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Generalized modification in the lattice Bhatnagar-Gross-Krook model for incompressible
Navier-Stokes equations and convection-diffusion equations
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In this paper, two modified lattice Boltzmann Bhatnagar-Gross-Krook (LBGK) models for incompressible
Navier-Stokes equations and convection-diffusion equations are proposed via the addition of correction terms in
the evolution equations. Utilizing this modification, the value of the dimensionless relaxation time in the LBGK
model can be kept in a proper range, and thus the stability of the LBGK model can be improved. Although
some gradient operators are included in the correction terms, they can be computed efficiently using local
computational schemes such that the present LBGK models still retain the intrinsic parallelism characteristic of
the lattice Boltzmann method. Numerical studies of the steady Poiseuille flow and unsteady Womersley flow
show that the modified LBGK model has a second-order convergence rate in space, and the compressibility effect
in the common LBGK model can be eliminated. In addition, to test the stability of the present models, we also
performed some simulations of the natural convection in a square cavity, and we found that the results agree well
with those reported in the previous work, even at a very high Rayleigh number (Ra = 1012).
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I. INTRODUCTION

The lattice Boltzmann (LB) method, which first appeared in
1980s, has received increased attention in the study of various
physical problems [1–3]. As a discrete kinetic numerical
method, the LB method originates from a lattice gas automaton
(LGA) [4], and it can also be derived from the continuous
Boltzmann equation [5,6]. Due to its simplicity, the lattice
Boltzmann Bhatnagar-Gross-Krook (LBGK) model, one of
the most popular models in the LB method, has been widely
used to study complex fluid flows. Actually, the original LBGK
model is a solver for compressible Navier-Stokes equations in
the incompressible limit. For this reason, when the original
LBGK model is adopted to simulate incompressible fluid
flows, it may lead to some errors in numerical results due
to the compressibility effect. To eliminate this effect, the
LBGK model has been improved by some researchers [7,8].
On the other hand, mass and heat transfer are usually
coupled with fluid flow, and then the convection-diffusion
equations are needed to describe the process of mass and
heat transfer. In recent years, several LBGK models for
convection-diffusion equations have been developed [9–16].
However, these available LBGK models for Navier-Stokes
equations or convection-diffusion equations have a major
deficiency: the numerical stability is strongly dependent on
the dimensionless relaxation time τ , which is related to the
fluid viscosity or the diffusion coefficient. If the value of τ is
too large or too small (close to 0.5), the LBGK model would
be unstable, which restricts the applications of the model in
the study of complex fluid flows, such as non-Newtonian fluid
flows, turbulent flows, problems such as multiphysics fields,
and so on. For non-Newtonian fluid flows, the dimensionless
relaxation time is related to the local viscosity, which is a
function of the shear stress and varies at each time step.
Therefore, the LBGK model may suffer numerical instability
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when the shear stress rate approaches zero. For problems such
as multiphysics fields, as with fluid flows in microchannels
with heat or mass transfer, the Schmidt (Sc) or Prandtl (Pr)
number is usually very high, which may cause the LBGK
model to be unstable. In addition, for natural convection in
a square cavity, which is a classic heat transfer problem
(although in the framework of the LBGK model), there are
many works available on this problem [17–20]. However, the
results at high Rayleigh numbers (Ra) are rarely reported,
which may be due to the instability of the LBGK model at a
high Ra.

To overcome the above-mentioned deficiency of the LBGK
model, many improvements have been made in recent years.
With regard to the stability problem of the LBGK model for
fluid flows, Qian et al. [21] presented a fractional propagation
(FP) LB method (FPLBM), while McNamara et al. [22]
proposed a Lax-Wendrof (LW) LB method (LWLBM). Based
on these works, Guo et al. [23] further developed a general
propagation LBGK scheme, and FPLBM and LWLBM can
be regarded as its special cases. The above LB models were
developed based on the discrete Boltzmann equation, and
they utilize different discrete schemes to make the Courant-
Friedricks-Lewey (CFL) number smaller than 1. Therefore, the
numerical stability can be improved. However, the propagation
step is complicated and the rate of convergence is slowed down.
While studying the LBGK model for convection-diffusion
equations, Xiang et al. [24] introduced a parameter β in the
second-order moment condition, such that the dimensionless
relaxation time τ cannot be close to 0.5 through adjusting
the parameter β. Although the stability of the LBGK model
can be improved using this approach, the improvement is not
significant. Inamuro [25] proposed a lattice kinetic scheme
(LKS) for incompressible fluid flow with heat transfer. In
his scheme, through adding a stress-tensor-related term in
the equilibrium distribution function, a relaxation parameter
of the stress tensor is introduced to make the dimensionless
relaxation time τ be unity, hence the stability of the LBGK
model can be improved. This idea has also been extended
to the LBGK models for liquid-vapor multiphase flows [26]
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and non-Newtonian fluid flows [27]. However, we would like
to point out that the scheme for incompressible fluid flows
does not satisfy mass conservation law, and furthermore, the
parallel characteristic of the LB method is also destroyed
since the stress tensor in the added term is calculated using
a finite-difference scheme.

