√
k

m
−

(
γ

2 m

)2

τ

]}
× (τ > 0)

(32)

and

〈η (t) v (t + τ )〉 = 0, (τ < 0) . (33)

In the limit τ → 0 we obtain Cη v (0) = T
γ

m
, and it coincides

with the average injected power.2 With this result we can as-
sume that, for equilibrium probabilistic purposes, the velocity
is given by the sum

v = c η + f ξ, (34)

where c = Cη v(0)/σ 2, σ 2 = 2 γ T δ(0), f =
√

1 − m
T

(Cη v (0)
σ

)2.
The variable ξ is Gaussian and independent of η with a
variance 〈ξ 2〉 = ω2 = T

m
. Accordingly, the injected power PDF

2It must be noted that Cην (0) is not simply obtained by assuming
τ = 0. In the respective calculation the value τ = 0 implies that the
Jordan’s lemma becomes invalid, and we must take into consideration
the result of the integration in the upper semicircle.

FIG. 6. (Color online) Upper panel: Cumulative distribution of
dissipated power vs dissipated power. Lower panel: Probability
density function of injected power (empirically obtained using the
Savitzky-Golay filter) vs injected power. In both cases the parameters
are the following: m = 1, γ = 1, k = 1, k3 = 2/100, and T = 10.
The last part of the curves are naturally affected by finite size effects.

reads

p(jI ) =
∫ ∫

1

2 π σ ω
exp

[
− η2

2σ 2
− ξ 2

2 ω2

]
δ(jI − η v)

× δ (v − c η − f ξ ) dη dξ

= 2 c

π f σ ω
exp

[
c

f 2ω2
jI

]
K0

[√
(c σ )2 + f 2ω2

f 2ω2 σ
|jI |

]
.

(35)

This distribution is different from Eq. (31) and compared
with numerical implementation results in Fig. 6. It must be
taken into consideration that since jI is actually a noise in its
strictest sense, the numerical computation of that quantity is
quite sensitive and thus prone to erroneous results. The way
to circumvent this obstacle is to smoothly differentiate JI

for which we used the Savitzky-Golay filter [24]. Taking into
account this point Eq. (35) can be deemed a good approach.
Furthermore, the assumption (34) allows understanding the
large deviation function if we make f = 0. In that case Eq. (35)
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becomes

p (jI ) =
∫ +∞

−∞
dη

1√
4πγT

exp

[
− η2

4γ T

]
δ

(
jI − 1

2m
η2

)

=
√

m

2π γ T jI

exp

[
− m

2γ T
jI

]
H (jI ) , (36)

which has the same functional form as p (|jD|). Thence, we
comprehend that the large deviation limit of the injected power
is dominated by the correlation between the velocity of the
particle and the action of the reservoir. On the other hand, the
fluctuations introduced by ξ give rise to negative values that
act on the energy of the particle as a dissipative contribution.
The imperative positive skew of p (jI ) is provided by the expo-
nential factor, whence we can establish the fluctuation relation

lim
�→∞

p (| jI |)
p (− | jI |) = exp

[
2

c

f 2ω2
| jI |

]
. (37)

III. TWO-PARTICLE CASE

Having surveyed the thermostatistical properties of an equi-
librium nonlinear particle let us move on to a nonequilibrium
steady state apt system, the dynamics of which is ruled by the
following equations:

ẋ1 = v1

ẋ2 = v2
(38)

m ẍ1 = −k x1 − k1(x1 − x2) − k3(x1 − x2)3 − γ ẋ1 + η1

m ẍ2 = −k x2 − k1(x2 − x1) − k3(x2 − x1)3 − γ ẋ2 + η2.

The current system is still (broadly) ergodic in the sense
that after the transient averages over time and averages over

samples do agree. The noise reservoir-mimicking functions
are again assumed as white and Gaussian,

〈ηα(t1)〉 = 0
(39)〈ηα(t1)ηβ(t2)〉 = 2 γ Tα δ(t1 − t2) δα β,

and the initial conditions are set to x1(0) = v1(0) = x2(0) =
v2(0) = 0.

