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Impact of deterministic and stochastic updates on network reciprocity
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In 2 × 2 prisoner’s dilemma games, network reciprocity is one mechanism for adding social viscosity, which
leads to cooperative equilibrium. This study introduced an intriguing framework for the strategy update rule that
allows any combination of a purely deterministic method, imitation max (IM), and a purely probabilistic one,
pairwise Fermi (Fermi-PW). A series of simulations covering the whole range from IM to Fermi-PW reveals
that, as a general tendency, the larger fractions of stochastic updating reduce network reciprocity, so long as the
underlying lattice contains no noise in the degree of distribution. However, a small amount of stochastic flavor
added to an otherwise perfectly deterministic update rule was actually found to enhance network reciprocity. This
occurs because a subtle stochastic effect in the update rule improves the evolutionary trail in games having more
stag-hunt-type dilemmas, although the same stochastic effect degenerates evolutionary trails in games having
more chicken-type dilemmas. We explain these effects by dividing evolutionary trails into the enduring and
expanding periods defined by Shigaki et al. [Phys. Rev. E 86, 031141 (2012)].
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I. INTRODUCTION

Evolutionary games, such as prisoner’s dilemma (PD),
have been regarded as good metaphors to model a solution
for the mysterious puzzle of why human beings and other
animal species successfully evolve cooperation instead of
egocentric defection within their societies. Many papers (for
comprehensive reviews, refer to Refs. [1–3]) have discussed
network reciprocity, which is one of the five fundamental
mechanisms (and is believed to be the most important) that
Nowak classified [4] for resolving the puzzle; it attempts to do
so by adding “social viscosity.” Network reciprocity continues
to attract considerable attention because, although the central
assumption of the model, i.e., playing with the neighbors on
an underlying network and copying a strategy from them, is
simple, it still seems plausible for explaining why cooperation
survives in any real context.

For the past several years, researchers have been concerned
with identifying additional model frameworks that would
enhance network reciprocity to levels above those found in the
baseline spatial PD (SPD) game. Nevertheless, any substantial
and comprehensive understanding on why and how network
reciprocity is brought about has still not been established.
To understand what happens under the name of network
reciprocity, dividing an evolutionary path, which starts from
an initial random state and progresses to a final equilibrium
state, into two periods seems persuasive [5–7]. Thus, in this
study, we follow Shigaki et al. [5] and divide the path into
an enduring period (END) and an expanding period (EXP).
The END is the initial period in the dynamics in which the
global cooperation fraction (Pc) decreases from its value at the
initial state. Perhaps, the initial state has an equal number of
cooperators and defectors randomly assigned on an underlying
network. The term EXP refers to the period following END in
which Pc increases.
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The models of SPD games are constructed on an underlying
network in which evolutionary dynamics progresses under a
set of well-defined rules. In addition, each model incorporates
an approved strategy for update rules; at one extreme, we
have purely deterministic updates and at the other, purely
stochastic updates. The use of different update strategies leads
to difficulty and even ambiguity in trying to compare the
results from the different models [8,9]. Stochastic update rules
tend to realize further network reciprocity as a heterogeneous
topology that adds noise with some cooperative enhancement
over what happens on a homogeneous network; however,
stochastic updates may mask what happens in deterministic
updates. Therefore, in starting a discussion on what occurs
during the process of network reciprocity, it seems a good
idea to initially avoid any stochastic effects. For example,
imitation max (IM) is a deterministic updating rule in which a
focal player i imitates the strategy with the maximum payoff
among all the strategies taken by the focal player and his
or her immediate neighbors. At the other extreme, pairwise
Fermi (Fermi-PW) is a representative stochastic rule in which
a focal player i adopts the strategy of a randomly chosen
player j with probability calculated by a Fermi function.
In addition to Fermi-PW, there are several other methods
classified as stochastic update rules, including pairwise linear
(linear-PW) in which a linear function is presumed instead
of the Fermi function from Fermi-PW and roulette selection
(roulette) in which a focal player chooses from among all the
strategies taken by the focal player and his or her immediate
neighbors with a probability proportional to the payoff [or,
strictly speaking, to the payoff difference with the minimum
of the neighbors’ payoffs as well as birth-death and death-birth
processes (e.g., Ref. [10])]. Both Fermi-PW and linear-PW
contain two stochastic layers: One is the process for selecting
a pairwise partner for strategy adaptation among all neighbors,
and the other is the process for deciding whether or not
(keep her own strategy) to copy from the partner. Considering
what happens in a real social system, we might insist that
stochastic updating should be assumed in models because
any real events might more likely be probabilistic rather
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than deterministic. This might be true if we knew every
aspect of network reciprocity. However, if not, it seems
better to assume a deterministic procedure that simplifies the
mechanism connecting events and that excludes any masking
resulting from the stochastic noise.

