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Acoustic equations of state for simple lattice Boltzmann velocity sets
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The lattice Boltzmann (LB) method typically uses an isothermal equation of state. This is not sufficient
to simulate a number of acoustic phenomena where the equation of state cannot be approximated as linear
and constant. However, it is possible to implement variable equations of state by altering the LB equilibrium
distribution. For simple velocity sets with velocity components ξiα ∈ {−1,0,1} for all i, these equilibria necessarily
cause error terms in the momentum equation. These error terms are shown to be either correctable or negligible
at the cost of further weakening the compressibility. For the D1Q3 velocity set, such an equilibrium distribution
is found and shown to be unique. Its sound propagation properties are found for both forced and free waves, with
some generality beyond D1Q3. Finally, this equilibrium distribution is applied to a nonlinear acoustics simulation
where both mechanisms of nonlinearity are simulated with good results. This represents an improvement on
previous such simulations and proves that the compressibility of the method is still sufficiently strong even for
nonlinear acoustics.
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I. INTRODUCTION

In a fluid, the ideal speed of sound c is directly dependent
on the fluid’s equation of state as

c2 =
(

∂p

∂ρ

)
s

, (1)

where p is the pressure, ρ is the density, and the entropy s is
held constant [1,2]. This speed of sound is typically evaluated
at a rest state that represents, e.g., undisturbed atmospheric
conditions in air. This rest state is characterized by a pressure
p0 and a density ρ0 and the result is the small-signal ideal
speed of sound c0.

For gases that are ideal or nearly so, the speed of sound can
be calculated from the isentropic adiabatic equation of state
[1,2]

p

p0
=

(
ρ

ρ0

)γ
(1)⇒ c2 = c2

0

(
ρ

ρ0

)γ−1

,

c2
0 = γp0/ρ0.

(2)

Here γ is the specific heat ratio, also known as the adiabatic
index. Its maximum is γ = 5/3 for a monatomic gas and its
minimum is γ = 1 for an isothermal gas. In the latter case,
the equation of state becomes linear and the speed of sound
becomes constant c = c0.

The virtual fluid simulated by basic lattice Boltzmann (LB)
models [3,4] has such a linear isothermal equation of state
p = c2

vsρ, with cvs being a model constant. While this equation
of state does not correspond to any physical fluid, it is still
quite flexible. For small disturbances, more general equations
of state can be linearized as [1,2]

p = p0 + p′ � p0 + c2
0ρ

′, (3)

where p′ = p − p0 and ρ ′ = ρ − ρ0 represent deviations from
the rest state and p0 and c0 can be a function of space
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and time. Since the fluid mass and momentum conservation
equations only contain pressure through a pressure gradient
term ∇p = ∇p′, the rest pressure p0 does not affect these
equations. While p0 does matter in the energy conservation
equation, this equation is not relevant in nonthermal lattice
Boltzmann models. Consequently, if we are only interested in
the evolution of density and momentum, we need only consider
the pressure fluctuation’s equation of state p′ = c2

0ρ
′, which

can be perfectly captured by the isothermal LB equation of
state if c0 is a constant.

However, the isothermal equation of state is not as useful
in cases where the equation of state cannot be approxi-
mated as being linear and constant. If we could choose the
simulated equation of state more freely, we would be able
to simulate acoustic phenomena that cannot be simulated
with the isothermal equation of state. For example, fully
nonlinear acoustics requires a nonlinear equation of state,
refraction requires a spatially varying equation of state, and the
nonequilibrium phenomenon of molecular relaxation requires
a time-dependent equation of state. The latter is by far
the dominant sound absorption mechanism in air at audible
frequencies [2,5]. A more flexible equation of state could also
be dependent on underlying variables, such as a thermal field
evolved with a connected advection-diffusion scheme, which
would also allow capturing the sound wave absorption caused
by thermal conduction.

In pseudopotential multiphase and multicomponent LB
models [6–8], the equation of state is altered by adding a body
force. In each node, this force depends on the density of each
component in the node itself and its neighboring nodes through
mesoscopic interparticle potentials. However, this application
is a very different one from acoustics.