In this work, a generalized modification, which can be
considered as an improvement to the LKS [25], is proposed to
improve the stability of the LBGK model. Similar to Ref. [25],
a correction term is introduced to keep the dimensionless
relaxation time in a proper range. As discussed in Refs. [25,28],
the correction term in the modified LBGK model for the
Navier-Stokes equations can be regarded as a discretization
of viscous stress, and similarly, the correction term in the
modified LBGK model for convection-diffusion equations can
be considered as a discretization of the heat or mass flux.
However, unlike the LKS proposed in Ref. [25], the role of the
correction term is to keep the dimensionless relaxation time
varied in a proper range rather than unity in simulating complex
fluid flows. In addition, based on Chapman-Enskog analysis,
the correction term added in the evolution equation as a force
or source term is more reasonable than that in the equilibrium
distribution function. Finally, in the present model, mass
conservation law is satisfied and the calculation of the gradient
operator in the correction term can be implemented locally,
which retains the parallel characteristic of the LB method.
For this reason, the following simulations are performed on
a graphic processing unit (GPU), and a high computational
efficiency can be obtained.

The rest of the paper is organized as follows. In Sec. II,
the modified LBGK models for incompressible Navier-Stokes
equations and convection-diffusion equations are presented.
In Sec. III, several numerical experiments, including steady
Poiseuille flow, unsteady Womersley flow, and natural con-
vection in a square cavity, are conducted to test the accuracy
and stability of the modified LBGK model, and finally some
conclusions are summarized in Sec. IV.

II. THE MODIFIED LBGK MODELS

In this section, we will present two modified LBGK
models for incompressible Navier-Stokes equations and the
convection-diffusion equation:

∇ · u = 0, (1a)

∂u
∂t

+ ∇ · uu = −∇P + ∇ · ν∇u + a, (1b)

∂φ

∂t
+ ∇ · uφ = ∇ · D∇φ, (2)

where u is the velocity, P is the pressure, ν is the kinematic vis-
cosity, a is the acceleration due to external force, φ represents
a scalar variable, which can be substituted by temperature or
concentration, and D is the diffusion coefficient.

A. The modified LBGK model for incompressible
Navier-Stokes equations

The evolution equation of the modified LBGK model for
incompressible Navier-Stokes equations is given as

fi(x + ci�t,t + �t)

= fi(x,t) − 1

τ

[
fi(x,t) − f

eq
i (x,t)

] + �tSi(x,t), (3)

where τ is the dimensionless relaxation time, fi(x,t) is the
distribution function of a particle moving with velocity ci at
position x and time t, Si(x,t) is defined as

Si(x,t) = ωi

A[∇u + (∇u)T ] :
(
cici − c2

s I
)

2τc2
s

+
(

1 − 1

2τ

)
Fi(x,t), (4)

where the first term on the right-hand side of the above equation
is the correction term, and A is a tunable parameter. Fi(x,t)
is the discrete forcing term accounting for the external force,
and it is given by [29]

Fi(x,t) = ωi

(
ci · a
c2
s

+ (au + ua) :
(
cici − c2

s I
)

2c4
s

)
. (5)

f
eq
i (x,t) is the local equilibrium distribution function, and it is

defined as [18]

f
eq
i (x,t) = λip + ωi

[
ci · u
c2
s

+ uu :
(
cici − c2

s I
)

2c4
s

]
, (6)

where λ0 = (ω0 − 1)/c2
s + ρ0/p, λi = ωi/c

2
s (i �= 0), and cs

is the sound speed. The velocity and pressure of fluid flow are
computed by

u =
∑

i

cifi + �t

2
a, (7)

p = c2
s

1 − ω0

⎛⎝∑
i �=0

fi − ω0
|u|2
2c2

s

⎞⎠ . (8)

For the two-dimensional case considered here, the two-
dimensional-nine-velocity (D2Q9) LBGK model is usually
used, and the discrete velocity ci in the D2Q9 model is defined
as

ci =

⎧⎪⎨⎪⎩
(0,0)c, i = 0,

( cos[(i − 1)π/2], sin[(i − 1)π/2])c, i = 1,2,3,4,

2( cos[(i − 5)π/2 + π/4], sin[(i − 5)π/2 + π/4])c, i = 5,6,7,8,

(9)

where c = �x/�t is the particle velocity, �x and �t are the lattice spacing and time step, respectively, and cs = c/
√

3. The
weight coefficients ωi in the local equilibrium function are ω0 = 4/9, ωi = 1/9 (i = 1–4), ωi = 1/36 (i = 5–8).
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Through Chapman-Enskog analysis, the incompressible
Navier-Stokes equations can be recovered with ν = c2

s (τ −
1/2 − A)�t (the detailed derivation process is given in
the Appendix). For a fixed viscosity, it is clear that the
dimensionless relaxation time τ can be varied in a proper
range through tuning the parameter A. In addition, it should
be noted that the strain rate tensor S, which is included in the
correction term Si(x,t), can be computed locally in the LB
method [30],

S = ∇u + (∇u)T

2
= 1

2c2
s �t(A − τ )

×
(∑

i

cici

(
fi − f

eq
i

) + �t(au + ua)

)
. (10)

However, in the following simulations of natural convection
in a square cavity, �t(au + ua) can be neglected due to the
Boussinesq approximation.

B. The modified LBGK model for the
convection-diffusion equation

The evolution equation of the modified LBGK model for
the convection-diffusion equation reads

gi(x + ci�t,t + �t)

= gi(x,t) − 1

τφ

[
gi(x,t) − g

eq
i (x,t)

] + �tSi(x,t), (11)

where τφ is the dimensionless relaxation time, and Si(x,t) is
defined as

Si(x,t) = ω̃i

ci · B∇φ

τφ

+
(

1 − 1

2τφ

)
F i(x,t), (12)

where the first term on the right-hand side of the above equation
is also a correction term and B is a tunable parameter. F i(x,t)
is defined as

F i(x,t) =
(

1 − 1

2τφ

)
ci · φa

c2
s

. (13)

g
eq
i (x,t) is given by

g
eq
i (x,t) = ω̃iφ

[
1 + ci · u

c2
s

+ λ
uu :

(
cici − c2

s I
)

2c4
s

]
, (14)

where λ is a constant, which can be taken as 0 or 1. The
macroscopic quantity φ is calculated by

φ =
∑

i

gi . (15)

Equation (2) can also be recovered with D = c2
s (τφ − 1/2 −

B)�t . In addition, through Chapman-Enskog analysis, it is
easy to find that the gradient term ∇φ can be calculated locally
by

∇φ = 1

c2
s �t(B − τφ)

(∑
i

ci

(
gi − g

eq
i

) + �t

2
φa

)
. (16)

Similarly to above discussion, the term �tφa/2 can also be
neglected in the study of natural convection in a square cavity.

