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Stability of toroidal droplets inside yield stress materials
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We study the stability of toroidal droplets inside a yield stress material. Similar to toroidal droplets in a viscous
liquid, the slenderness of the torus controls whether it breaks into spherical droplets or grows thicker towards
its center to coalesce onto itself and form a single spherical droplet. However, unlike tori generated in a viscous
liquid, the elasticity of the outer medium can prevent either or both of these instabilities; this depends on the
slenderness of the torus. Interestingly, we find that the value of the tube radius needed to prevent breakup is
always larger than the value of the radius of the handle to prevent growth. This reflects the different deformations
experienced by the yield stress material in either process. A simple model balancing the surface tension stress,
which drives the evolution of the torus, and the yield stress, which favors its stability, accounts for all of our
observations.
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Bubbles and droplets are ubiquitous in nature. Surface
tension forces them to conform to a spherical geometry to
minimize their surface area for a given volume [1]. As a result,
droplets and bubbles with nonminimal surface shape, such as
a torus, are not stable and always evolve, driven by surface
tension, to a spherical shape. In the case of toroidal droplets,
this evolution can happen in two ways [2]. On the one hand, the
torus can break via Rayleigh-Plateau instabilities [3,4] to form
a number of spherical droplets [2,5–7]; this number depends
on the viscosity contrast between the toroidal and surrounding
liquids. On the other hand, the handle of the torus can shrink
towards the center while concomitantly the tube radius grows
to form a single spherical droplet [2,8]; this instability is
intrinsic to toroidal topologies and is never seen for the case
of cylindrical jets. Interestingly, these two markedly different
instabilities are coupled and toroidal droplets both exhibit
shrinking and breaking as they evolve. It is the ratio between
the inner radius, R, and the tube radius, a, of the droplet
[see Fig. 1(a)], what determines its ultimate fate. For R � a,
shrinking dominates, while for R � a, breaking dominates. It
is when R ≈ a that this coupling is most appreciable [2].

Stabilization of toroidal droplets requires an opposing force
to overcome both of these surface-tension-driven instabilities.
Achieving this would certainly have consequences for applica-
tions such as three-dimensional (3D) printing, as one would be
able to generate stable liquid structures with complex shapes.
It would also be significant from a fundamental point of view,
as it would allow the generation of nonminimal surface shapes
that could be used, for example, to address how the topology
of the bounding space affects the organization of an ordered
material [9]. Recently, this stabilization has been achieved
using a yield stress material as continuous phase [10,11]; these
are materials that are solids for applied stresses below a critical
stress, and that are liquids for stresses exceeding this critical
value. Toroidal droplets, as well as droplets with an additional
number of handles, were succesfully stabilized in this way.
However, up to now, there is no available description of how
toroidal droplets behave in yield stress materials, hampering
progress towards understanding how this stabilization works
and how it can be exploited.

In this Rapid Communication, we provide the rationale to
understand and exploit this type of stabilization. We show that

similar to toroidal droplets in a viscous liquid, a toroidal droplet
in a yield stress material either breaks or shrinks. However, in
this case, these instabilities are decoupled, even for R ≈ a.
Additionally, there is a threshold tube and inner radii above
which the torus is stable. These critical values both increase
with increasing yield stress. However, we find that the tube
radius needed to prevent the breakup of the torus is always
larger than the value of the inner radius needed to prevent
shrinking of the torus, reflecting the different deformations
experienced by the yield stress material in either situation.
We rationalize the results with a simple model relying on the
balance between the surface tension stress, which drives the
evolution of the torus, and the yield stress, which favors its
stability.