The Laplace transforms read

ṽ1(s) = sx̃1(s), (40)

ṽ2(s) = sx̃2(s). (41)

Using

R(s) = (m s2 + γ s + (k + k1)) = m(s − κ+)(s − κ−),

where

κ± = −θ

2
± i

2

√
4ω2 − θ2

and

R′(s) = (m s2 + γ s + (k + 2 k1)) = m(s − κ1+)(s − κ1−),

R′′(s) = (m s2 + γ s + k) = m(s − κ2+)(s − κ2−),

with

κ1± = −θ

2
± i

2

√
4ω2

1 − θ2,

κ2± = −θ

2
± i

2

√
4ω2

2 − θ2,

we can rewrite the dynamical evolution of the system in terms
of the difference between the positions,

r̃D = [x̃1(s) − x̃2(s)]

= η̃1(s) − η̃2(s)

R′(s)
− 2 k3

R′(s)
lim
ε→0

∫ +∞

−∞

dq1

2π

∫ +∞

−∞

dq2

2π

∫ +∞

−∞

dq3

2π

× [x̃1(i q1 + ε) − x̃2(i q1 + ε)] [x̃1(i q2 + ε) − x̃2(i q2 + ε)][x̃1(i q3 + ε) − x̃2(i q3 + ε)]

s − (i q1 + i q2 + i q3 + 3ε)
, (42)

and the average position of the system,

r̃S = [x̃1(s) + x̃2(s)]

2
= η̃1(s) + η̃2(s)

2 R′′(s)
. (43)

Inverting the last two equations we can retrieve the positions
in the Laplace space,

x̃1(s) = r̃S + r̃D

2
,

(44)
x̃2(s) = r̃S − r̃D

2
.

Similarly, we can define the difference and the average of the
noise as

η̃S(s) = η̃1 (s) + η̃2 (s)

2
,

(45)
η̃D(s) = η̃1 (s) − η̃2 (s) ,

the Laplace transforms of which are

〈η̃D(s1)η̃D(s2)〉c = 2 γ
T1 + T2

s1 + s2
,

〈η̃S(s1)η̃S(s2)〉c = γ

2

T1 + T2

s1 + s2
, (46)

〈η̃S(s1)η̃D(s2)〉c = γ
T1 − T2

s1 + s2
.

Finally we express the recurrence relations for the new
variables,

r̃D(s) = η̃D(s)

R′(s)
− 2 k3

R′(s)
lim
ε→0

lim
ε′→0

∫ +∞

−∞

dq1

2π

∫ +∞

−∞

dq2

2π

×
∫ +∞

−∞

dq3

2π

r̃D(i q1 + ε′) r̃D(i q2 + ε′) r̃D(i q3 + ε′)
s − (i q1 + i q2 + i q3 + 3ε′)

,

r̃S = η̃S (s)

R′′(s)
. (47)
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A. Heat conductance

As provided by Eq. (38), for this two-particle system the
force F1→2 exerted by particle 1 on particle 2 is defined by

F1→2 = −k1(x1 − x2) − k3(x1 − x2)3. (48)

Accordingly, the power transmitted from one particle to
another is given by the instantaneous power difference

[10],

J1→2 = dW1→2 − dW2→1

2 dt
= F1→2v2 − F2→1v1

2
. (49)

In this respect, our approach revolves around deriving a
systematic expansion for the time-averaged moments of J1→2

in the steady state,

〈
J n

1→2

〉 =
〈(

F1→2v2 − F2→1v1

2

)n〉

=
〈{

[−k1(x1 − x2) − k3(x1 − x2)3]
v1 + v2

2

}n〉
, (50)

where we have applied the condition that in steady state < xn
αvα = 0 [10]. The last representation is particularly valid because

it easily allows us to write the the moments 〈J n
1→2〉 by means of the average velocity and the position difference. The average

value is traditionally expressed as

JQ = 〈J1→2〉 ≡ κT (T2 − T1), (51)

where κT is the conductance of the model. Heeding Eqs. (42)–(47) we get

JQ = −k1 lim
z→0

lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

z

z − (i q1 + i q2 + 2ε)
(i q2 + ε) 〈r̃D(i q1 + ε) r̃S(i q2 + ε)〉

− k3 lim
z→0

lim
ε→0

∫ ∞

−∞

dq1

2π

∫ ∞

−∞

dq2

2π

∫ ∞

−∞

dq3

2π

∫ ∞

−∞

dq4

2π

z

z − (i q1 + i q2 + i q3 + i q4 + 2ε)

