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We formulate the general approach based on the Lindblad equation to calculate the full counting statistics
of work and heat produced by driven quantum systems weakly coupled with a Markovian thermal bath. The
approach can be applied to a wide class of dissipative quantum systems driven by an arbitrary force protocol.
We show the validity of general fluctuation relations and consider several generic examples. The possibilities
of using calorimetric measurements to test the presence of coherence and entanglement in the open quantum
systems are discussed.

DOI: 10.1103/PhysRevE.90.022103 PACS number(s): 05.30.−d, 42.50.Lc, 03.65.Yz, 05.70.Ln

I. INTRODUCTION

Progress in experimental techniques has provided us with
the opportunity to study the dissipative dynamics of meso-
scopic and even quantum systems in which fluctuations play
a significant role [1–3]. Unlike for classical systems, the
statistics of work is still not well established in the quantum
regime. Much attention has been focused on derivations of the
quantum versions of fluctuation relations for open quantum
systems [4–10]. In particular, the fluctuation theorem was
derived for an arbitrary open quantum system in Ref. [5].
Despite being a powerful tool, such fluctuation theorems do not
provide detailed information about the statistics of quantum
fluctuations, which can be of great importance in driven quan-
tum systems. Indeed, in quantum optics the sub-Poissonian
statistics of photon counts indicates the nonclassical states
of an electromagnetic field [11]. Observed first in atomic
resonance fluorescence, they have since been seen in many
setups, including quantum dots, quantum wells, and quantum
point contacts [12].

Of particular interest is the recent experimental achieve-
ment of realizing an electrical circuit model of resonance
fluorescence in a single artificial atom [13]. In this setup, the
atom was represented by a superconducting qubit coupled to
a transmission line, which can be considered as an effective
thermal bath for an open quantum system [14]. In high contrast
to optical devices, an electrical circuit can have a temperature
comparable to qubit interlevel spacing [15], so that the work
statistics can be strongly modified by thermal fluctuations.

Recently, the statistics of finite-temperature work fluctua-
tions in a driven single qubit has been treated with the help of
a quantum jump method [16]. In this paper, we formulate an
alternative approach based on the generalized master equation
(GME), which can be applied to a wide class of open quantum
systems weakly coupled to the thermal bath. The applicability
of the suggested scheme relies on a quite general assumption
that the thermal bath is characterized by Markovian dynamics.
In this case, the open quantum system can be described by
the reduced density matrix (DM) that satisfies the Lindblad
equation, which is a GME with the Lindblad form of the
dissipative operator [17]. We derive the generating functions
that determine the full counting statistics of the work and

heat exchange between the quantum system, the thermal bath,
and the classical source, which implements an arbitrary drive
protocol. Previously, the full counting statistics of charge and
heat transfer has been investigated mostly in nonequilibrium
mesoscopic systems [6,18,19]. The present work is dedicated
to developing an effective general approach to calculate the
fluctuations of work done by the external classical source
and the heat exchanged between the quantum system and the
environment. We demonstrate the difference between the work
and heat statistics, which becomes especially important for the
small exchanged amounts of energy. Several generic examples
are considered.

The structure of the paper is as follows. In Sec. II, we
develop the general formalism of the Lindblad equation
to calculate the full counting statistics of work and heat
in driven quantum systems. We also demonstrate that the
approximations made in order to trace out the environment
variables maintain the validity of general fluctuation relations
for the quantum work. In Sec. III, the heat and work statistics in
a single qubit at the finite-temperature regime are considered.
In Sec. IV, we discuss an analytical approach to calculate the
long-time statistics of heat in the zero-temperature limit. We
apply this approach to several generic quantum systems, such
as a harmonic oscillator, a single qubit, and two coupled qubits
interacting with separate environments. Conclusions are given
in Sec. V.

II. FORMALISM AND GENERAL
FLUCTUATION RELATIONS

We consider a system+environment model in which the
system is driven and it dissipates energy into an environment,
as shown schematically in Fig. 1: Ĥ (t) = ĤS(t) + ĤSE + ĤE ,
where [ĤS(t),ĤE] = 0. We make a weak-coupling approxima-
tion and neglect the contribution of the interaction energy ĤSE

to the work done by the system. In this case, the work w done
by the external force is defined according to the two-point
projective measurement [19,20] of the energy ĤS + ĤE . The
full counting statistics of w is determined by the generating
function

Gw(u,t) = TreiuĤS (t)ρ̂(t,u), (1)
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FIG. 1. (Color online) Quantum system driven by an external
force performing the work w. The system interacts with an envi-
ronment (right) that is at equilibrium with inverse temperature β. The
interaction (middle) is described by an emission and an absorption of
energy from the environment. The part of the work transferred to the
environment and eventually converted to heat is Q.