Remark 1. From Chapman-Enskog analysis, it can be
observed that f

(0)
i (x,t) = f

eq
i (x,t) at the zeroth-order in ε.

If the correction term, which includes a gradient operator, is
put in the equilibrium distribution function, the above equation
cannot be satisfied because the gradient operator appeared as
the first-order term in ε. On the other hand, the correction
terms in Eqs. (4) and (12) can be viewed as discretizations of
the viscous stress and heat or mass flux, and thus it seems more
reasonable that the correction terms are treated as an external
force or a source term.

Remark 2. The modification presented in this work can be
extended to other LBGK models, such as the widely used
DdQq model [31], in which the correction term Si(x,t) should
read

Si(x,t) = ωi

Aρ[∇u + (∇u)T ] :
(
cici − c2

s I
)

2τc2
s

+
(

1 − 1

2τ

)
ρFi(x,t). (17)

III. RESULTS AND DISCUSSION

In this section, to test the accuracy and stability of
the modified LBGK model, the steady Poiseuille flow, the
unsteady Womersley flow, and the natural convection in a
square cavity with a high Ra are studied. The nonequilibrium
extrapolation scheme proposed in [32] is applied for the
boundary conditions.

A. Steady Poiseuille flow

We first use the modified LBGK model to investigate the
steady Poiseuille flow in a plane channel, which is defined in
the region 0 � x � 2 and 0 � y � 1, and driven by a constant
pressure gradient. In the following simulations, the initial and
boundary conditions are set as follows:

u(x,y,0) = v(x,y,0) = 0, p(x,y,0) = p0,

u(x,0,t) = u(x,1,t) = v(x,0,t) = v(x,1,t) = 0, (18)

p(0,y,t) = pin,p(2,y,t) = pout,

where p0 = (pin + pout)/2, pin and pout are the pressure at the
inlet and outlet, and they are set to be 1.1 and 1.0, respectively.
Analytical solution for the Poiseuille flow is given by

u(y) = G

ν

L2

2

(
y

L
− y2

L2

)
, (19)

where L = 2 is the channel width, ν is the fluid kinematic
viscosity, and G = −∂p/∂x is the pressure gradient.

In our simulations, the Reynolds number is defined as
Re = Lumax/ν, where umax = L2G/8ν is the maximum
velocity along the center line of the channel; a grid size of
16 × 32 is used, and the dimensionless relaxation time τ is
fixed to 1.0. Thus the variation of Re can be realized by
changing the parameter A. To ensure that the numerical results
are in a steady state, the following convergence criterion is
used: ∑

i

|u(xi ,t + 1) − u(xi ,t)|
|u(xi ,t + 1)| � 10−10. (20)
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FIG. 1. (Color online) Comparisons between numerical results and analytical solutions of velocities at different Re numbers: (a) Re = 10,
A = 0.02; (b) Re = 15, A = 0.04; (c) Re = 20, A = 0.06; (d) Re = 25, A = 0.08. Solid line: analytical solutions; circle: numerical solutions.
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FIG. 2. (Color online) GRE at different lattice spacings and Re numbers: (a) nonmodified LBGK model, (b) modified LBGK model.
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TABLE I. GRE by the nonmodified LBGK model with different
Re numbers and different lattice spacings.

Eu

Re δx = 1/8 δx = 1/16 δx = 1/32 δx = 1/64

Re = 10 3.785 × 10−3 1.035 × 10−3 2.601 × 10−4 6.613 × 10−5

Re = 15 6.712 × 10−3 1.701 × 10−3 4.213 × 10−4 1.054 × 10−4

Re = 20 9.561 × 10−3 2.340 × 10−3 5.953 × 10−4 1.501 × 10−4

Re = 25 1.354 × 10−2 3.491 × 10−3 8.835 × 10−4 2.214 × 10−4

The results in Fig. 1 show that our numerical solutions are
in good agreement with analytical solutions. Furthermore, the
accuracies of the nonmodified (i.e., A = 0 in the modified
LBGK model) and modified LBGK model are also tested on
different grids. Toward that end, the following global relative
error (GRE) of velocity is used:

Eu = ||u − u∗||2
||u∗||2 , (21)

where u and u∗ are numerical and analytical solutions,
respectively. The results can be seen in Tables I and II, and
the relationship between GRE and lattice spacings is plotted
in Fig. 2. The slopes of the fitting lines in Fig. 2(a) are about
1.9433, 1.9963, 1.9957, and 1.9767 for Re = 10, 15, 20, and 25,
while the slopes in Fig. 2(b) are about 1.9863, 1.9906, 1.9958,
and 1.999 for Re = 10, 15, 20, and 25. These results clearly
demonstrate that, as with the nonmodified LBGK model, the
modified LBGK model is of second-order accuracy in space.
However, the results in Tables I and II show that when Re
increases, GRE obtained by the modified LBGK model is
larger than that derived by the nonmodified LBGK model.
This situation may be caused by the large value of A. To
confirm that, the influence of A on the accuracy of the modified
LBGK model is investigated. Without loss of generality, the
simulations are carried out at Re = 20, and the value of A

is varied from 0 to 2. The results in Fig. 3 show that GRE
increases with the increase of A. Therefore, to derive more
accurate results, the value of A must be chosen carefully, and
usually it should be less than 0.1.