×{(i q4 + ε) 〈r̃D(i q1 + ε) r̃D(i q2 + ε) r̃D(i q3 + ε) r̃S(i q4 + ε)〉} . (52)

We now proceed to expand the heat flow (per unit time) in
powers of k3 and obtain the respective statistical moment. Let
us first concentrate our focus on the linear coupling case, k3 =
0. Having computed the heat flux moments we understood
that it would be best to introduce a cumulant representation
rather than the statistical moment representation for which we
inferred the following equation:

κn =
n∑

k=0

(n − 1)!

(
n

2k

)
An−2kBk, (53)

with

A = −1

2

γ k2
1

k2
1m + (k + k1) γ 2

(T1 − T2) , (54)

B = 1

4

k2
1

m γ (k + 2k1)
(T1 + T2)2 , (55)

whence we determine the cumulant generating function,

GJ1→2 (λ) ≡
∞∑

n=1

κn

λn

n!

= ln
1√

[1 − (A + √
B)λ][1 − (A − √

B)λ]
.

(56)

Since GJ1→2 (λ) is nothing but lnMJ1→2 (λ) we straightfor-
wardly identify the moment-generating function,

MJ1→2 (λ) = 1√
[1 − (A + √

B)λ][1 − (A − √
B)λ]

.

(57)

Unfortunately, to the best of both our knowledge there is no
analytical inversion of this equation. Yet we can consider
some limit situations for which the characteristic function,
CJ1→2 (λ) ≡ MJ1→2 (i λ), is invertible. Particularly, we identify
A ± √

B as the maximal and minimal typical values of J1→2.
In the limit of T1 → T2, we have A = 0 that yields

p0 (J1→2) = 1

π
√

B
K0

[ |J1→2|√
B

]
, (58)

where K· (·) represents the modified Bessel function of second
kind. Mind that when A = 0 the system reaches an equilibrium
state where the flux is both symmetrical and, from Eq. (58),
its distribution shows exponential decay. To obtain the full
distribution we avail ourselves of a Gram-Charlier series (also
known as Edgeworth expansion) to compute an approximation
for that. Specifically, within this approach an unknown
probability distribution, p (·) can be written as a function of
some other (close) known reference distribution, p0 (·), and
the difference between the cumulants of both distributions,

δκn ≡ κ ′
n − κn, (59)
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FIG. 7. (Color online) p (J1→2) vs J1→2. In all the panels m = 1, γ = 1, k = 1, k1 = 1. The symbols were obtained from numerical
realisations of the model (38), and the green line given by Eq. (61). In the upper panels we have used the temperature pairs T1 = 1,T2 = 1.05,
and in the lower panels T1 = 1,T2 = 1.3. Regarding the nonlinear parameters k3 = 0 (left panels) k3 = 0.02 (right panels).

according to the relation

CJ1→2 (λ) = exp

[ ∞∑
n=1

δκn

(i λ)n

n!

]
C0,J1→2 (λ) (60)

or, equivalently,

p (J1→2) = exp

[ ∞∑
n=1

δκ̌n

(−1)n

n!