In this article we look at how acoustic equations of state
may be implemented through the LB equilibrium distribution.
While there are many possible such implementations, we here
look at common features of all such equilibria for simple
velocity sets, where all the nonzero velocities fall on a single
d cube in 1 � d � 3 spatial dimensions.
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Section II gives an overview of relevant aspects of the lattice
Boltzmann method. Section III briefly reviews the require-
ments on equilibrium distributions with arbitrary equations of
state and how these requirements can only be approximated
using simple velocity sets, resulting in approximation errors.
It subsequently shows that these errors are not too severe and
derives a unique D1Q3 equilibrium that is the one-dimensional
projection of all such higher-dimensional equilibria. (The
analysis of this equilibrium therefore has some generality to
these higher-dimensional equilibria.) In Sec. IV a standard
linearization analysis is performed on this equilibrium to de-
termine its linear sound propagation properties. The results of
Secs. III and IV are used in Sec. V to perform an LB simulation
of fully nonlinear acoustics, which is an improvement over the
partially nonlinear LB acoustics simulations previously shown
in the literature [9,10].

II. LATTICE BOLTZMANN METHOD

The fundamental variable in the lattice Boltzmann method
is the distribution function fi(x,t), which represents the density
of particles with velocity ξ i at point x and time t . The particle
velocities ξ i and their matching weighting coefficients wi are
limited to a small discrete set. The aforementioned simple
velocity sets are listed for one to three dimensions in the
literature [11]. These velocity sets all fulfill the isotropy
conditions [12]∑

i

wi = 1, (4a)

∑
i

wiξiα = 0, (4b)

∑
i

wiξiαξiβ = c2
vsδαβ, (4c)

∑
i

wiξiαξiβξiγ = 0, (4d)

∑
i

wiξiαξiβξiγ ξiδ = c2
vs(δαβδγ δ + δαγ δβδ + δαδδβγ ), (4e)

∑
i

wiξiαξiβξiγ ξiδξiε = 0, (4f)

where cvs is a velocity set constant that equals 1/
√

3 for
these velocity sets and δαβ is the Kronecker delta. Generic
Cartesian indices for which the Einstein summation con-
vention is used are labeled with Greek letters. We employ
simplified lattice units with normalized space and time
resolution 
x = 
t = 1 throughout this article except in
Sec. V.

The macroscopic quantities of density ρ(x,t) and fluid
velocity u(x,t) can be found as moments of fi ,

ρ =
∑

i

fi = Π0, ρuα =
∑

i

ξiαfi = Πα. (5a)

In addition, we will later have use for the higher-order moments∑
i

ξiαξiβfi = Παβ,
∑

i

ξiαξiβξiγ fi = Παβγ . (5b)

The evolution of fi is determined by the lattice Boltzmann
equation

fi(x + ξ i ,t + 1) − fi(x,t) = �
[
fi(x,t),f (0)

i (x,t)
]
, (6)

where the right-hand side is a collision operator that relaxes the
local distribution function fi(x,t) towards a local equilibrium
distribution f

(0)
i (x,t). The simplest collision operator that

results in correct conservation of mass and momentum is
the Bhatnagar-Gross-Krook (BGK) operator where all the
distribution functions fi are relaxed directly towards f

(0)
i with

the same relaxation time τ ,

�
[
fi(x,t),f (0)

i (x,t)
] = − 1

τ

[
fi(x,t) − f

(0)
i (x,t)

]
. (7)

The equilibrium distribution is constructed from the mo-
ments of fi . A widely used choice is the isothermal equilibrium
[11]

f
(0)
i = ρwi

(
1 + ξ i · u

c2
vs

+ (ξ i · u)2

2c4
vs

− u · u
2c2

vs

)
. (8)

This is arguably the most stable choice for an isothermal
equilibrium polynomial truncated to O(u2) [13].

It is far from obvious that this simple mesoscopic numerical
scheme leads to the correct macroscopic behavior. This is
proven from a Taylor expansion of (6) and a subsequent
Chapman-Enskog perturbation analysis where fi and its
derivatives are expanded in a parameter ε, which labels each
term’s order of smallness [3,4,12]. The expanded forms are

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · · ,

∂

∂t
= ε

∂ (1)

∂t
+ ε2 ∂ (2)

∂t
+ · · · , ∇ = ε∇(1).