In this paper, we introduce a holistic model of strategy
updating including both IM and Fermi-PW as extreme cases;
this model allows us to continuously vary updating rules from
entirely deterministic to entirely stochastic. We find that a rule
which is almost deterministic, but does contain subtle stochas-
tic elements, shows better results in terms of emerging cooper-
ation. The paper is organized as follows. Section II describes
our model and the simulation procedure, Sec. III presents and
discusses the results, and Sec. IV draws conclusions.

II. MODEL SETUP

At every time step, an agent on a network plays PD games
with immediate neighbors and obtains payoffs from all games.
As the underlying topology, we use the two-dimensional (2D)
lattice graph of degree k = 8. The total number of agents is
set to N = 104, which has been confirmed to be sufficiently
large to yield simulation results that are insensitive to system
size. After gaming, each agent synchronously updates his or
her strategy.

A. Game description

In a PD game, a player receives a reward (R) for each
mutual cooperation (C) and a punishment (P ) for each mutual
defection (D). If one player chooses C and the other chooses
D, the latter obtains a temptation payoff (T ), and the former is
labeled a sucker (S). Without losing mathematical generality,
we can define a PD game space by presuming R = 1 and P =
0 as follows: (

R S

T P

)
=

(
1 −Dr

1 + Dg 0

)
, (1)

where Dg = T − R and Dr = P − S, i.e., simply set a
chicken-type dilemma and stag-hunt- (SH-) type dilemma,
respectively [11]. We limit the PD game class by assuming
0 � Dg � 1 and 0 � Dr � 1.

B. Agent’s updating strategy

The strategy of an agent, C or D, is refreshed after every
time step in the following way.

(1) The focal agent x selects a maximum payoff candidate
y as his or her pairwise opponent from among nPW neighbors
who are randomly selected from all the neighbors. The number
of neighbors in his or her neighbor set is k; thus, nPW � k.

(2) Based on the Fermi-PW function, the focal agent x may
or may not copy the strategy of the pairwise opponent y. This
decision is based on the difference in payoff between x and y,

px←y
copy = 1/

[
1 + exp

(
πx − πy

κ

)]
, (2)

where π and k mean payoff and noise coefficients, respectively.
Obviously, if nPW = k and κ → 0, (2) recovers IM.

However, if nPW = 1, (2) becomes the usual Fermi-PW. Thus,
in the series of simulations, we control the two parameters nPW

and κ to obtain the mixtures of deterministic and stochastic
strategies.

C. Simulation procedure

Each simulation was performed as follows. We set the
initial cooperation fraction Pc,initial. Initially, NPc,initial cooper-
ators and N (1 − Pc,initial) defectors were randomly distributed
among N agents allocated on different vertices of the network.
Several simulation time steps, or generations, were run until
the frequency of cooperation reached quasiequilibrium. If the
cooperation frequency continued to fluctuate, we used the
average frequency of cooperation over the last 250 generations
of a 10 000-generation run. We varied the dilemma strength to
cover PD: 0 � Dg � 1 and 0 � Dr � 1. The results reported
below were drawn from 100 realizations, i.e., each ensemble
average was formed from 100 independent simulations.