∂n

∂J n
1→2

]
p0 (J1→2) . (61)

Defining

N ≡ m k2
1 (k1 − k) + γ 2

(
k2 + k k1 + k2

1

)
,

D1 ≡ k + 2k1,

D2 ≡ k γ 2 + k2
1 m + k1 γ 2,

we have

κ̌ ′
1 = A + A1 (62)

= A − 3

2
k3γ

N1

D1 D2
(T1 − T2)(T1 + T2) + O

(
k2

3

)
. (63)

Additionally, we can always set δκ̌2 = 0 by making κ̌ ′
2 =

κ̌2 = B when k3 = 0 or replacing the linear case value

with

κ̌ ′
2 = κ̌2 = B ′

= B + B1a + B1b + A2 − (κ̌ ′
1)2, (64)

where

B1a = 3

2
k3 k

(3 k + 2 k1)

mD3
1

(T1 + T2)3 + O
(
k2

3

)
, (65)

B1b = 3k3 k k1 γ 2 N
D1 D1

(T1 − T2)2 (T1 + T2) + O
(
k2

3

)
.

(66)

The remaining orders δκn are obtained from the difference
between κn given by Eq. (53) plus the nonlinear corrections
and the cumulants of the reference distribution p0 (J1→2).

In Fig. 7 we show a comparison between p (J1→2) obtained
by numerical simulation, using Eq. (61) in two situations: A

slightly different from 0 (upper panels) and 
 less, but not
significantly less, than 1 (lower panels). In the same figure it
is noticeable the skewness of p (J1→2) reflecting the second
law of thermodynamics, in the Clausius statement, within a
nonequilibrium steady state context.

022110-10



THERMOSTATISTICS OF SMALL NONLINEAR SYSTEMS: . . . PHYSICAL REVIEW E 90, 022110 (2014)

FIG. 8. (Color online) Numerical verification of Eq. (68) (dashed
red line) where the points were obtained by numerically inverting
MJ1→2 in a log-linear scale. The points span the interval between 2
and 16 standard deviations. The parameters used are the following:
k = 1, k1 = 1, m = 1, γ = 1, T1 = 1, and T2 = 2.

For the sake of simplicity let us now consider a first order
approximation of p (J1→2) in the linear case, which reads

p (J1→2) ≈ p0 (J1→2) + A

π B

J1→2

|J1→2|K1

[ |J1→2|√
B

]
. (67)

Bearing in mind the modified Bessel functions of the second
kind has the same asymptotic we can write the ratio between
positive and negative values of the heat flux for |A| � √

B as

lim
|J1→2|→∞,|A|�√

B

p (|J1→2|)
p (− |J1→2|)

= 1 + A/
√

B

1 − A/
√

B
≈ 1 + 2

A√
B

+ A2

B
+ O

[(
A√
B

)3
]

,

(68)

the right-hand side of which, up to second order, matches
exp[2 A√

B
]. Moreover, if we remember that J1→2 acts in the

form of injected power on the colder particle, and paying
attention to the fact that according to the conditions of Eq. (68)
we are analyzing deviations J1→2 not too far away from from
p (J1→2 = 0) = 1, we finally get the following fluctuation
relation:

lim
|J1→2|→∞

p (|J1→2|)
p (− |J1→2|) = exp

[
2
J1→2

σ 2
J1→2

|J1→2|
]

, (69)

which is appraised in Fig. 8.

IV. FINAL REMARKS

In this paper using techniques of time averaging over the
noise that link with the final-value theorem, we studied the im-
pact of nonlinearities in the limit of small perturbations k3 T

k2
1

�
1 (where T is the temperature k1 and k3 are the harmonic
and anharmonic constants, respectively) on the long-term
thermostatistical properties of massive one- and two-particle
systems in contact with Gaussian reservoirs and friction.