At the lowest order in ε, the moments of the (∂ (1)/∂t +
ξ i · ∇(1))f (0)

i term results in the Euler-level fluid equations.
At the next order in ε, the moments of the ∂ (2)f

(0)
i /∂t and

(∂ (1)/∂t + ξ i · ∇(1))f (1)
i terms result in the Navier-Stokes-level

corrections [4].
Assuming that the second moment is relaxed towards

its equilibrium Π
(0)
αβ with a relaxation time τ , the analysis

shows that (6) is consistent with the macroscopic mass and
momentum conservation equations

∂ρ

∂t
+ ∂ρuα

∂xα

= 0, (9a)

∂ρuα

∂t
+ ∂

∂xβ

[
Π

(0)
αβ +

(
1 − 1

2τ

)
εΠ

(1)
αβ

]
= 0, (9b)

where Π
(n)
αβ = ∑

i ξiαξiβf
(n)
i . The equilibrium moment Π

(0)
αβ

can be directly found from the equilibrium distribution f
(0)
i

using the isotropy conditions (4). To recover correct Euler-level
terms in the momentum equation, f

(0)
i must be chosen so that

Π
(0)
αβ = pδαβ + ρuαuβ. (9c)

As an example, taking the second moment of (8) and using
the isotropy conditions (4), we find (9c) with an isothermal
equation of state p = c2

vsρ.
With this expression for Π

(0)
αβ , it is clear that Π

(1)
αβ must be

related to the stress tensor. From the Chapman-Enskog analysis
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[4], we know that it is generally determined as

Π
(1)
αβ = −τ

[
∂ (1)Π

(0)
αβ

∂t
+ ∂ (1)Π

(0)
αβγ

∂xγ

]
. (9d)

Consequently, we know that f
(0)
i determines the resulting

momentum equation, both directly through Π
(0)
αβ and indirectly

through Π
(1)
αβ .

Now, how can the simulation’s equation of state and sound
speed be made variable? One method is to keep the isothermal
equilibrium distribution (8) and add body forces F ∝ ∇ρ

to the model to augment the isothermal pressure gradient
c2

vs∇ρ [10,14]. However, this method requires the use of a
finite-difference scheme or a similar method to determine ∇ρ,
which causes its own accuracy problems and makes boundary
conditions more difficult to handle. In addition, this method
has no clear physical interpretation.

Alternatively, we can choose a more general equilibrium
distribution f

(0)
i where we can directly specify the pressure p.

In these models, lower pressures correspond to a larger ratio of
rest particles, giving a physically correct lower average particle
speed. Indeed, many such equilibrium distributions have been
proposed [7,15–19].

However, the stability of such equilibria is a complicated
topic: Even equilibria that result in correct macroscopic
equations may result in unstable simulations for certain
velocity sets. As an example, stability for the D2Q9 velocity
set requires a particular choice of a nonhydrodynamic moment
of the equilibrium distribution [19]. We will now consider
such equilibrium distributions further, regarding the velocity
set-specific topic of stability as being beyond the scope of this
article.

III. GENERALIZED EQUILIBRIUM DISTRIBUTION

How then should the equilibrium distribution f
(0)
i be

chosen? To recover an ideal momentum equation, the moments
of f

(0)
i must be

Π
(0)
0 =

∑
i

f
(0)
i = ρ, (10a)

Π (0)
α =

∑
i

ξiαf
(0)
i = ρuα, (10b)

Π
(0)
αβ =

∑
i

ξiαξiβf
(0)
i = pδαβ + ρuαuβ, (10c)

Π
(0)
αβγ =

∑
i

ξiαξiβξiγ f
(0)
i = p(uαδβγ + uβδαγ + uγ δαβ)

+ ρuαuβuγ . (10d)

As we saw in the previous section, the higher-order moments
have no effect on the macroscopic behavior at the Navier-
Stokes level. From (9), these choices would result in a
momentum equation

∂ρuα

∂t
+ ∂ρuαuβ

∂xβ

= − ∂p

∂xα

+ p

(
τ − 1

2

)
∂

∂xβ

×
[
∂uα

∂xβ

+∂uβ

∂xα

+
(

1−ρc2

p

)
δαβ

∂uγ

∂xγ

]
.

(11)

In deriving this equation we have assumed that p = p(ρ,s)
and that ∂ (1)s/∂t = 0. The former assumption is an expression
of the state principle of equilibrium thermodynamics [1]. The
latter assumption is justified by the ∂ (1)/∂t derivative being
connected to the Euler equations [4], which are isentropic [5].
The speed of sound c is determined by the equation of state
through (1).