B. Unsteady Womersley flow

In this subsection, the capacity of the modified LBGK
model in studying unsteady flows is investigated through using
unsteady Womersley flow, which is driven by a periodic pres-
sure gradient. The geometry and velocity boundary conditions
at the top and bottom walls of the problem are the same as the
plane Poiseuille flow, while a periodic instead of a constant
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FIG. 3. (Color online) GRE at different values of A.

pressure gradient is used,

∂P

∂x
= G cos(ωt), (22)

where G is the amplitude and ω = 2π/T is the frequency,
with T representing the period of the pressure. Under the
above conditions, we can obtain the analytical solution of the
Womersley flow,

u(y,t) = Re

[
i
G

ω

(
1 − cos[λ(2y/L − 1)]

cos λ

)
eiωt

]
, (23)

where λ2 = −iα2, i is the complex unit, and α2 = L2ω/4ν is
the Womersley number.

In our simulations, the velocity field is first initialized to be
zero, and the simulation always begin with 10T steps to reach
the convergence criterion,∑

i

|u(xi ,t + T ) − u(xi ,t)|
|u(xi ,t + T )| � 10−9. (24)

For the cases of α = 2.99, 4.22, and 7.49, a 32 × 64 grid
is used, while for a higher Womersley number of 11.85, a
much finer grid (64 × 128) is adopted to accurately capture
the variation of velocity at a pressure gradient with a high
frequency. As can be seen from Fig. 4, the numerical results
agree well with analytical solutions.

Next, we also test the accuracy of the modified LBGK
model in simulating unsteady Womersley flow through mea-
suring GRE at different lattice spacings, and we present a

TABLE II. GRE by the modified LBGK model with different Re numbers and different lattice spacings.

Eu

Re δx = 1/8 δx = 1/16 δx = 1/32 δx = 1/64

Re = 10, A= 0.02 3.589 × 10−3 9.328 × 10−4 2.381 × 10−4 6.022 × 10−5

Re = 15, A= 0.04 7.289 × 10−3 1.881 × 10−3 4.813 × 10−4 1.219 × 10−4

Re = 20, A= 0.06 1.332 × 10−2 3.354 × 10−3 8.434 × 10−4 2.118 × 10−4

Re = 25, A= 0.08 2.047 × 10−2 5.110 × 10−3 1.280 × 10−3 3.212 × 10−4
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FIG. 4. (Color online) Comparisons between numerical results and analytical solutions at different time and Womersley numbers:
(a) α = 2.99, (b) α = 4.22, (c) α = 7.49, (d) α = 11.85. Solid line: analytical solutions; symbols: numerical solutions.

comparison of the nonmodified and modified LBGK models
at t = T/4 and t = T in Tables III–VI. In addition, to see
the convergence rates of the nonmodified and modified LBGK
models more clearly, we also plot GRE at different lattice
spacings and Womersley numbers in Figs. 5 and 6, and we
found that the slopes of the fitting lines are in the range of
[1.95, 2.0], which indicates that both the nonmodified and
modified LBGK models have a second-order convergence
rate in space. In addition, to validate that the modified
LBGK model can still reduce the compressibility effect
when simulating incompressible fluid flows, we still study
the unsteady Womersley flow (α = 2.99) by the modified
LBGK model and compare the results with other models in
Table VII. Here, Re is defined as the same as that in the
Poiseuille flow. From Table VII, it is clear that, as the pressure
drop increases, GRE obtained by the modified model or the
D2G9 model at t = T has no apparent difference, while GRE
derived by the standard D2Q9 model increases rapidly due
to the compressibility effect. It is thus demonstrated that the
compressibility effect can also be eliminated by the modified
model, as the D2G9 model does.

C. Natural convection in a square cavity

To further investigate the stability of the modified LBGK
model, the natural convection in a square cavity is also
considered. The schematic of the problem is shown in Fig. 7,
where the horizontal walls are insulated while the two side
walls are maintained at different temperatures Th and Tc (Th >

Tc), respectively. The main dimensionless parameters of this
problem are Pr and Ra, which are defined as Pr = ν/D = 0.71,
Ra = gβ�T H 3/(νD), where β is the thermal expansion,
�T = Th − Tc is the temperature difference between the two
side walls, and H is the height of the cavity. Under the
Boussinesq approximation, all fluid properties are considered
as constant except density, which is assumed to be a linear
function of temperature in the buoyancy term.

For 103 � Ra � 106, the natural convection is a laminar
flow, and a 256 × 256 mesh grid is used. The streamlines
and isotherms are presented in Figs. 8 and 9. As seen from
these figures, there is only a vortex in the middle region
of the cavity when Ra is small, and while the heat transfer
is dominated by heat conduction, the isotherms are almost
parallel to the vertical direction. However, with the increase
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TABLE III. GRE by the nonmodified LBGK model with different Womersley numbers and lattice spacings at t = T/4.