III. RESULTS AND DISCUSSION

Let us first confirm the holistic picture. Figure 1(a) shows
the average cooperation fraction (Pc) over the entire region
of the PD: 0 � Dg � 1 and 0 � Dr � 1 (hereafter, we use
AllPD to represent the average Pc over the entire PD area).
The figure shows AllPD in the 2D plane of the parameters
κ vs nPW for Pc,initial = 0.5. Panels 1(b) and 1(c) give the
information rates (bit) for each two-layer process in strategy
updating (see Sec. II); the information rate is defined below.
Again, the first process randomly picks nPW neighbors from
among k and selects the largest payoff agent from among those
to make him or her the pairwise partner against the focal agent.
Panel 1(b) shows the information rate for the first process that
can successfully select the most appropriate partner (indicating
the largest payoff agent, in general, however, selecting a
max-payoff neighbor does not necessarily lead to emerging
cooperation) compared with the situation in which the focal
player can only select one of the k agents randomly. Thus, for
nPW = 1, the information rate must be 0. In contrast, for nPW =
k = 8 since the nominee pool always contains the partner that
should be selected and the first process identifies him or her, the
information rate is log2(8) = 3 bit. Here, let us confirm what
information rate means in our model. That is, the information
entropy of certain information indicating its advantage as
compared with the situation with no information (inevitably
leading to a random selection). Again, in the case of nPW = 1,
there is no choice for the focal player in terms of her pairwise
opponent. Whereas, in the case of nPW = k, the focal player can
always find the real maximum payoff candidate. This is why
the information rates of former and latter cases must be 0 and 3
bits, respectively. Panel 1(c) shows the information rate of the
second process in the update strategy; the second process is the
pairwise comparison. For the sake of comparison, we assumed
two cases for the payoff difference �π between the focal
agent (x) and the pairwise partner selected by the first process
(y). As κ increases, the process becomes probabilistically
random because p

x←y
copy → 0.5. Thus, the information rate of

this process asymptotically approaches zero. It is natural that
the process has a larger information rate as �π becomes large.
For the changes in �π , the second process only varies in the
range of [0,1] bits, which is less than the information rate
of the first process. Note that, in terms of the information
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FIG. 1. (Color online) (a) Average cooperation fraction over the AllPD area on the nPW-κ plane for Pc,initial = 0.5. Information rate as a
function of (b) nPW and (c) κ . In (c) the red line is for �π = 〈k〉(R − P ) = 8, and the blue line is for �π = 1(R − P ) = 1. In (a), the model
recovers Fermi-PW if nPW = 1 and recovers IM if nPW = 8 and κ → 0 simultaneously.

rate, the first process of selecting a final candidate for the
second pairwise process is more meaningful than the second
process of just choosing either themselves (the focal agent,
i.e., keeping his or her own strategy in the process) or the
final candidate so as to select the really appropriate agent
from the set (i.e., one of all the neighbors plus the focal agent
him- or herself). This point might somehow explain why a
stochastically skewed selection of a pairwise opponent in the
strategy adaptation process realizes more significant network
reciprocity when a pairwise opponent, chosen as a reference
for comparison, is selected, not randomly from all neighbors,
but by a nonlinear proportional procedure applied to the payoff
of each neighbor so as to make the high-payoff neighbor be
selected as the pairwise opponent [12–14]. In fact, by carefully
observing Fig. 1(a), the average cooperation fraction AllPD is
noticed to be relatively sensitive to nPW but insensitive to k.
Thus, it appears that the player selected by the first process
(such as an elimination race or a first-round match) serves a
key role in enhancing network reciprocity. Contrariwise, the
second process, which is the pairwise comparison (let us say,
a final race), makes only a minor contribution. This is one of
the things that is not correctly recognized so far.

According to the paper of Shigaki et al. [6], it seems a good
idea to confirm what happens when a different Pc,initial is used.
Figure 2 shows the average Pc AllPD analogous to Fig. 1(a)
but for (a) Pc,initial = 0.25 and (b) Pc,initial = 0.75. Figures 1(a)
and 2 show that sensitivity to the parameter nPW is almost

monotonic, but there is an obvious peak at approximately
nPW = 7 irrespective of the value of Pc,initial. More precisely,
each peak in the three figures appears at approximately nPW =
7 and κ = 0.1.