In this momentum equation we have a dynamic shear
viscosity μ = p(τ − 1/2) and a dynamic bulk viscosity μB =
(5/3 − ρc2/p)μ. In the case of the isentropic equation of state
(2), we may insert the linearized speed of sound c2

0 = γp0/ρ0

to find the linearized bulk viscosity μB = (5/3 − γ )μ, which
directly depends on the adiabatic index γ . This value has also
been found from polyatomic kinetic theory in the limit of very
rapid equilibration of inner energies [20]. In addition, this bulk
viscosity has well-known limits: μB = 0 for a monatomic gas
and μB = 2μ/3 for an isothermal gas [4].

However, there is a linear dependence between the moments
for all the simple cubic velocity sets. For instance,

Π (0)
xxx =

∑
i

ξixξixξixf
(0)
i =

∑
i

ξixf
(0)
i = Π (0)

x (12)

since ξix ∈ {−1,0,1} for all i in these velocity sets. Conse-
quently, all the moments (10) are not simultaneously attainable
for simple velocity sets. While they can be attained for
extended velocity sets with more velocities, these require more
simulation time and undermine a major strength of the LB
method by making its implementation more difficult, espe-
cially with regard to boundary conditions. However, we will
see in the following that the penalty of using a simple velocity
set and having an imperfect third moment is not too severe.

For the third moment to comply with dependence relations
such as (12) while remaining isotropic, it can only be

Π
(0)
αβγ =

∑
i

ξiαξiβξiγ f
(0)
i

= ρc2
vs(uαδβγ + uβδαγ + uγ δαβ). (13)

This corresponds to an inconsistent choice of pressure: p in the
second moment and ρc2

vs in the third. The Chapman-Enskog
analysis now leads to a macroscopic momentum equation with
a number of additional error terms

∂ρuα

∂t
+ ∂ρuαuβ

∂xβ

= − ∂p

∂xα

+ ρc2
vs

(
τ − 1

2

)
∂

∂xβ

[
∂uα

∂xβ

+ ∂uβ

∂xα

+
(

1 − c2

c2
vs

)
δαβ

∂uγ

∂xγ

]

+
(

τ − 1

2

)
∂

∂xβ

[(
c2

vs − c2
)
δαβuγ

∂ρ

∂xγ

+
(

uα

∂

∂xβ

+ uβ

∂

∂xα

) (
ρc2

vs − p
) − ∂ρuαuβuγ

∂xγ

]
. (14)
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The lack of the O(u3) term in Π
(0)
αβγ leads to the (τ −

1/2)∂(ρuαuβuγ )/∂xγ error term, which is also present for
isothermal LB models using the velocity sets considered here
[4]. The other error terms in (14) are caused by the inconsistent
pressure.

This momentum equation has a dynamic shear viscosity
μ = ρc2

vs(τ − 1/2) and a dynamic bulk viscosity μB = (5/3 −
c2/c2

vs)μ. While it is unphysical for the bulk viscosity to depend
on c2/c2

vs, the bulk viscosity in LB simulations can be corrected
[4,12,21]. Additionally, the bulk viscosity recovers its correct
isentropic value if c2 = γ c2

vs.
This momentum equation also contains other unwanted

terms, which will now be argued to be negligible for weakly
compressible flow. In acoustics, it is largely assumed that the
fluid variables are small fluctuations over a constant rest state,⎡

⎣ρ(x,t)
u(x,t)
p(x,t)

⎤
⎦ =

⎡
⎣ρ0

0
p0

⎤
⎦ + ε

⎡
⎣ρ ′(x,t)

u′(x,t)
p′(x,t)

⎤
⎦. (15)

Here the macroscopic smallness parameter ε labels the
fluctuation’s order of smallness. In linear acoustics, terms
above O(ε) are neglected. In the momentum equation (14)
the stress tensor on the first line is O(με). The error terms
on the second line are O(με2) and O(με3). The latter error
term is commonly neglected and we will now also neglect the
former error terms. Consequently, the compressibility of the
LB method is weakened further than usual. Even so, neglecting
these terms is analogous to the approximation scheme used
when deriving the equations of nonlinear acoustics [22].