Eu

Womersley number δx = 1/16 δx = 1/32 δx = 1/64 δx = 1/128

α = 2.99 5.831 × 10−3 1.441 × 10−3 3.726 × 10−4 9.215 × 10−5

α = 4.22 9.271 × 10−3 2.140 × 10−3 5.442 × 10−4 1.412 × 10−4

α = 7.49 1.532 × 10−2 3.747 × 10−3 9.425 × 10−4 2.502 × 10−4

α = 11.9 1.923 × 10−2 4.686 × 10−3 1.263 × 10−3 3.263 × 10−4

TABLE IV. GRE by the nonmodified LBGK model with different Womersley numbers and lattice spacings at t = T .

Eu

Womersley number δx = 1/16 δx = 1/32 δx = 1/64 δx = 1/128

α = 2.99 9.206 × 10−3 2.471 × 10−3 5.836 × 10−4 1.542 × 10−4

α = 4.22 1.743 × 10−2 4.371 × 10−3 1.115 × 10−3 2.732 × 10−4

α = 7.49 2.415 × 10−2 6.357 × 10−3 1.716 × 10−3 4.511 × 10−4

α = 11.9 3.420 × 10−2 8.931 × 10−3 2.473 × 10−3 6.541 × 10−4

TABLE V. GRE by the modified LBGK model with different Womersley numbers and lattice spacings at t = T/4.

Eu

Womersley number δx = 1/16 δx = 1/32 δx = 1/64 δx = 1/128

α = 2.99 5.527 × 10−3 1.425 × 10−3 3.715 × 10−4 9.366 × 10−5

α = 4.22 9.854 × 10−3 2.547 × 10−3 6.376 × 10−4 1.527 × 10−4

α = 7.49 1.625 × 10−2 4.326 × 10−3 1.083 × 10−3 2.813 × 10−4

α = 11.9 2.221 × 10−2 5.746 × 10−3 1.473 × 10−3 3.782 × 10−4

TABLE VI. GRE by the modified LBGK model with different Womersley numbers and lattice spacings at t = T .

Eu

Womersley number δx = 1/16 δx = 1/32 δx = 1/64 δx = 1/128

α = 2.99 9.136 × 10−3 2.364 × 10−3 6.153 × 10−4 1.584 × 10−4

α = 4.22 1.763 × 10−2 4.726 × 10−3 1.256 × 10−3 3.257 × 10−4

α = 7.49 2.347 × 10−2 6.315 × 10−3 1.674 × 10−3 4.458 × 10−4

α = 11.9 3.523 × 10−2 9.264 × 10−3 2.486 × 10−3 6.535 × 10−4
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FIG. 5. (Color online) GRE obtained by the nonmodified LBGK model at different lattice spacings and Womersley numbers: (a) t = T ,
(b) t = T/4.

013309-7



XUGUANG YANG, BAOCHANG SHI, AND ZHENHUA CHAI PHYSICAL REVIEW E 90, 013309 (2014)

2.5 3 3.5 4 4.5 5
3

4

5

6

7

8

9

−ln(δx)

−
ln

(E
u)

α=2.99

α=4.22

α=7.49

α=11.9

2.5 3 3.5 4 4.5 5
3

4

5

6

7

8

9

10

−ln(δx)

−
ln

(E
u)

α=2.99

α=4.22

α=7.49

α=11.9

(a) (b)

FIG. 6. (Color online) GRE obtained by the modified LBGK model at different lattice spacings and Womersley numbers: (a) t = T ,
(b) t = T/4.

of Ra, the convection effect becomes more significant. The
central vortex tends to become elliptic at Ra = 104, and it
breaks up into two vortices at Ra = 105. When Ra is increased
further to 106, the two vortices move toward the two side walls,
and a third vortex appears in the core of the cavity. In addition,
due to the convection effect, the isotherms become horizontal
in the center of the cavity, and they are only vertical in the
thin boundary layers near the two side walls. To check the
temperature variation more clearly, we present the temperature
distributions at the midheight of the cavity in Fig. 10, where
Ra is varied from 103 to 106. As shown in this figure, a linear
distribution of temperature can be observed for the case of
Ra = 103, which is consistent with the above discussion.
However, the temperature profile becomes horizontal in the
center of the cavity with the increase of Ra, and a much
steeper temperature gradient appears near the vertical walls.
We note that these results are qualitatively in line with the
results reported in some published literature [17,33,34].

To give a quantitative analysis, the maximum horizontal
velocity component at the midwidth (umax), the maximum
vertical velocity component at the midheight (vmax), the
maximum Nusselt number (Numax), and the averaged Nusselt
number (Nuav) along the hot wall are computed and compared
with some previous benchmark results. Here the averaged
Nusselt number Nuav is defined as

Nuav = − 1

Th − Tc

∫ Ly

0

(
∂T

∂x

)
wall

dy, (25)

TABLE VII. GRE as a function of pressure drop in Womersley flow.

Eu

Modified D2G9 D2Q9
�P Re umax Ma model model model

0.01 0.5 0.0177 0.0099 0.0025 0.0024 0.0024
0.02 1.0 0.0354 0.0199 0.0025 0.0024 0.0030
0.05 2.5 0.0884 0.0496 0.0025 0.0025 0.0075
0.1 5.0 0.1768 0.0992 0.0025 0.0025 0.0156
0.2 10.0 0.3536 0.1985 0.0025 0.0025 0.0232

where Ly is the height of the hot wall. We present the
quantitative comparison between present results and some
published results in Table VIII, and we find that the relative
errors, compared with the published results, are less than
0.41%, 0.83%, 1.52%, and 0.56% for umax, vmax, Numax, and
Nuav, which demonstrate that the numerical results are in good
agreement with the previous work.