The yield stress material consists of polyacrylic acid
microgels (Carbopol ETD 2020), at a concentration c between
0.1 and 1 wt %, mixed with 30 wt % ethanol, 2 wt % glycerol,
and ultrapure water. We add NaOH to bring the pH to ∼7,
where the microgels are fully swollen. In these conditions, the
mixture is solidlike and optically transparent. We quantify the
mechanical properties of this material by performing steady
shear experiments with a stress-controlled rheometer (Anton
Paar) using a cone-plate geometry (2◦ cone angle, 25 mm
diameter). We note that the cone is sandblasted to prevent
sample slippage. The experiment consists in applying a stress,
τ , and measuring the strain rate, γ̇ . We find that the data is well
described with a Herschel-Bulkley constitutive equation [12]:
τ = τy,s + kγ̇ n, where τy,s is the shear yield stress, k is the
so-called consistency index, and n is the shear exponent.
Furthermore, we find that n ≈ 0.5 irrespective of the Carbopol
concentration, indicating that the flow behavior corresponds
to shear thinning; note that n = 1 implies viscous flow. In
contrast, τy,s depends on c almost linearly [13]. Since τy,s

corresponds to the shear stress value below and above which
the material behaves as an elastic solid or macroscopically
flows, respectively, we can tune the threshold between solidlike
and liquidlike behaviors by tuning c.

We inject 10 cSt PDMS oil through a metallic needle into a
rotating bath containing the yield stress material. As a result of
the imposed rotation the injected liquid is able to flow through
the continuous phase to form a curved jet that closes into a torus
after one full revolution. The tube radius can then be controlled
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FIG. 1. (Color online) (a) Tube radius, a, and inner radius, R, of
a toroidal droplet. (b) State diagram for the transformation of toroidal
droplets in viscous liquids. The line a = R separates regions where
the torus either shrinks (closed symbols) or breaks (open symbols).
Injected liquid: 10 cSt PDMS oil. Continuous phase: water with
60 mM of the surfactant sodium dedecyl sulphate. (c) State diagram
for the transformation of toroidal droplets inside yield stress materials.
In addition to the a = R dashed line, there is a horizontal and a vertical
line separating regions where the torus is stable (•) from regions
where the torus either breaks (◦) or shrinks (�). Injected liquid:
10 cSt PDMS oil. Continuous phase: yield stress material with c =
0.3 wt %, corresponding to τy,s = 9 Pa.

by varying the amount of injected liquid, while the inner
radius can be changed by changing the distance between the
needle and the rotation axis. Thus, the formation of the toroidal
droplet essentially happens as if it were made inside a viscous
liquid [2]. The subsequent evolution also exhibits features that
are similar to the observed evolution inside viscous liquids.
Recall that in this case, the boundary separating the occurrence
of breaking from shrinking is a straight line corresponding to
R = a, as shown in Fig. 1(b). This condition is reminiscent to
the Plateau criterion for the breakup of cylindrical jets, where
a jet of radius a will only break if its length L is equal or
longer than its own circumference, 2πa. In the case of a torus,
breakup only happens if R � a, corresponding to the Plateau
criterion provided the relevant length of the torus is L = 2πR.
As a result, an unstable Rayleigh-Plateau mode can only grow
provided the inner perimeter of the torus is larger than the
length of the circumference of the tube.

For toroidal droplets with tube radius smaller than a critical
tube radius ac, or with an inner radius smaller than a critical
inner radius Rc, the droplet is unstable and either breaks or
shrinks, respectively, consistent with the behavior observed
for toroidal droplets inside a viscous liquid. However, while
for toroidal droplets in viscous liquids these two instabilities
are coupled, hence implying both a decrease in R and a

as the droplet evolves, as shown in Figs. 2(a)–2(c) and the
Supplemental Material, video 1 [13], this is not observed in the
presence of a yield stress material. In this case, when the torus
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FIG. 2. Evolution of a torus: (a)–(c) Toroidal droplet made of
water undergoing both breaking and shrinking simultaneously inside
a 30 000 cSt PDMS oil. (d)–(f) Toroidal droplet made of 10 cSt
PDMS oil undergoing only breaking inside a yield stress material with
c = 0.1 wt %. Note that the handle does not shrink while it moves to
the side to induce breakup. (g)–(i) Toroidal droplet made of 10 cSt
PDMS oil undergoing only shrinking inside a yield stress material
with c = 0.1 wt %. Note that the handle shrinks while remaining
stationary. Scale bar: 5 mm.

breaks, the inner circumference moves with a constant R, as
shown in Figs. 2(d)–2(f) and the Supplemental Material, video
2 [13], and when it shrinks, the inner circumference contracts
while its center remains stationary, as shown in Figs. 2(g)–2(i)
and the Supplemental Material, video 3 [13]. Furthermore, in
the presence of a yield stress material, the toroidal droplet
can be stable against both types of instabilities for certain
ranges of a and R. This region is bounded by a vertical line,
corresponding to a critical inner radius Rc, and a horizontal
line, corresponding to a critical tube radius ac. For R > Rc and
a > ac, the toroidal droplet is stable, as shown in Fig. 1(c). In
contrast, for a < ac or R < Rc, it either breaks or shrinks.