Problems that are essentially one dimensional, such as the
propagation of plane waves, can be simulated using the D1Q3
velocity set given by the velocities (ξ−,ξ0,ξ+) = (−1,0,1)
and the weighting coefficients (w−,w0,w+) = (1/6,2/3,1/6).
This velocity set is the one-dimensional projection of all simple
velocity sets in two and three dimensions. Indeed, sound
propagation along the x or y axis for the D2Q9 velocity set is
identical to sound propagation for the D1Q3 velocity set [23].

The D1Q3 velocity set has only three independent mo-
ments, as can be seen from the transformations⎡

⎣ 1 1 1
−1 0 1

1 0 1

⎤
⎦

⎡
⎣f

(0)
−

f
(0)
0

f
(0)
+

⎤
⎦ =

⎡
⎣ ρ

ρu

Π (0)
xx

⎤
⎦,

⎡
⎣f

(0)
−

f
(0)
0

f
(0)
+

⎤
⎦ =

⎡
⎣0 − 1

2
1
2

1 0 −1
0 1

2
1
2

⎤
⎦

⎡
⎣ ρ

ρu

Π (0)
xx

⎤
⎦, (16)

where the second transformation matrix is the inverse of
the first. Thus, the D1Q3 equilibrium is fully determined by
the zeroth to second moments. Consequently, all equilibrium
distributions f

(0)
i with a variable equation of state must be

equal when applied to the D1Q3 velocity set. Indeed, we can
construct this equilibrium directly from (10),

f
(0)
0 = ρ − p − ρuu, f

(0)
± = 1

2 (p ± ρu + ρuu). (17)

Unlike the equilibrium in (8), which is valid for multiple
velocity sets, the weighting coefficients wi do not enter into
this equilibrium as it has been derived specifically for the
D1Q3 velocity set.

Neglecting terms of O(με2) and above, the momentum
equation (14) in one-dimensional form becomes

∂ρu

∂t
+ ∂ρuu

∂x
= −∂p

∂x
+ ρc2

vs

(
τ − 1

2

) (
3 − c2

c2
vs

)
∂u

∂x

= −∂p

∂x
+ μ

(
4

3
+ μB

μ

)
∂u

∂x
. (18)

In one-dimensional problems there can be no shear strain and
the shear and bulk viscosities appear only together in the sum
(4μ/3 + μB). The effect of viscosity on sound propagation is
often represented through the viscous relaxation time

τv = μ

ρc2

(
4

3
+ μB

μ

)
such that τ = τv

3c2
vs/c

2 − 1
+ 1

2
(19)

for our model.

IV. SOUND PROPAGATION PROPERTIES

The sound propagation properties of absorption and dis-
persion can be found for this general D1Q3 equilibrium
distribution by performing a standard linearization analysis
to find the dispersion relation [4,24,25]. From previous
arguments, the analysis of this D1Q3 equilibrium will have
validity for sound propagation along a main axis using similar
equilibria for higher-dimensional simple velocity sets for
which D1Q3 is the one-dimensional projection. However, this
D1Q3 analysis cannot take into account the effect of sound
propagation anisotropy, which must be mapped individually
for different higher-dimensional velocity sets and equilibria.

Similarly to (15), all variables are assumed to be small
fluctuations around a constant rest state. For a plane wave, the
distribution function becomes

f̂i(x,t) = F
(0)
i + f̂ ′

i (x,t) = F
(0)
i + f̂ �

i ei(ω̂t−k̂x)

= F
(0)
i + f̂ �

i e−αt t e−αxxei(ωt−kx), (20)

where carets indicate quantities in the complex exponential
wave formulation and starred quantities indicate amplitudes.
Here F

(0)
i and f̂ ′

i (x,t) represent a constant rest state and a
small fluctuation as in (15); f̂ ′

i is assumed to be on a harmonic
plane-wave form with amplitude f̂ �

i . The angular frequency ω̂

and wave number k̂ become complex due to dissipative effects
in the fluid and have been split into real and imaginary parts

ω̂ = ω + iαt , k̂ = k − iαx. (21)

The imaginary parts are time and space absorption coefficients,
while the real parts are related to dispersion; the linear speed
of sound is c = ω/k. In the limit where we have no dispersion,
k = k0, ω = ω0, and c0 = ω0/k0.