The above simulations of the laminar flow are validations
of the modified LBGK model. To prove that the stability of the
LBGK model has been improved, the natural convection flows
with high Ra numbers (107 � Ra � 1012) are studied. In the
following simulations, the dimensionless relaxation factors τ

and τφ are set as τ = τφ = 0.6 and the parameters A and B are
smaller than 0.1. The instantaneous streamlines and isotherms
of different Ra numbers are plotted in Figs. 11 and 12. From
these figures, one can find that for 107 � Ra � 108, the vortices
are moving close to the boundary layer and the center vortex
becomes narrow. The isotherms are almost horizontal at the

u=v=0

u=v=0

g

x

y

u=v=0
T=Th

u=v=0
T=Tc

FIG. 7. Schematic diagram of the natural convection.
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FIG. 8. Streamlines of the natural convection: (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 106.

center of the cavity and become more and more dense near the
two side walls. However, with the increase of Ra (109 � Ra
� 1012), the fluid flow becomes turbulent, and the streamlines
in the whole region become very irregular and chaotic, which
also cause the isotherms to become irregular, especially at the
upper-left and bottom-right corners of the cavity. In addition,
we also consider the variation of time-averaged temperature
along the midheight of the cavity, and we present the results
in Fig. 13. As seen from this figure, with the exception of the
region near the walls, the temperature is almost constant, while
the temperature distribution near the two side walls becomes
much steeper for a larger Ra [see Fig. 13(b)]. Furthermore,
we also conduct a comparison between the present results and
those reported in the previous work in Fig. 14. For the cases of
Ra = 107 and 108, the temperature distributions agree well with
those given by Dixit et al. [19], while for the cases of Ra = 109

and 1010, the present results agree well with the data presented
by Zhuo et al. [20], but they differ slightly with the results

reported in Ref. [19]. Furthermore, to illustrate the temperature
fluctuations near the wall, the time-averaged Nu along the hot
wall for different Ra numbers is depicted in Fig. 15. It can be
observed that the maximum value of the heat flux is always
at the very beginning of the vertical boundary layer where the
mean temperature gradient is high due to the small thickness
of the developing laminar boundary layer. For higher Ra
(Ra � 1011), a local maximum can be clearly observed at
y = 0.6 due to the chaotic regime of the high Ra flows.
Increasing Ra leads to a more efficient heat exchange in the last
downstream part of the vertical wall. Next, in order to examine
the chaotic flow at high Ra, we also survey Nuav as a function
of time at Ra = 1011 and 1012. It is seen from Fig. 16 that Nuav

oscillates dramatically and the flow has become fully turbulent.
It is well known that, for 107 � Ra � 108, the natural

convection is in a transitional region, and it becomes turbulent
when Ra is increased to 109. However, there are few studies
on the critical Ra at which the flow becomes unsteady, and
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FIG. 9. (Color online) Isotherms of the natural convection: (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, (d) Ra = 106.
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FIG. 10. (Color online) Temperature profiles at the midheight of
the cavity from Ra = 103 to 106.

TABLE VIII. Comparisons between the numerical results and the
literature results (Ra = 103–106).

Guo et al. Horrmann Mezrhab Our
Ra [17] et al. [34] et al. [33] results

103 umax 3.655 3.655 3.667 3.652
vmax 3.703 3.703 3.714 3.703

Numax 1.510 1.510 1.508
Nuav 1.116 1.116 1.112 1.115

104 umax 16.194 16.180 16.202 16.171
vmax 19.688 19.630 19.644 19.622

Numax 3.597 3.531 3.543
Nuav 2.244 2.244 2.241 2.247

105 umax 34.640 34.740 34.805 34.813
vmax 68.381 68.640 68.630 68.550

Numax 7.823 7.730 7.762
Nuav 4.541 4.522 4.519 4.544

106 umax 64.313 64.837 64.793 64.675
vmax 218.314 220.461 219.663 220.135

Numax 17.709 17.536 17.640
Nuav 8.816 8.825 8.817 8.813
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FIG. 11. The instantaneous streamlines of the natural convection: (a) Ra = 107, (b) Ra = 108, (c) Ra = 109, (d) Ra = 1010, (e) Ra = 1011,
(f) Ra = 1012.
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FIG. 12. (Color online) The instantaneous isotherms of the natural convection: (a) Ra = 107, (b) Ra = 108, (c) Ra = 109, (d) Ra = 1010,
(e) Ra = 1011, (f) Ra = 1012.
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FIG. 13. (Color online) Temperature profiles (time-averaged) at the midheight of the cavity from Ra = 107 to 1012: (a) the entire cavity,
(b) enlarged view near the left wall.

this problem is worth investigating. To find the critical Ra, we
consider the variations of Nuav and umax over time at different
Ra numbers, and we show the results in Fig. 17. From this
figure, we can see that for the case of Ra = 1.8 × 108, the
variation of umax tends toward stability, and Nuav oscillates a
bit over time. As Ra further increases, the variations of both
Nuav and umax become oscillating and are with increasing
amplitude. From the above, we can conclude that the critical
Ra is around 1.8 × 108, above which the natural convection
may become unsteady.