which depends on the counting field u and measurement time
t . The DM ρ̂(t,u) is determined by the modified evolution
operator

ρ̂(t,u) ≡ Ûu/2(t,0)ρ̂(t = 0,u)Û †
−u/2(t,0),

Ûu(t,0) ≡ eiuĤE Û (t,0)e−iuĤE (2)

and the initial condition ρ̂(t = 0,u) = e−iuĤS (0)ρ̂0, where ρ̂0 is
the DM of the system at the moment t = 0 when we start to
count the work. By writing (2), we assume that in the initial
state the DM is diagonal in the basis of environment eigenstates
[ĤE,ρ̂0] = 0.

The work w should be distinguished from the heat trans-
ferred to the thermal bath, Q, that has a statistics given by the
generating function [4,6],

GQ(u,t) = Tr ρ̂(t,u). (3)

The DM dynamics is also given by Eqs. (2) but with a different
initial state ρ̂(t = 0,u) = ρ̂0. In general, the work and heat
statistics can be drastically different.

Let us take a simple form of the interaction term [21] ĤSE =
Ŝ†R̂ + c.c. and use the standard Born-Markov approximation
assuming that the dynamics of the environment variable R̂ is
much faster than that of the system variable Ŝ. In this case, it
is possible to trace out the R̂ variables to obtain the reduced
DM of the quantum system ˆ̃ρ = TrRρ̂, which now determines
the work generating functions (1) and (3). Below we omit the
tilde implying that the DM is a reduced one. The reduced
DM satisfies a Lindblad equation that depends on the system
variables only [6],

˙̂ρ = Ǎu[ρ̂], (4)

where Ǎu[ρ̂] = −i[ĤS,ρ̂] + Ľu[ρ̂] is a Liouvillian superop-
erator and Ľu[ρ̂] is a time-independent Lindblad dissipative
superoperator that describes the interaction of the system with
an environment [22],

Ľu[ρ̂] =
∑

j

�−eiuνj Ŝj ρ̂Ŝ
†
j + �+e−iuνj Ŝ

†
j ρ̂Ŝj

−�−{Ŝ†
j Ŝj ,ρ̂} − �+{Ŝj Ŝ

†
j ,ρ̂}. (5)

Here Ŝj (Ŝ†
j ) are lowering (raising) operators corresponding

to the interlevel spacing νj , {,} is an anticommutator, and
emission and absorption rates satisfy the detailed balance

condition �+ = e−βνj �−. By writing (5), we assume that the
driving term is small enough to neglect the perturbation of
level spacings νj . In the opposite case, the suggested approach
can be modified to express the dissipative operator in the
Floquet state representation [23]. Such an approach allows us
to describe Landau-Zehner processes in the dissipative systems
[24], but this issue is beyond the scope of the present paper.

The general fluctuation relations can be obtained directly
from Eqs. (1), (4), and (5). Let us consider a detailed Crooks
fluctuation relation [10],

P (w)/P tr(−w) = eβw, (6)

which relates the probabilities of work w and −w done
during forward and time-reversed driving protocols. The work
distribution in time-reversed process is determined by the
generating function introduced analogously to Eq. (1),

Gtr
w(u,t) = Tr eiuĤS (0)ρ̂ tr(t,u). (7)

Indeed, the evolution of DM ρ̂ tr(t1,u) when t1 runs from t to
0 is determined by Eqs. (4) and (5), where Ǎtr

u[ρ̂] = i[ĤS,ρ̂] +
Ľu[ρ̂]. The initial condition is ρ̂ tr(t1 = t,u) = e−iuĤS (t)ρ̂0(t).
The Lindblad superoperator in Eq. (4) is the same for the
forward and time-reversed protocols. To satisfy (6), it is
enough to demonstrate the generic symmetry relation

Gw(u,t) = Gtr
w(iβ − u,t), (8)

which holds provided that ĤS(0) = ĤS(t) and the initial
state for both the forward and time-reversed protocols is the
equilibrium one, ρ̂0(t) = ρ̂0(0) = e−βĤS (0)/Tr e−βĤS (0). Rela-
tion (8) follows directly from Eq. (5) since due to the detailed
balance and permutation invariance of the trace, the Lindblad
superoperator (5) satisfies

Tr ρ̂1Ľiβ−u[ρ̂2] = Tr Ľu[ρ̂1]ρ̂2. (9)

Taking into account that Tr ρ̂1[HS,ρ2] = −Tr [HS,ρ1]ρ̂2, we
get the relation for the Liouvillians of forward- and time-
reversed evolutions,