Absorbed harmonic waves can be separated into two main
types where the sound propagation properties for one type
cannot in general be applied to the other [26]. Waves that
are radiated by a source at a frequency ω0, so-called forced
waves, will be dissipated only with the distance to the source
as ω̂ = ω0. Free waves are conversely characterized by k̂ = k0,
having infinite extent and an amplitude that is constant in space
and exponentially decreasing in time. Only forced sound waves
are physically realizable, though free waves are very useful for
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benchmarking due to their spatially periodic nature. The LB
linearization results for forced plane waves can also be used to
accurately predict the propagation of non-plane waves [25].

Using the linearized equation of state (3) we can find a lin-
earized version of (17) split into constant and fluctuating parts

F
(0)
0 = ρ0 − p0, F

(0)
± = 1

2p0, (22a)

f̂
�(0)
0 = (

1 − c2
0

)
ρ̂�, f̂

�(0)
± = 1

2

(
c2

0ρ̂
� ± ρ0û

�
)
. (22b)

Following the linearization analysis process [4,24], we find an
eigenvalue problem in the form

Âf̂� = eiω̂ f̂�, (23)

with f̂� = [f̂ �
−,f̂ �

0 ,f̂ �
+]T and

Â =

⎡
⎢⎣

(
1 − 1−c2

0
2τ

)
e−ik̂ c2

0
2τ

e−ik̂ − 1−c2
0

2τ
e−ik̂

1−c2
0

τ
1 − c2

0
τ

1−c2
0

τ

− 1−c2
0

2τ
eik̂ c2

0
2τ

eik̂
(
1 − 1−c2

0
2τ

)
eik̂

⎤
⎥⎦.

Note that the rest pressure p0 does not enter into this equation,
which is reasonable considering the argument in Sec. I on
its arbitrariness. Relating τ to τv as in (19), the characteristic
polynomial gives us a dispersion relation

det(Â − Ieiω̂) = g(ω̂,k̂,c0,τv) = 0.

The full and explicit forms of this dispersion relation and the
following forced and free wave solutions are too cumbersome
to reproduce here, but can be found from (23) using a computer
algebra system.

For forced waves, where ω̂ = ω0, the dispersion relation
can be solved for k̂/k0. Expressing it in the form of a series
expansion in ω0, which represents the discretization error,
nested inside a series expansion in ω0τv, which represents
the physical effect of viscosity on wave propagation [2,26],
we find
k̂

k0
= 1 + ω2

0

24

(
1

c2
0

− 1

)
+ ω4

0

1920

(
9

c4
0

− 10

c2
0

+ 1

)
+ O

(
ω6

0

)

− i
1

2
(ω0τv)

[
1 + ω2

0

24

(
3

c2
0

+ 1

)
+ O

(
ω4

0

)]

− (ω0τv)2

[
1

8

c2
0 + 3

1 − c2
0

+ O(ω2
0)

]
+ O((ω0τv)3). (24)

In the ω0 → 0 limit of no discretization error this series
expansion reduces to the forced wave propagation properties of
the underlying discrete-velocity Boltzmann equation (DVBE)
where space and time are continuous [23].

For free waves, where k̂ = k0, we represent the discretiza-
tion error by k0 and find

ω̂

ω0
= 1 − k2

0

24

(
1 − c2

0

) + k4
0

1920

(
1 − 10c2

0 + 9c4
0

) + O
(
k6

0

)

+ i
1

2
(ω0τv)

[
1 + k2

0

12

(
3c2

0 − 1
) + O

(
k4

0

)]

+ (ω0τv)2

[
1

8

5c2
0 − 1

1 − c2
0

+ O
(
k2

0

)] + O((ω0τv)3). (25)

For the isothermal equation of state where c2
0 = c2

vs = 1/3 the
second-order error in the lowest-order absorption disappears,
a fact that has also been noted elsewhere [24].

While the free and forced wave results are similar at
O(k2

0) = O(ω2
0) and at O(ω0τv), they differ elsewhere. The

DVBE and Navier-Stokes fluid models agree up to O(ω0τv),
but this DVBE does not agree at higher orders of ω0τv with
the Navier-Stokes model or higher-order fluid models such as
the Burnett model [23].

V. APPLICATION TO NONLINEAR ACOUSTICS

The usefulness of this approach will now be demonstrated
using the case of fully nonlinear acoustics, which requires the
use of a nonlinear equation of state. In addition, this case will
show that the neglected error terms are not relevant even for
acoustically high Mach numbers.