Figure 3 shows Pc averaged over 100 realizations covering
the full range of PD games 0 � Dg � 1 and 0 � Dr � 1 with
fixed κ = 0.1. The upper, middle, and lower panels are for
Pc,initial = 0.25, 0.50, and 0.75, respectively. The left, center,
and right panels are for nPW = 1, 7, and 8 (=k), respectively.
Thus, panels 3(a), 3(d), and 3(g) are results using Fermi-PW
with κ = 0.1, whereas panels 3(c), 3(f), and 3(i) are almost the
same as the results using IM. Since Figs. 1 and 2 suggest that
network reciprocity is rapidly degraded by the decreasing nPW,
the results using Fermi-PW evidently look meager vis-à-vis
those using IM. As long as we use a homogeneous network,
such as the lattice, as the underlying network, IM leads to better
network reciprocity than Fermi-PW. A deterministic update
coupled with a homogeneous topology, such as the set of IM
plus a lattice, enables geometrically less skewed expansions of
C clusters in the EXP period that successfully survive the END
period [5–7]. This improves the final equilibrium cooperation
level over a stochastic update coupled with a homogeneous
network, such as Fermi-PW plus lattice.

Comparing the results for nPW = 7 with those for nPW =
8, the cooperation is noted to expand its extent in the region
close to the border with the SH game where Dr is relatively
much larger than Dg . In contrast, cooperation is weakened in
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FIG. 2. (Color online) Average cooperation fraction of the AllPD area on the nPW-κ plane for (a) Pc,initial = 0.25 and (b) Pc,initial = 0.75.

the region close to the border with the chicken game where
Dg is relatively much larger than Dr . Overall, the cases with
nPW = 7 show peaks in terms of average cooperation fraction
over the AllPD region as in Figs. 1 and 2. This finding might

contribute to the comparison of entirely deterministic and
slightly stochastic strategy update rules, although this peak
effect, i.e., the further enhanced network reciprocity, is not
so drastic compared with the entire deterministic case IM. In

FIG. 3. Contour maps for cooperation fraction Pc over the entire range of PD games 0 � Dg � 1 and 0 � Dr � 1. Upper [(a)–(c)], middle
[(d)–(f)], and lower [(g)–(i)] panels are for Pc,initial = 0.25,0.50, and 0.75, respectively. Left, center, and right panels are for nPW = 1, 7, and 8,
respectively. All nine cases are for κ = 0.1. All results are ensemble averages over 100 realizations.
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FIG. 4. Time evolutions for cooperation fraction Pc from 100 realizations with κ = 0.1 and Pc,initial = 0.75. (a) nPW = 8 in a chicken-type
dilemma with Dg = 0.5 and Dr = 0.1, (b) nPW = 7 in a chicken-type dilemma with Dg = 0.5 and Dr = 0.1, (c) nPW = 8 in a stag-hunt-type
dilemma with Dg = 0.2 and Dr = 0.8, and (d) nPW = 7 in a stag-hunt-type dilemma with Dg = 0.2 and Dr = 0.8.

particular, so long as the homogeneous network is assumed,
when a small amount of stochastic character is included in the
updating, which is realized by setting nPW = 7 in our model,
we obtain more network reciprocity than from the entirely
deterministic update rule IM. Heretofore, the IM rule has been
thought to be appropriate when coupled with a homogeneous
network. Our observation can be paraphrased, such as this:
Cooperation can be enhanced by adding a little noise to a
system that is otherwise entirely stipulated by deterministic
processes. This seems interesting from the statistical point of
view. In the following, we try to explain how this can happen.

Figure 4 shows time evolutions of the cooperation fraction
over 100 independent simulations with nPW = 8 and 7 and
two representative dilemma structures: chicken-type dominant
[panels 4(a) and 4(b)]with Dg = 0.5 and Dr = 0.1 and SH-type
dominant [panels 4(c) and 4(d)] with Dg = 0.2 and Dr = 0.8.
Panels 4(a) and 4(b) show that 100 realizations have almost the
same equilibrium cooperation fraction when the chicken-type
dilemma is dominant irrespective of nPW. Panel 4(c) shows

that the SH-type dilemma with nPW = 8 goes to a consistent
but very meager level of cooperation. In contrast, Panel 4(d)
with nPW = 7 realizes a fairly cooperative state, although each
of the 100 realizations goes to a different equilibrium.