Tr ρ̂1Ǎu[ρ̂2] = Tr Ǎtr
iβ−u[ρ̂1]ρ̂2 (10)

and consequently

Tr ρ̂1Te
∫ t

0 Au(t1)dt1 [ρ̂2] = Tr T̃e
∫ t

0 Atr
iβ−u(t1)dt1 [ρ̂1]ρ̂2, (11)

where T and T̃ are forward and time-reversed orderings.
Using the formal solutions of Eq. (4), the generating

functions can be written as follows:

Gw(u,t) = Tr eiuĤS (t)Te
∫ t

0 Au(t1)dt1e−iuĤS (0)ρ̂0(0), (12)

Gtr
w(u,t) = Tr eiuĤS (0)T̃e

∫ t

0 Atr
u (t1)dt1e−iuĤS (t)ρ̂0(t). (13)

Let us assume that both the forward and time-reversed
evolutions start from equilibrium, and moreover HS(0) =
HS(t) = HS0, so that ρ̂0(τ ) = e−βĤS0/Tr e−βĤS0 for τ = 0,t .
Then the generic symmetry relation between generating
functions (8) immediately follows from Eqs. (12) and (13)
and relation (11).

Since the heat Q can in practice be measured either
calorimetrically [3] or by photon detection, statistics of both
w and Q are in general of interest. In certain limits, the
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two statistics approach each other, for example when the
energy transfer to the environment is large, or in certain low-
temperature measurement protocols. As Q is not generically
associated with fluctuation relations such as Eqs. (6), they
may fail to apply even if the statistics otherwise approach
each other (see Appendix A for discussion). In general, it has
been shown that the average of the exponentiated heat depends
on the details of the driving protocol [25]. In Appendix B,
we calculate this quantity explicitly for a single-qubit case
and demonstrate that it depends on the time of heat statistics
measurement.

III. STATISTICS OF WORK AND HEAT
IN A SINGLE QUBIT

Applying the general approach formulated above, we study
energy fluctuations in a driven two-level system described by
the Hamiltonian

HS(t) = ν

2
σ̂z + � cos(ωdt)σ̂x, (14)

where ν is a qubit level spacing and � is a pumping intensity.
The dissipation is described by the Lindblad operator (5)
with Ŝ = (σ̂x − iσ̂y)/2. To calculate the statistics of energy
fluctuations, we find the generating functions (1) and (3) by
solving GME (4) numerically assuming that the system was in
thermal equilibrium at t = 0.

As noted in Ref. [16], the ratio of the first two moments of
work satisfies the linear relation

〈
w2〉/〈w〉 = ν coth(ν/2T ) (15)

in the 〈w〉 → 0 limit realized for small measuring times.
This relation follows from (6) if one assumes that only
the probabilities P (w = −ν,0,ν) have considerable values.
At larger times, significant deviations from Eq. (15) were
found [16]. With our approach, we are able to consider
the evolution of work statistics at longer times in order to
reveal the physical origin of such behavior. We choose the
Hamiltonian parameters (14) as � = 0.05ν, �− = 0.007ν,
ωd = ν, and the temperature β = 2/ν. Starting from the
equilibrium state at t = 0, we plot in Fig. 2(a) the time
dependence of the ratios Fw = tanh(βν/2)〈
w2〉/(ν〈w〉) and
FQ = tanh(βν/2)〈
Q2〉/(ν〈Q〉). For comparison, we plot by
a solid red line the ground-state population of the qubit
ng(t), which oscillates with a Rabi frequency �. The time
dependence of Fw(t) follows the Rabi oscillations of ng(t). On
the other hand, the same dependence for the heat statistics
FQ(t) has phase-shifted oscillations with respect to ng(t).
Moreover, in contrast to the work statistics, we obtain that
the ratio FQ(t) diverges at t → 0 due to the fluctuating energy
exchange between the system and the thermal bath, which
exists even in the absence of the drive. In this case, the
dispersion 〈
Q2〉 stays finite while 〈Q〉 = 0.