Since these new boundary lines are only observed in the
presence of the yield stress material, their origin must be
related to the elasticity of these type of materials for applied
stresses below the yield stress. Let us first consider the case of
a toroidal droplet prone to breakup. Since the droplet evolution
is driven by surface tension, we hypothesize that the stability
threshold for breaking results from the balance of the yield
stress and the surface tension stress. Hence, the critical tube
radius would be determined by the condition τy,s = γ /ac,
where γ is the surface tension. This implies that materials with
a larger shear yield stress would succeed in stabilizing thinner
toroidal droplets. To test this, we generate state diagrams like
those in Fig. 1(c) for different values of τy,s . We find that the
boundary between stable and breaking tori shifts to higher 1/ac

with increasing τy,s , as shown in Fig. 3 and consistent with our
hypothesis. Furthermore, we find that the straight line in this
plot separating these situations has a slope of 7 mN/m. Based
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FIG. 3. (Color online) Stability diagram for thin toroidal droplets
made with 10 cSt PDMS oil inside yield stress materials with different
τy,s . The line separates stable (open symbols) and breaking (closed
symbols) tori.

on our simple model, this should be equal to the interfacial
tension between the oil making the torus and the continuous
phase. Using the pendant drop method [14], we determine
that γ = 6.6 mN/m for these materials, further confirming
our hypothesis.

Similar results are obtained with regard to the boundary line
separating stable and shrinking toroidal droplets. However, in
this case the relevant surface tension stress is given by γ /Rc.
Interestingly, we systematically find that for a given shear
yield stress, ac > Rc; this is seen in Fig. 1(c) for τy,s = 9 Pa,
where ac = 0.55 mm and Rc = 0.34 mm. To understand the
difference in critical tube and inner radii, we consider how
the continuous phase deforms for a shrinking and a breaking
toroidal droplet. For shrinking, the outer material within the
inner ring of the torus experiences a largely extensional flow,
as schematically illustrated in Fig. 4(a) with a side view of
the situation. As a result, shrinking can only happen if the
normal stress due to surface tension, Tyy − Txx = γ /R, is
greater than the elongational yield stress, τy,e. For breaking,
however, the outer material near the torus in the region where
the tube pinches experiences a deformation involving large
shear contributions, as schematically illustrated in Fig. 4(b)
with a top view of the situation. As a result, breaking will
happen if the shear stress Txy is greater than approximately
the shear yield stress τy,s . For Herschel-Bulkley materials
[15–17] τy,e = √

3τy,s , indicating that τy,e is larger than τy,s

by a factor
√

3 and reflecting the fact that most materials
are more easily sheared than they are elongated. We note
that this relationship has been experimentally confirmed in
experiments addressing the extrusion of Carbopol suspensions
from a circular orifice [17,18]. If we now replace the relevant
yield stress with the corresponding surface tension stress,
τy,e = γ /Rc or τy,s = γ /ac, we obtain that ac = √

3Rc. This
explains that ac > Rc for τy,s = 9 Pa. To further test the model
expectations, we determine the critical tube and inner radii, for
different τy,s , and plot ac as a function of Rc. We find that they
are both linearly related, as shown in Fig. 4(c), with a slope
that is equal to 1.85, which is close to

√
3, confirming our

interpretation of the results. Hence, the yield stress material
deforms differently depending on whether the toroidal droplet
breaks or shrinks. Furthermore, note that this difference also
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FIG. 4. (Color online) (a) Side view of a shrinking torus. The
box highlights the region where the yield stress material is elongated.
(b) Top view of the breaking torus. The box highlights the region
where the yield stress material is sheared. Tij represents the stress
along the j direction acting on a surface element with normal along
the i direction. (c) Critical tube radius ac versus critical inner radius
Rc. The line is the linear fit of the experimental points.

explains the observed decoupling of these instabilities in the
presence of a yield stress material. This happens for a < ac

and R > Rc, as well as for R < Rc and a > ac, which span
the majority of the state diagram in Fig. 1(c).