There are two separate mechanisms of typically similar
strength underlying nonlinear acoustics. First, a nonlinear
equation of state gives a speed of sound that is higher in
the wave peaks and lower in the wave troughs. For an
ideal-gas plane wave, it results in a local speed of sound c =
c0 + u(γ − 1)/2, u being the local fluid velocity component
of the wave [5,22]. Second, the fluid velocity component u

of the sound wave causes an advection towards and against
the propagation direction in peaks and troughs, respectively,
augmenting the local wave propagation speed as c + u. These
two effects together cause a total wave propagation speed c +
u = c0 + u(γ + 1)/2. This uneven wave propagation speed
causes the waveform to distort into a shock wave.

Previous LB simulations of nonlinear acoustics [9,10] have
only taken the second mechanism into account. Here we will
also take the first mechanism into account by applying the
isentropic equation of state (2).

Nonlinear plane-wave propagation can be modeled through
the viscous Burgers equation, which can be derived from the
conservation equations [22]. For an initially monofrequency
free wave of frequency ω0 and pressure amplitude p�, it
becomes

∂p̄

∂t̄
= p̄

∂p̄

∂t̄r
+ ᾱt

∂2p̄

∂ t̄2
r

, (26)

where we have used the nondimensionalized parameters

p̄(t̄r,t̄) = p′(t̄r,t̄)/p�, t̄ = t/tshock,

t̄r = ω0t − k0x, ᾱt = αt tshock. (27)

Here the shock formation time

tshock = 2γ

γ + 1

1

ω0

p0

p�
(28)

is defined as the time for the peak to catch up to the trough in
the inviscid case and the physical absorption coefficient

αt = ω2
0

2

μ

ρ0c
2
0

(
4

3
+ μB

μ
+ γ − 1

Pr

)
(29)

includes the dissipative effect of heat conduction in the last
term through the adiabatic index γ and the Prandtl number
Pr. While simple LB models do not simulate heat conduction,
we can in general capture this dissipative effect by absorbing
the heat conduction term into the bulk viscosity. In this simple
one-dimensional case, we will match the simulation absorption
coefficient (which is only affected by viscosity) with the
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FIG. 1. Comparison of the LB simulation of nonlinear sound propagation (solid line) with a corresponding Burgers equation solution
(dashed line) at various nondimensionalized times t̄ = t/tshock. Note the spurious oscillation at the upper edge of the shock for t̄ = 1.5.

physical absorption coefficient (which is affected both by
viscosity and heat conduction) by ensuring that they give the
same absorption over a wave period.

For our physical case we choose a monatomic gas, where the
dissipation is purely thermoviscous with μB = 0 and there is
no molecular relaxation. Such gases are characterized by γ =
5/3 and Pr � 2/3 [27]. More specifically, we choose neon at
the standard conditions p0 = 1.013 × 105 Pa and T0 = 300 K.
From the ideal gas law we find ρ0,ph = 0.820 kg/m3 and from
(2) we find c0,ph = 454 m/s. Its kinematic shear viscosity

at these conditions is νph = μph/ρ0,ph = 3.89 × 10−5 m2/s
[28].

We have here used the subscript “ph” to separate quantities
in physical units from quantities in lattice units, denoted by
the subscript “la.” We link the two systems of units by the time
and space resolutions 
t and 
x through the speed of sound
c0,ph = c0,la
x/
t and the absorption coefficient (αt/ω

2
0)ph =

(αt/ω
2
0)la
t . Consequently, the lattice shock formation time

and the lattice wavelength are

tshock,la = tshock,ph


t
= 2γ

γ+1

1

ω0,ph

p0

p�

(1/c0,la2−1)(τ−1/2)(
νph/c

2
0,ph

)
[4/3+νB/ν+(γ−1)/Pr]ph

, (30a)

λla = λph


x
= 2π

ω0,ph

(1/c0,la − c0,la)(τ − 1/2)(
νph/c

2
0,ph

)
[4/3 + νB/ν + (γ − 1)/Pr]ph

, (30b)

respectively. These equations correspond to the number of time
steps required to form a shock and the required width of the
system, respectively.

For the wave itself we choose a frequency of 10 kHz. Its
Mach number is chosen as Ma = u�/c0 = 0.01 as in [9]. The
corresponding pressure amplitude is p�/p0 = γ Ma.