More generally, we obtain that the work distribution, e.g.,
shown in Fig. 2(b), obeys the Jarzynski fluctuation relation
[26] 〈e−βw〉 = 1 and a particular form of the Crooks fluctua-
tion relation P (w)/P (−w) = eβw, where P (−w) = P tr(−w)
since the forward and inverse driving protocols for Eq. (2)
coincide. On the other hand, the heat distribution shown in
Fig. 2(c) does not obey the fluctuation relations and hence the
linear relation (15). At elevated temperatures β � 1/ν, the

FIG. 2. (Color online) (a) The ratio of the two lowest moments
of work Fw(t) and heat FQ(t) as functions of the measuring
time normalized by the period T = 2π/ν. For comparison, the
solid red line shows the Rabi oscillations of the ground-state
population. All dependencies are averaged over the period T .
The temperature is β = 2/ν. (b),(c) Distributions of work w and
heat Q at the time moment t = 5T . The calculated probabilities
are Pw(−2ν : 3ν) = [0.0031,0.0589,0.3305,0.4351,0.1693,0.0030]
and PQ(−2ν : 2ν) = [0.0017,0.0609,0.7676,0.1593,0.0106]. With
numerical accuracy determined by the size of the counting field grid,
the work distribution satisfies the fluctuation relations of Crooks and
Jarzynski. Panel (c) demonstrates a lack of the fluctuation relations
for the heat.

Rabi oscillations of both the ground-state population and the
moment ratios Fw,Q(t) are strongly suppressed. In this limit,
we obtain Fw(t) = 1 at arbitrary times as well as FQ(t) = 1 at
t � �−1

− ,�−1.

IV. LONG-TIME STATISTICS OF HEAT
IN DRIVEN QUANTUM SYSTEMS

Our approach based on the Lindblad equation allows for
analytical calculation of the long-term heat statistics in the
quantum limit βν � 1. In such a regime, we completely
neglect the absorption events, assuming �+ = 0 and �− = �

in (5), so that

Ľu[ρ̂] = �eiuνŜρ̂Ŝ† − �{Ŝ†Ŝ,ρ̂}. (16)

For the single interlevel spacing ν, the heat transfer to the
environment is proportional to the number of emitted photons
in close analogy with quantum optical systems. In this sense,
the suggested approach can be employed to calculate the
steady-state statistics of photon counts without solving the
nonstationary ME, which in general is rather complicated even
in the simplest case of a single qubit (two-level atom) [11].
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In the steady-state regime, the statistics of work and heat
coincide. In the long-time limit, the amount of heat transferred
to the environment is much larger than the internal energy of
the quantum system. The latter thus can be neglected from
Eq. (1) and therefore we get that Gw = GQ.

In the steady state, we calculate the moments of heat
distribution measured over a large time interval t � �−1,�−1.
In such a limit, the generating function (3) is determined by
the Liouvillian eigenvalue λ(u) having the largest real part
because an asymptotic solution of the GME at t → ∞ has the
form ρ(u,t) ∼ etλ(u). Hence the Taylor expansion

λ(u) = −iλ1u − λ2u
2/2 (17)

determines the leading-order Gaussian distribution of Q with
the moments given by 〈Q〉 = λ1t and 〈(
Q)2〉 = λ2t . To find
the coefficients λ1,2 in the general case, we use an iterative
algorithm described in Sec. IV B. We start, however, by
calculating the steady-state heat fluctuations in a periodically
driven harmonic oscillator. Recently, the stochastic behavior of
a damped harmonic oscillator was studied with the help of the
quantum trajectories [27]. Here we find exactly the eigenvalue
λ(u) and hence the full counting heat statistics.

A. Harmonic oscillator

Let us consider the following Hamiltonian:

ĤS = νâ†â + �(â†e−iωd t + âeiωd t ), (18)

where â†,â are creation and annihilation operators and � is the
drive force amplitude. The jump operators are Ŝ,Ŝ† = â,â†. In
this case, the ME has an exact steady-state solution ρ̂ho(t,u) =
eλ(u)t D̂†(α)|0〉〈0|D̂(α), where λ(u) = �|α|2(eiuν − 1) and
D̂(α) = exp(αâ† − α∗â) is a displacement transform with
α = 2i�e−iωd t /[� + 2i(ν − ωd )]. Using ρ̂ho(t,u) to calculate
the generating function GQ(u,t), we obtain a Poissonian
distribution P (n) = xne−x/n! of quantized heat Q = nν,
where x = �|α|2t .

The obtained result is consistent with the well-known one
that a classical current source emits a coherent state of cavity
modes that has a Poissonian distribution of photons [28]. In this
model case, each event of the heat transfer to the environment
occurs at completely random times without any correlation
with the previous ones. The linear-response relation (15) is
satisfied exactly for arbitrary values of dissipation � and
pumping �.

B. Single qubit

A generic example that demonstrates significant deviations
from linear-response relation (15) is a periodically driven
single qubit (two-level atom) where quantum correlations
between subsequent photon emission events become im-
portant [11]. The Hamiltonian of such a system (14) can
be simplified in the rotating-wave approximation (RWA)
to [21] ĤS = (�σ̂x + δσ̂z)/2, where we introduce the de-
tuning from resonance δ = ν − ωd and drive intensity �.
The dissipation is described by the Lindblad operator (16)
with Ŝ = (σ̂x − iσ̂y)/2.