A further demonstration of the stabilization effects of the
yield stress material comes from the fact that a broken torus
inside this material does not evolve into a spherical droplet, as
it would if it were inside a viscous liquid. Instead, the toroidal
droplet retracts by a given amount after breakup to adopt a
crescent shape, as shown in Figs. 5(a) and 5(b). The observed
retraction happens at constant volume and hence implies a
growth in the tube radius. We can understand the observed
stability by recalling our simple stress balance: retraction
happens until the tube radius of the crescent-shaped droplet
equals the critical tube radius for tori made in yield stress
materials with the same τy,s . To more quantitatively test this,
we generate tori with different R and a within the breaking
region of the state diagram and monitor their evolution after
breakup inside a yield stress material with τy,s = 9 Pa. At
equilibrium, we determine the radius at of the osculating circle
in the region of highest curvature. We emphasize this since the
tube radius is not completely constant along the equilibrium
shape. It is always highest at the ends of the crescent-shaped
droplets, corresponding to the regions where the torus pinched.
Since there are two of these regions, as shown in Fig. 5(b), we
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FIG. 5. (Color online) Snapshots of a toroidal droplet (a) right
after breaking and (b) after equilibrated. We note that we waited for
12 hours in order to guarantee that the droplet had reached its final
equilibrium shape. Beyond this time, we did not detect any further
droplet evolution. The insets in (b) highlight the osculating circles
used to determine the smallest tube radius of the equilibrium droplet.
Scale bar: 5 mm. (c) Average radius of the osculating circles fitted at
the ends of the droplet in the final crescentlike shape, at , as a function
of the ratio R/a of the toroidal droplet before breakup. Continuous
phase: yield stress material with c = 0.3 wt %.

take the average of the two measurements. We find that at

is independent of the torus geometry, as shown in Fig. 5(c),
consistent with the expectation that the torus will retract by the
needed amount to fulfill that at = ac. Furthermore, we obtain
that at = 0.45 ± 0.09 mm, which is essentially equal to ac for
τy,s = 9 Pa. These results confirm that the key to the observed

stability is the balance between the surface tension stress and
the yield stress of the surrounding material.

We have demonstrated that it is possible to generate and
stabilize a toroidal droplet inside a yield stress material. By
tuning the yield stress of this material we can control the
geometry of the torus that can be stabilized. We find that
the torus is stable against breaking if its tube radius is larger
than the critical tube radius, ac = γ /τy,s , and stable against
shrinking if its inner radius is larger than the critical inner
radius, Rc = γ /τy,e, where τy,s and τy,e are the shear and
elongational yield stresses of the surrounding material. The
values of these length scales are different in our experiments
reflecting that τy,e �= τy,s for our material. This difference
depends on the constitutive equation of the yield stress material
and determines the ratio between ac and Rc. From our
investigations, we also find that an unstable toroidal droplet
in a yield stress material evolves via breaking or shrinking
when a < R or a > R, respectively. However, unlike a torus
inside of a viscous medium, these distinct instabilities are
decoupled inside a yield stress material. This can ultimately
be traced back to the different flow behaviors that are dominant
in either situation. While the relevant distortion of the yield
stress material for a shrinking toroidal droplet relates to the
elongation of the material near the handle, for a breaking
toroidal droplet, it is the shear experienced by the surrounding
material around the pinching region that is most relevant.

Our results provide the path to print stable structures inside
yield stress materials with exotic shapes, as we have illustrated
with the generation of crescent-shaped droplets. It is the
elasticity of the surrounding medium and the existence of a
yield stress that allows for printing these stable structures.
This will not only be relevant for generating droplets to address
fundamental questions, as recently demonstrated [11], but can
also result in an all together new 3D printing technology based
on yield stress materials with the potential for generating novel
biological constructs [10].
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