In addition, we also conduct a quantitative analysis on
nature convection for Ra = 107–1012, and we present the
time-averaged results and the existing data in Table IX. It
shows that the relative errors of the numerical results at
the 512 × 512 and 1024 × 1024 grids are less than 6.94%,

4.73%, 6.05%, and 2.75% for umax, vmax, Numax, and Nuav,
which demonstrate that the present results with the 512 × 512
grid are still accurate even at a very high Ra. Moreover,
it can also be found that our results agree well with the
previous work except for the data at Ra = 1010 and 1012 by
Markatos et al. [36]. This disagreement was interpreted by
Barahos et al. [37] to indicate that the use of the standard k-ε
model and logarithmic wall functions for the temperature and
velocity in Ref. [36] lead to unusual overpredictions for Nu. To
further validate our results, we also investigate the relationship
between NuavRa−1/3 and Ra. As shown in Fig. 18, our results
agree well with the solutions given by Barahos et al. [37]
and Markatos et al. [36] when Ra � 108. However, when Ra
becomes much larger (Ra � 109), our results start deviating
from the solutions of Markatos et al. [36], but they agree well
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FIG. 14. (Color online) A comparison between present and previous works on temperature profiles (time-averaged) at the midheight of the
cavity: (a) Ra = 107–108, (b) Ra = 109–1010.
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FIG. 15. (Color online) Time-averaged Nu along the hot wall: (a) Ra = 107–109, (b) Ra = 1010–1012.
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FIG. 16. (Color online) The variation of Nuav as a function of time: (a) Ra = 1011, (b) Ra = 1012.
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TABLE IX. Comparisons between the numerical results and the literature results (Ra = 107–1012).

Ra umax vmax Numax Nuav

107 Le Quéré [35] 148.58 699.24 16.523
Mezrhab et al. [33] 148.40 998.30 16.510
Zhuo et al. [20] 148.32 695.50 38.269 16.512
our results (512 × 512) 149.12 696.13 39.003 16.260
our results (1024 × 1024) 151.19 698.22 39.078 16.393

108 Le Quéré [35] 321.88 2222.4 30.225
Mezrhab et al. [33] 305.33 2169.6 30.033
Zhuo et al. [20] 321.81 2207.9 78.762 30.195
Markatos et al. [36] 514.30 1812 61.06 32.045
our results (512 × 512) 329.06 2187.6 76.607 30.173
our results (1024 × 1024) 337.83 2208.1 77.113 30.168

109 Zhuo et al. [20] 526.40 6991.7 54.510
our results (512 × 512) 593.46 6703.2 168.55 53.931
our results (1024 × 1024) 613.77 6810.4 176.87 54.336

1010 Markatos et al. [36] 2323 16890 361.47 156.85
Zhuo et al. [20] 1359 22135 98.171
Barahos et al. [37] 97.60
our results (512 × 512) 2476 19726 321.77 96.638
our results (1024 × 1024) 2485 21651 341.81 98.013

1011 Barahos et al. [37] 165.10
Henkes et al. [38] 171.0
our results (512 × 512) 3809 62072 525.85 167.89
our results (1024 × 1024) 4093 65050 546.68 172.63

1012 Markatos et al. [36] 12890 115600 2007.8 840.13
our results (512 × 512) 19323 156707 682.53 267.13
our results (1024 × 1024) 20427 164483 726.48 273.38

with the solutions of Barahos et al. [37]. These results also
demonstrate that the solutions obtained by Markatos et al.
yield unusual overpredictions for Nu.

Finally, to show the generality of the modification in the
LBGK model, we also extend it to other models to study
natural convection, and we present the results in Table X,
where the results by LKS are also listed. As is seen from this
table, the modified D2G9 model has the highest stability, while
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FIG. 18. (Color online) The variation of Nuav as a function of Ra.

the modified D2Q9 model, the He-Luo model, and LKS are
divergent at high Ra.

IV. CONCLUSIONS

In this work, we showed how the stability of the LBGK
model can be improved through a generalized modification.
This modification is similar to LKS, but it has some important
improvements. The first is that the law of mass conservation
is satisfied in the modified LBGK model for incompressible
Navier-Stokes equations. The second is that the correction term
is put in the evolution equation rather than in the equilibrium
distribution function, which is more reasonable. The third is
that this modification is not limited to a specific LB model,
and it can be extended to any other LB models. Finally, a
local computational method for the gradient operator in the
correction term is presented, which allows the whole collision

TABLE X. Comparison of different modified models for simu-
lating natural convection.

Modified Modified Modified
Ra D2G9 model He-Luo model D2Q9 model LKS

107 16.260 16.558 16.281 16.073
108 30.173 30.087 29.082 28.586
109 53.931 53.637 43.572 42.857
1010 96.638 94.174 80.741
1011 167.89 153.22
1012 267.13
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process to be implemented locally. For this reason, all of the
above numerical simulations were performed on GPU, and a
high computational efficiency can be obtained.

The numerical results of the steady Poiseuille flow and the
unsteady Womersley flow show that, as with the other LBGK
models, the modified LBGK model also has a second-order
accuracy, while the compressibility effect can be eliminated,
which is similar to the previous incompressible LBGK model.
In addition, it is also found that the value of the tunable param-
eter must be chosen carefully, and usually it should be smaller
than 0.1. To test the stability of the modified LBGK model, we
have studied the natural convection in a square cavity, and we
found that a very high Ra (Ra = 1012) can be achieved and the
numerical results are in good agreement with some previous
results. Furthermore, a comparison among different models
shows that the modified D2G9 model is the most stable. At
last, we also investigated the critical Ra of nature convection,
and we found that it is about 1.8 × 108. If Ra exceeds this
value, the natural convection will become unsteady.
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APPENDIX: CHAPMAN-ENSKOG ANALYSIS ON THE
MODIFIED LBGK MODEL

From Eqs. (4), (5), (6), (13), and (14), one can find that fi ,
f

eq
i , Si , gi , g

eq
i , and Si satisfy∑

i

f
eq
i =

∑
i

fi = ρ0,

∑
i

cif
eq
i =

∑
i

cifi + 1

2
�ta = u,

∑
i

cicif
eq
i = pI + uu, (A1a)