The analytical expression of the full counting work statistics
in a single qubit is not known. It is possible, however, to

develop a general iterative approach to calculate moments of
work distribution measured over a large time interval, t �
�−1,�−1. As we discuss above, in such a limit the statistics
is determined by the Taylor expansion (17) of the Liouvillian
eigenvalue λ(u) having the largest real part. Note that the
zeroth-order term in u is absent in (17) due to the existence of
a stationary solution at u = 0 satisfying Ǎ0[ρ̂st] = 0. To find
Taylor coefficient λ1,2, let us consider the expansion of the
Liouvillian matrix Ǎu up to the second-order term Ǎu[ρ̂] =
Ǎ0[ρ̂] + �[iuν − (uν)2/2]Ŝρ̂Ŝ† and search for the solution of
the eigenvalue problem,

Ǎu[ρ̂] = λ(u)ρ̂, (19)

in the form of an expansion ρ̂ = ρ̂st + ρ̂(1)u + ρ̂(2)u2. At first,
we retain the terms linear in u. We note that the transposed
Liouvillian has a one-dimensional kernel ǍT

0 [ρ̂st
T ] = 0, where

ρ̂st
T = σ̂0 is just an identity matrix. This property holds in

general for trace-preserving superoperators. We take an inner
product with ρ̂st

T of both sides in Eq. (19) to obtain the
solvability condition, which gives the value of λ1. Substituting
the obtained λ1 into Eq. (19) again, we find the correction to
the DM ρ̂(1). Next, to determine λ2 we include the terms ∼ u2

and repeat the above procedure using the known values of the
first-order corrections.

The heat transfer to the environment occurs via the emission
of monochromatic photons Q = nν, where n is an integer.
Therefore, the heat statistics can be characterized by the
Fano factor of photon counts, Fph = σ 2

Q/(ν〈Q〉) = λ2/(νλ1). It
determines the regimes of sub-Poissonian Fph < 1 and super-
Poissonian Fph > 1 quantum fluctuations. From the iteration
scheme suggested above to calculate λ1,2, we get the Fano
factor for a single qubit, Fph = 1 − 2�2(3�2 − 4δ2)/(�2 +
2�2 + 4δ2)2, which corresponds to the sub-Poissonian regime
for small detuning, δ <

√
3�/2, and otherwise to the super-

Poissonian one. This result agrees with the statistics of photon
counts in the resonance fluorescence of a two-level atom
where the nonclassical sub-Poissonian statistics originates
from photon antibunching [11,29,30].

C. Super-Poissonian heat fluctuations and entanglement
of two coupled qubits

As discussed above, the dependencies shown in Fig. 2
clearly demonstrate that the peculiarities of heat and work
statistics can be considered as a signature of the finite
coherence in the open quantum system. To obtain more
evidence of that, we proceed to investigate whether such a
purely quantum property as the entanglement between two
coupled qubits can be tested by measuring the heat produced
by the quantum system.

It is well known that the entanglement between qubits
can be induced by dissipative processes [31,32]. The pho-
ton statistics in this system with incoherent pumping was
considered in Ref. [33]. The conclusion in that case is that
the photon statistics is always sub-Poissonian regardless of
entanglement. Here we demonstrate that for the case of
coherent pumping, the statistics of heat transferred to the
environment has distinctive features in a subset of the possible
entangled states. In general, however, we note that there is no
exact correspondence between the statistics of emitted noise
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and the presence of steady-state entanglement in the quantum
system. Even a monochromatically driven single qubit can
emit both super- and sub-Poissonian distribution of photons
[29]. Indeed, two-time correlation functions, such as those
for the work or heat statistics, are not solely a property of
the steady-state density matrix, but are determined also by the
transient dynamics of the quantum system between subsequent
emission events. However, when consideration is restricted to
Hamiltonians of a particular form, such as the setup discussed
below, correspondence can arise.

We consider the Hamiltonian of two coupled identical
two-level systems, which can model the system of inductively
coupled phase qubits [34]. For simplicity, we focus on the
quantum fluctuations of Q in the zero-temperature limit,
neglecting the absorption events in (5) completely. Hence this
system can be considered as a model of coupled atoms. Its
RWA Hamiltonian in the case of resonant driving has the form

ĤS = 1

2

∑
j=1,2

�σ̂ (j )
x + ωxx

(
σ̂ (1)

x σ̂ (2)
x + σ̂ (1)

y σ̂ (2)
y

)
, (20)

where ωxx is the qubit coupling and � is the pumping intensity.
The parameters of the qubits are assumed to be identical. The
dissipation is described by the ME (4) with a Lindblad operator
(5) with Ŝj = (σ̂ (j )

x − iσ̂
(j )
y )/2. This form of the dissipation

operator corresponds to the qubits interacting with separate
thermal baths. The steady-state entanglement in this system
generated by the interaction with a dissipative environment
was discussed in Ref. [31].