Finally we choose the simulation parameters as τ = 0.6
and c0,la = 0.95. A high lattice speed of sound was chosen in
order to both decrease the numerical dispersion as predicted
by (25) and reduce the simulation time. This choice of c0,la

includes a safety margin to ensure c < 1, as c > 1 would break
the Courant-Friedrichs-Lewy (CFL) condition and destabilize
the simulation. These choices result in tshock,la � 29 284 and
λla � 2331.

The simulation is initialized in a periodic system of width
λla using (20) and the eigenvector in (23). This initializa-
tion, based on the linearization analysis, is exact for an
infinitesimally weak fluctuation. However, it is inexact for
a stronger fluctuation; it causes a weak standing-wave effect
since the initialized state contains a weak contribution from
the mode for waves propagating in the opposite direction.
Still, it remains more accurate than initializing with an equi-
librium distribution given by linear Euler-level expressions

for the density and fluid velocity of a wave, as done, e.g.,
in [9].

Snapshots of the simulation are shown from t̄ = 0 to
1.5 in Fig. 1 and are compared with a reference solution of
the Burgers equation, which is found using the method of
coupled ordinary differential equations [29] with M = 600
components and a fourth-order Runge-Kutta method with
adaptive time steps. The two agree well up to at least t̄ = 1.
For larger t̄ a spurious oscillation develops at the upper edge
of the shock in the LB solution. Such Gibbs-like phenomena
generally occur when simulating shocks using dispersive
numerical methods [30,31].

The different harmonic frequency components of the wave
evolve as the shock develops. Higher harmonics feed on the
lower ones, but are affected more heavily by absorption.
Figure 2 shows the evolution of the amplitudes of the first
six harmonics throughout the simulation. These were found
by taking the spatial Fourier transform of the pressure in each
time step. While these harmonics show excellent agreement
with the harmonics of the Burgers equation solution, it is
possible to discern a weak oscillation in the amplitude of the
second harmonic due to the aforementioned standing-wave
effect caused by the inexact method of initialization.
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FIG. 2. Evolution of the amplitudes of the nth harmonics up to
t̄ = 1.5 from the fundamental n = 1 (top, darkest line) to n = 6
(bottom, lightest line) for the LB simulation (solid line) and the
Burgers equation (dashed line).

All things considered, the LB simulation results are in
excellent agreement with the reference solution, proving that
fully nonlinear acoustics can be simulated accurately with the
LB method using an isentropic equation of state without any
visible effect of the neglected error terms in the momentum
equation (14).

VI. CONCLUSION

The isothermal equation of state of the simplest lattice
Boltzmann method is insufficient in cases where the equation
of state cannot be approximated as linear and constant. In
this article we have reviewed the general requirements of
equilibrium distributions f

(0)
i that correctly recover a variable

equation of state.
As has been stated previously [19], these requirements are

not attainable for simple velocity sets. We have shown that the
penalty of not fulfilling all the requirements are a number

of additional error terms in the macroscopic momentum
equation. The bulk viscosity error may be corrected [4,12,21]
or avoided through a judicious choice of the speed of sound.
The remaining error terms can be neglected using an analogous
approximation scheme to the one used to derive the equations
of nonlinear acoustics [22], though this further weakens the
compressibility of the LB method.

One-dimensional problems can be simulated using the
D1Q3 velocity set, where the equilibrium distribution f

(0)
i

is uniquely given by (17). The sound propagation properties
of this equilibrium distribution were found for forced and
free waves. These properties also hold for sound propaga-
tion along a main axis using a higher-dimensional velocity
set [23]. However, the anisotropy of sound propagation
could not be taken into account here, as it is individ-
ual to the different higher-dimensional velocity sets and
equilibria.

The equilibrium distribution (17) was demonstrated
through a simulation of nonlinear acoustics, with very good
results. Both mechanisms of nonlinearity were simulated by
using the isentropic equation of state. This improves on previ-
ous isothermal LB simulations of nonlinear acoustics [9,10],
where only one of these mechanisms could be simulated.

A general equilibrium with variable equation of state should
ideally be given in a form similar to (8) so that it could be
applied to any simple velocity set. Some of the equilibria in the
literature are defined only for specific velocity sets [15,18,19]
and others [7,16,17] have not been proven to be stable in all
simple velocity sets. Finding such an equilibrium that, like
(8), can be applied directly to any simple velocity set while
remaining provably stable is an important goal in the further
investigation of this topic.
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