∑
i

Si = 0,
∑

i

ciSi =
(

1 − 1

2τ

)
a,

∑
i

ciciSi = c2
s A[∇u + (∇u)T ]

τ
+

(
1 − 1

2τ

)
(au + ua),

(A1b)∑
i

g
eq
i =

∑
i

gi = φ,
∑

i

cig
eq
i = φu,

∑
i

cicig
eq
i = c2

s φI + λφuu, (A1c)

∑
i

Si = 0,
∑

i

ciSi = c2
s B∇φ

τφ

+
(

1 − 1

2τφ

)
φa,

∑
i

ciciSi = 0. (A1d)

In the Chapman-Enskog analysis, the distribution function
and the time and space derivatives can be expanded as

fi = f
(0)
i + εf

(1)
i + ε2f

(2)
i + · · · , (A2a)

gi = g
(0)
i + εg

(1)
i + ε2g

(2)
i + · · · , (A2b)

∂

∂t
= ε

∂

∂t1
+ ε2 ∂

∂t2
, ∇ = ε∇1. (A2c)

Applying the Taylor series expansion to the evolution
equations (3) and (11), we can get the following equations:

O(ε0) f
(0)
i = f

eq
i , (A3a)

O(ε) D1if
(0)
i = − 1

τ�t
f

(1)
i + S

(1)
i ,

(A3b)

O(ε2) ∂t2f
(0)
i + D1if

(1)
i + �t

2
D2

1if
(0)
i = − 1

τ�t
f

(2)
i , (A3c)

O(ε0) g
(0)
i = g

eq
i , (A4a)

O(ε1) D1ig
(0)
i = − 1

τφ�t
g

(1)
i + S

(1)
i ,

(A4b)

O(ε2) ∂t2g
(0)
i + D1ig

(1)
i + �t

2
D2

1ig
(0)
i = − 1

τφ�t
g

(2)
i , (A4c)

where D1i = ∂/∂t1 + ci · ∇1.
Applying Eq. (A3b) to the left-hand side of Eq. (A3c), we

can obtain

O(ε2) ∂t2f
(0)
i + D1i

(
1 − 1

2τ

)
f

(1)
i + �t

2
D1iS

(1)
i

= − 1

τ�t
f

(2)
i . (A5)

With the aid of Eqs. (A1a), (A2a), and (A3a), we have∑
i

f
(k)
i = 0, k > 0, (A6)

∑
i

cif
(1)
i = −1

2
�ta(1),

∑
i

cif
(k)
i = 0, k > 1. (A7)

From Eqs. (A1a), (A1b), (A6), and (A7), the moments of
Eq. (A3b) lead to the first-order recovered equations in ε as

O(ε1)∇1 · u = 0, (A8a)

O(ε1) ∂t1 u + ∇1 · (pI + uu) = a(1). (A8b)

The moments of Eq. (A5) give the second-order recovered
equations in ε2 as

O(ε2) ∂t2 u + ∇1 ·
(

1 − 1

2τ

)
�(1)

= −�t

2τ
∇1 · {c2

s A[∇1u + (∇1u)T ]}

− �t

2
∇1 ·

(
1 − 1

2τ

)
(a(1)u + ua(1)), (A9)

where �(1) = ∑
i cicif

(1)
i .
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Utilizing Eq. (A3b), we get

�(1) =
∑

i

cicif
(1)
i = −τ�t

∑
i

cici

(
D1if

eq
i − S

(1)
i

)
= −c2

s �t(τ − A)[∇1u + (∇1u)T ]

− �t

2
(a(1)u + ua(1)) + O(�tMa2). (A10)

Under the assumption of low Mach number, the term
O(�tMa2) can be neglected. Substituting Eq. (A10) into (A9)
and combining the equations at t1 and t2 scales, we can get the
incompressible Navier-Stokes equations,

∇ · u = 0, (A11a)

∂tu + ∇ · uu = −∇p + ∇ · ν[∇u + (∇u)T ] + a, (A11b)

where ν = c2
s (τ − 1

2 − A)�t .
In the same way, with the aid of Eq. (A4b), we can rewrite

Eq. (A4c) as

O(ε2) ∂t2g
(0)
i + D1i

(
1 − 1

2τφ

)
g

(1)
i + �t

2
D1iS

(1)
i

= − 1

τφ�t
g

(2)
i . (A12)

The moments of Eqs. (A4b) and (A12) can give the recovered
equations in ε and ε2 as

O(ε1) ∂t1φ + ∇1 · φu = 0, (A13a)

O(ε2) ∂t2φ + ∇1 ·
(

1 − 1

2τφ

)∑
i
cig

(1)
i

+ �t

2
∇1 ·

[
c2
s B∇1φ

τφ

+
(

1 − 1

2τφ

)
a(1)

]
= 0. (A13b)

Based on Eq. (A4b), we have∑
i

cig
(1)
i = −τφ�t

∑
i

ci

(
D1ig

eq
i − S

(1)
i

)
= −τφ�t

[
∂t1φu + λ∇1 · (φuu)

+ c2
s

(
1 − B

τφ

)
∇1φ −

(
1 − 1

2τφ

)
φa(1)

]
= c2

s (B − τφ)�t∇1φ − �t

2
φa(1) + O(�tMa2).

(A14)

Substituting Eq. (A14) into Eq. (A13b) and combining the
equations at t1 and t2 scales, the convection-diffusion equation
can also be recovered,

∂φ

∂t
+ ∇ · uφ = ∇ · D∇φ, (A15)

where D = c2
s (τφ − 1/2 − B)�t .
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