To describe the statistics of work done by each qubit sepa-
rately, we introduce the generating function, which depends on
two quantum fields GQ = GQ(u1,u2,t). By setting u1 = u2,
we obtain the statistics in the double channel, which does not
distinguish between the heat produced by each of the qubits.
The single-channel generating function, e.g., for the first qubit,
is given by GQ1(u1,t) = GQ(u1,0,t).

For further calculations, we use the stationary solution of
the GME given by the kernel of the Liouvillian superoperator
Ǎ0[ρ̂st] = 0 obtained in Ref. [31]. To find the moments of
work, we calculate the coefficients in the expansion of the
eigenvalue (19),

λ(u1,u2) = − iλ1(u1 + u2) − λ2

2

(
u2

1 + u2
2

)− λ12u1u2. (21)

By using the same iterative algorithm as for the single qubit,
we find an analytical expression for the Fano factor, Fph =
σ 2

Q/(ν〈Q〉), which is too long to be written here. In Fig. 3(a),
we plot Fph as a function of parameters ωxx,� at fixed � = 1.
There is a region on this plane where Fph > 1, indicating super-
Poissonian statistics. The possibility of a super-Poissonian
regime is explained by the positive correlation between works
extracted from two qubits (see below). It is realized for a
strong coupling between the qubits and small dissipation
ωxx � � � � and describes the bunching of emitted photons,
which is in contrast to the antibunching in a single-qubit
resonant fluorescence.

On a qualitative level, the photon bunching and super-
Poissonian statistics result from the steady-state entanglement
between the coupled qubits [31]. Let us transform the steady-
state DM to the energy basis of the effective Hamiltonian

FIG. 3. (Color online) Statistics of heat produced by two coupled
qubits. (a) Fano factor in a double channel Fph = σ 2

Q/(ν〈Q〉) as a
function of interaction strength ωxx and pumping �. (b) Second-
order correlation functions—the probabilities of sequential photon
emission by the two-qubit system compared to the effective three-
level approximation model (dashed curves). The parameters are
� = 5, � = 1, and ωxx = 10 (solid curve), ωxx = 40 (dotted curve).
(c) Correlation function C12/(ν2�t) of heat produced by each of the
qubits separately. (d) Fano factor of heat released by one of the qubits
Fph1 = 2σ 2

Q1/(ν〈Q〉). The white solid curves show the boundary
between the steady-state entangled and nonentangled regimes. The
relaxation rate is � = 1. The super-Poissonian regimes both in the
double and the single channels correspond to finite entanglement.
The dashed black line [(b) and (c)] shows the resonance condition
� = √

2ωxx .

(20). For ωxx � �, the energies are given by ε1 = 0, ε2,3 =
[ωxx ∓ √

4�2 + ω2
xx]/2, and ε4 = −ωxx . In the regime ωxx �

�, the basis is formed by the Bell states. In particular, �± =
|0〉1|0〉2 ± |1〉1|1〉2 corresponds to the first two levels separated
by the smallest Rabi frequency, �R = ε1 − ε2 ≈ �2/ωxx . In
the DM, we neglect the small terms proportional to �/ωxx and
get the following nonzero elements:

ρ11 = ρ22 = 1/2 − �2
R

/
4X,

ρ12 = ρ∗
21 = [�2 − i��R]/2X, (22)

where X = �2
R + �2 and ρ33 = ρ44 = 1/2 − ρ11. Hence at

� � �R the most populated are the Bell states �±.
In this case, the emission of a photon by one of the

qubits can be considered as a projective measurement [16]
that drives the other qubit to the excited state and hence
triggers an emission of the next photon once this qubit relaxes.
In Fig. 3(a), we plot with a white solid line the boundary
ωxx = �2/2� that separates the region with finite steady-state
entanglement, ωxx > �2/2�, from that of nonentangled states
[31]. The super-Poisson statistics of work is realized only
for the entangled states and can be considered as a possible
experimental signature of entanglement.
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To obtain a quantitative description of the photon bunching,
we consider the second-order correlation function of photon
emission intensity [11] g(2)(t) plotted in Fig. 3(d) for the
parameters �/� = 5, ωxx/� = 10, (blue dotted curve) and
ωxx/� = 40 (green solid curve). It demonstrates the photon
bunching g(2)(0) � g(2)(t) at large values of ωxx � �� �.
The correlator has rapid oscillations with a frequency deter-
mined by the coupling ωxx superimposed over the smooth
behavior.