For one-particle systems, we mainly computed the values of
the average total energy, injected and dissipated heat, and the
respective probability distributions as well as the injected and
dissipated power distributions. At first sight and somewhat
surprisingly, we verified that the nonlinearities essentially
affect the values of the energy of the particle and do not alter
the statistics of the long-term injected and dissipated heat.
Putting it differently, within a thermostatistical context the
nonlinearities just bear upon the transient when the system
is adjusting its total energy to the equilibrium value. After
reaching equilibrium, the velocity of the particle is Gaussian,
and thus both the injected and the dissipated heat, which are
functions of the velocity [see Eq. (21)], are not modified by
such deviations from linearity and continue growing as a first
order function of the elapsed time. In addition, we noticed
that not only the average values of the long-term injected and
dissipated heat are equal but their distributions as well [6]. In
solving the case of the injected heat, we used a diagrammatic
representation of the contributing terms. Looking into the
heat derivatives, i.e., the injected and dissipated powers,
and making use of probabilistic arguments we were able to
confirm that the distributions for these quantities are different;
Whereas the dissipated power distribution is one sided, the
injected power, jI , can have both signs. Nevertheless, p (jI )
is positively skew, a consequence of the correlation between
the velocity and the action of the reservoir on the system,
η, so that dissipation is set off. From an assumption about the
relation between v and η we also introduced a relation between
positive and negative values of jI with the same absolute value
resembling a fluctuation relation. We computed the response
functions of the equilibrium energy with respect to changes
in the thermomechanical parameters. Our computations have
shown that with the introduction of nonlinearities the specific
heat becomes temperature dependent, breaking the standard
classical relation. In particular, we have noted that in the first
order the specific heat decreases. This effect is understood
bearing in mind that in analyzing the confining potential as a
spring; adding a nonlinear term, we are increasing efficiency
of the energy transfer between particles. Moreover, from the
response functions ∂E

∂k1
and ∂E

∂k3
we have recovered the role of

nonlinearities in coupling mechanical and thermal properties
of the systems.

In the case of a two-particle system we have extended
our previous results on the average heat flux [13] to the
cumulant of any order. This result has permitted us to obtain the
exact generating function of the distribution of the heat flux,
p (|J1→2|). When the temperatures of both reservoirs are the
same we get a symmetrical distribution, which is functionally
equal to a modified Bessel function of second kind, non-
Gaussian though, in the linear coupling case. Interestingly,
this is the distribution of a variable that results from the
product of two Gaussian random variables. Thus, taking into
consideration the definition of J1→2 we induce that the relative
displacement x1 − x2 and the velocity of the center of mass
(v1 + v2) /2 are Gaussian distributed. For the heat flux it is
possible to compute the same Greek functions as well. In
doing that we can learn that the introduction of nonlinearities
turns J1→2 dependent on the effective temperature of the
system Te ≡ (T1 + T2) /2, i.e., ν1→2 ≡ ∂J1→2

∂Te
�= 0, whereas in
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the linear case ν1→2 ≡ ∂J1→2
∂Te

= 0. Once again, this underpins
the blending of the mechanical and thermal properties of the
system in the presence of nonlinearities [13] and also explains
why the expansions are carried out considering k3 T

k2
1

as the
perturbation onto linearity instead of simply considering the
values of k3. Such conjoining can also be understood when
computing ρ1→2 ≡ ∂J1→2

∂k1
and �1→2 ≡ ∂J1→2

∂k3
. In the former

case, we find dependence on Td ≡ (T1 − T2) for k3 = 0, while
we find dependence on both Td and Te for k3 �= 0 and in
addition �1→2. Last, there is an important difference between
the Greeks υ and � of E and J1→2: in the latter case they are
always different from zero, even in the linear case.

In applying a Gram-Charlier (or Edgeworth) expansion to
p (J1→2; k3 = 0) we have succeeded in obtaining an approxi-
mative representation of the distribution of heat flux for nonlin-
ear cases, whence it has become clear that the skew p (J1→2) is
a consequence of the temperature gap. From the ratio between
positive and negative values of |J1→2| we have conjectured
another fluctuation relation, this time for the heat flux.

Regarding the possible experimental corroboration of our
results this can be carried out in three ways: (1) using analog

electronic circuits (RLC-type) in the spirit of Refs. [25];
(2) thermostatistical behavior of gas droplets in nucleation
phenomena (after molecular dynamics results reported in
Ref. [26]); and (3) analysis of small magnetic systems along
the lines of Refs. [8,27].

Finally, we would like to call attention to the fact many
problems are badly represented by Gaussian reservoirs [28].
In recent work of ours and other authors [13,29], it was
shown that the assumption of Poissonian (singular measure
[15]) reservoirs can introduce sharp changes in the thermo-
statistical features of a mechanical system. In a subsequent
paper we will convey results concerning the change of
measure.
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