Let NB be the number of agents who stand in the boundary
between C and D, NCD be the number of agents that change
from C to D by the strategy copy process, and NDC be the
number of agents that change from D to C by the strategy
copy process. Then, the fraction of agents who change from
cooperation to defection is

FCD=NCD/NB, (3)

the fraction that changes from defection to cooperation is

FDC = NDC/NB, (4)

and the fraction that changes either way is

F = (NCD + NDC)/NB. (5)
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FIG. 5. (Color online) Representative time evolutions of cooperation fraction (Pc, black line), changing strategy fraction among boundary
agents (F , gray bold line), shifting fraction from C to D (FCD , red line), and shifting fraction from D to C (FDC , blue line) with κ = 0.1 and
Pc,initial = 0.75. (a) nPW = 8 in a chicken-type dilemma with Dg = 0.5 and Dr = 0.1, (b) nPW = 7 in a chicken-type dilemma with Dg = 0.5
and Dr = 0.1, (c) nPW = 8 in a stag-hunt-type dilemma with Dg = 0.2 and Dr = 0.8, and (d) nPW = 7 in a stag-hunt-type dilemma with Dg =
0.2 and Dr = 0.8.

Figure 5 shows the representative time evolutions of these
three fractions plus that for the cooperation fraction Pc in the
same manner as in Fig. 4.

By comparing panels 5(c) and 5(d), we may be able to
deduce how a little stochastic behavior [nPW = 7 in panel 5(d)]
may foster more cooperation than a purely deterministic
approach [nPW = 8 in panel 5(c)]. By assuming a slightly
smaller number of neighbors [nPW = 7 in panel 5(d)] than the
full number [nPW = 8 = k in panel 5(c)], the defector who earns
the maximum payoff among the neighbors is possibly excluded
from the first process to select a pairwise opponent; this leads to
a smaller probability that the focal cooperator copies defection
from the max-payoff defector. This is meaningful during the
END process. More importantly, this particular event only
occurs when the SH-type dilemma dominates the chicken-type
dilemma. Summing up, in this case, a little stochastic character
in the process to select a pairwise opponent increases the
cooperation level by improving the END period.

Likewise, by comparing panels 5(a) and 5(b), we
can deduce how a little stochastic behavior can degrade

cooperation for nPW = 7 relative to that for nPW = 8. By
assuming a slightly smaller number of neighbors [nPW = 7 in
panel 5(b)] than the full number [nPW = 8 = k in panel 5(a)],
the cooperator who earns the maximum payoff among the
neighbors is possibly excluded from the first process to select
a pairwise opponent; this leads to a larger probability that the
focal cooperator copies defection from other neighbors rather
than maintaining cooperation through the influence from the
max-payoff cooperator. This is meaningful in the EXP process.
In fact, the gap between FDC and FCD after moving from the
END period into the EXP period for nPW = 7 is smaller than the
gap for nPW = 8; this causes lower cooperative equilibrium for
nPW = 7 than for nPW = 8. Summing up, when the chicken-type
dilemma dominates the SH-type dilemma, a little stochastic
character in the process to select a pairwise opponent reduces
the cooperation level by degrading the EXP period.

In the end, the coexistence of these two contrasting effects,
caused by injecting a little stochastic character into the
strategy updating process, produces the peaks observed in
Figs. 1(a), 2(a), and 2(b).
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IV. CONCLUSIONS

We established a holistic framework for strategy updating
that includes both IM and Fermi-PW as extreme cases; this
framework allows us to continuously vary updating rules
from entirely deterministic to entirely stochastic. By using
this framework, we explored how any stochastic character in
the updating process affects network reciprocity in PD games
played on a homogeneous network.

We found that network reciprocity is improved overall
when a little stochastic character is implemented so as to
limit the number of potential candidates to be nominated
as the pairwise opponent into the strategy updating process.
This improvement occurs because injecting a small stochastic
element, such as noise, into an entirely deterministic process
realized by IM coupled with a lattice allows some sort of
stochastic perturbation that increases the level of cooperation.
With this insight, the effects can be decomposed into two

contrasting elements; one is that a little stochastic flavor
improves cooperation when a SH-type dilemma dominates,
whereas a little stochastic flavor degrades cooperation when a
chicken-type dilemma dominates.

Our results might contribute to a holistic view on how a
small amount of stochastic character in a strategy updating
process influences evolutionary trails that divide into END
and EXP periods.
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