To get more insight into the details of the curves shown
in Fig. 3(b), we obtain an analytical description of the
correlations averaged over the fast oscillations neglecting the
small elements of the DM proportional to �/ωxx and �/ωxx .
This approximation results in an effective three-level ansatz
for the DM with nonzero elements ρ̃ij = ρij for i,j = 1,2
and ρ̃33 = ρ33 + ρ44. The steady state is determined by (22).
The resulting ME has a Hamiltonian with nonzero matrix
elements H11 = −�R/2 and H22 = �R/2. The elements
H33,H44 drop from the ME for the above ansatz of the
DM. The Lindblad superoperator (16) has Ŝ = Ŝ3, which
is a 3×3 matrix with nonzero elements (Ŝ3)13 = (Ŝ3)23 =
i
√

�/2 and (Ŝ3)31 = −(Ŝ3)32 = i
√

�. The second-order corre-
lator 〈g(2)〉(t) = 〈Ŝ†

3Ŝ
†
3(t)Ŝ3(t)Ŝ3〉/〈Ŝ†

3Ŝ3〉2 gives the correlator
g(2)(t) of the full system averaged over the period of fast
oscillations ω−1

xx . Most importantly, the operator Ŝ3 allows for
the two simultaneous quantum jumps from the steady state
by (22) since Ŝ2

3 ρ̂stŜ
†2
3 �= 0. In this model, the two photons

can be emitted simultaneously, which gives the finite value of
g(2)(t = 0).

It is possible to find 〈g(2)〉(t) analytically by solving the ME
with u = 0 and the initial state after the first quantum jump
given by Ŝ3ρ̂

stŜ
†
3. Indeed, from the three-level ME we see that

the equations for the components ρ̃11 and ρ̃22 coincide and thus
we can reduce the problem to the second-order ME. It can be
solved with arbitrary initial conditions, yielding the correlator

〈g(2)〉(t) = 1 + e−�t

[
(x2 − 1)

2
cos(�Rt) − x sin(�Rt)

]
, (23)

where we introduce x = �/�R . The function 〈g(2)〉(t) is
plotted in Fig. 3(b) by dashed lines. It has a damped oscillating
behavior determined by the competition of an effective Rabi
frequency �R and the damping �. In high contrast to the
single-qubit case, the two-point correlation function can have
a maximum at t = 0 at large values of ωxx , which corresponds
to the bunching of photons produced by the entangled states
of the two-qubit system.

Next we use the expansion (21) to find the correlation
function of heat produced by each of the qubits,

C12 = 〈Q1Q2〉 − 〈Q1〉〈Q2〉 = λ12t. (24)

In Fig. 3(c), one can see two peaks of C12 as a func-
tion of parameters �,ωxx . One of them corresponds to
nonzero entanglement between the qubits and produces
super-Poisson statistics of work. The second peak is located
at ωxx = �/

√
2 as indicated by the dotted black line in

Fig. 3(c). For such parameters, the spectrum of the effective
RWA Hamiltonian (20) is degenerate since the two levels
coincide, ε2 = ε4. The subspace of eigenstates for this level
is given by ψ24 = c2ψ2 + c4ψ4, where c2,4 are arbitrary

coefficients, and the orthogonal basis functions are ψ2 =
(
√

2,1,1,
√

2)/
√

6 and ψ4 = (0, − 1,1,0)/
√

2. To understand
the nature of positive correlation C12, let us consider the case
of small relaxation �,ωxx � � when the DM is diagonal,
ρ̂ = (|11〉〈11| + |00〉〈00| + |01〉〈01| + |00〉〈00|) /4. After the
photon emission, for example by the first qubit, the DM is
projected to ρ̂ = Ŝ1ρ̂0Ŝ

†
1 = (|01〉〈01| + |00〉〈00|)/4 because

the first qubit is bound to be in the ground state. Taking the
time average of the DM, we find that during the subsequent
evolution, the first term produces a contribution |01〉〈01| →
|ψ24〉〈ψ24| with c2 = 1/

√
6 and c4 = 1/

√
2 so that in this case

the amplitude of ψ24 is asymmetric. At the same time, the
second term |00〉〈00| evolves into a symmetric time-averaged
population of the qubits. That is, the probability for the second
qubit to be in the excited state and hence to emit a photon
is larger than that for the first one. Thus the peak of C12 is
accompanied by the drop of the single-channel Fano factor as
shown in Fig. 3(d), so that the statistics of work in the double
channel is sub-Poissonian, Fph < 1 [Fig. 3(a)].

V. CONCLUSION

To conclude, we have developed a formalism of the Lind-
blad equation to calculate the statistics of energy fluctuations
in dissipative quantum systems driven by an external force. We
introduced generating functions of work and heat exchanged
between the system, the classical driving source, and the
thermal bath, which can be found by solving the Lindblad
equation. The general fluctuation relations are shown to be
valid for the resulting work statistics. Applying this formalism
to the generic examples of a harmonic oscillator, a single qubit,
and two coupled qubits, we have shown that calorimetric
measurements of heat statistics can indicate the presence of
finite coherence and entanglement in open quantum systems.

Note added in proof. Recent work in Ref. [35] discusses a
related approach for work statistics in strongly driven quantum
systems.
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APPENDIX A: MEASURING WORK STATISTICS
AT ZERO TEMPERATURE

At zero temperature, it is possible to determine the
long-time statistics Gw(u,t → ∞) of the total work w by
a measurement of the statistics GQ(u,t → ∞) of the heat
dissipated to the environment Q. The measurement scheme is
to drive the system only during the time interval 0 < t < t1,
after which the system Hamiltonian is made constant and made
to coincide with the initial state, HS(t) = HS(0) for t > t1. In
this case, the internal energy stored in the system is eventually
emitted to the zero-temperature environment [16], and one
finds Gw(u,t → ∞) = GQ(u,t → ∞).
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This correspondence can be proven directly using our
master equation formulation. We start with the observation
that for a given constant u, we have at time t > t1,

lim
β→∞

Ǎu(t){P0} = 0, (A1)

for the ground-state density matrix P0 = |0〉〈0|. Indeed, ŜP0 =
P0Ŝ

† = 0. Therefore, P0 is a steady state of the u-dependent
time evolution for β → ∞, and we find for β,t → ∞,

T e
∫ t

0 dt ′Ǎu(t ′){P0} → f (u,t)P0, (A2)

where f (u,t) is a scalar function. The initial state for Gw

is ρ0 = e−(iu+β)HS (0)/ Tr[e−βHS (0)] → e−iuε0P0 for β → ∞,
where ε0 is a ground-state energy. It then immediately follows
that for β,t → ∞,

Gw(u,t) → e−iuε0 Tr[eiuHS (0)f (u,t)P0] = f (u,t). (A3)

On the other hand, we have for the dissipated work, for β,t →
∞,

GQ(u,t) = Tr T e
∫ t

0 dt ′Ǎu(t ′){P0} → f (u,t). (A4)

Therefore, in this measurement scheme we find Gw(u,t →
∞) = GQ(u,t → ∞), which is also the result one would
expect based on physical arguments.

Note that above, u is taken as a β-independent constant
while taking the limit β → ∞. Therefore, although we find
that G converges pointwise to Gw, this does not imply that
the dissipated work satisfies the Jarzynski equality. Indeed,
while Gw(iβ,t) = 1, the result above does not imply that
limt→∞,β→∞ GQ(iβ,t) = 1.

APPENDIX B: LACK OF FLUCTUATION
RELATIONS FOR Q

The lack of universal fluctuation relations for the heat Q can
be easily demonstrated based on the master equation approach.
This can be seen in the model of a nondriven qubit coupled to
an environment. The corresponding Liouvillian is

Ǎu(t){ρ} = −i

[
ν

2
σz,ρ

]
+ �

(
eiuν ŜρŜ† − 1

2
{Ŝ†Ŝ,ρ}

)

+�e−βν

(
e−iuν Ŝ†ρŜ − 1

2
{ŜŜ†,ρ}

)
. (B1)

Solving the time dependence of the u-dependent master
equation, we find the generating function for the dissipated
work,

GQ(u,t) = cos(uν) + cosh(βν)

1 + cosh(βν)

−e−(e−βν+1)�t e
(β−iu)ν(eiuν − 1)2

(eβν + 1)2
. (B2)

This implies that the heat only obtains values Q = ±ν, 0, as
can be expected based on the limited internal energy of the
qubit.

The above implies that the expectation value 〈e−βQ(t)〉 =
GQ(iβ,t) is time-dependent. Because this occurs at equilib-
rium with all Hamiltonians time-independent, there can be
no fluctuation relation of the form 〈e−βQ(t)〉 = e−β
F , where

F is a difference between two equilibrium free energies.
This result is in agreement with the general nonequilibrium
equality for the heat derived in Ref. [25].

Moreover, Eq. (B2) serves as a simple example for the above
discussion of the zero-temperature limit. Indeed, for given
fixed u we have limβ,t→∞ GQ(u,t) = 1 = Gw(u,t). However,
at the same time, limβ,t→∞ GQ(iβ,t) = 2.
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