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We introduce a quantum Monte Carlo algorithm to measure the Rényi entanglement entropies in systems of
interacting bosons in the continuum. This approach is based on a path-integral ground state method that can be
applied to interacting itinerant bosons in any spatial dimension with direct relevance to experimental systems of
quantum fluids. We demonstrate how it may be used to compute spatial mode entanglement, particle partitioned
entanglement, and the entanglement of particles, providing insights into quantum correlations generated by
fluctuations, indistinguishability, and interactions. We present proof-of-principle calculations and benchmark
against an exactly soluble model of interacting bosons in one spatial dimension. As this algorithm retains the
fundamental polynomial scaling of quantum Monte Carlo when applied to sign-problem-free models, future
applications should allow for the study of entanglement entropy in large-scale many-body systems of interacting
bosons.
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I. INTRODUCTION

Entanglement is a fundamental property of quantum me-
chanical systems, one which reflects the nonclassical informa-
tion shared between distinct bipartitions of a quantum state.
It is well known that entanglement may be exploited for in-
formation processing [1] via quantum algorithms that provide
an exponential speedup over their classical counterparts [2] as
well as for secure communication [3] and teleportation [4].
These and other applications have initiated a broad effort
to find practical systems where it is feasible to create and
manipulate persistent entangled states. Additionally, the study
of entanglement has had a significant impact on a variety
of fields including condensed matter, atomic and molecular
physics, quantum optics, quantum information, and high-
energy theory. The description of entanglement in terms of
the concepts of information theory [5] has proved particularly
transformative in condensed-matter physics, providing a new
paradigm with which to quantify quantum correlations [6].
A striking application of these ideas is in the classification
of exotic topological phases which cannot be fully described
by local correlation functions alone [7–9]. Entanglement can
also been used to identify the universality class of quantum
critical points and may be capable of quantifying the effective
low-energy degrees of freedom that occur in the corresponding
critical theories.

In order to access and study entanglement in interacting
models of quantum many-body systems, large-scale simu-
lations are a necessary tool. For example, diagonalization
techniques or the density matrix renormalization group allow
for the measurement of entanglement quantities in a restricted
class of systems through their essentially complete knowledge
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of the ground state wave function [10,11]. Quantification of
entanglement in quantum Monte Carlo (QMC) simulations
had not been possible prior to 2010, when the introduction
of “replica trick” methods [12,13] provided, for the first time,
a scalable procedure for measuring the Rényi entanglement
entropy in the ground state of lattice Hamiltonians, without
requiring knowledge of the full reduced density matrix. The
simplicity and broad applicability of the replica trick for QMC
studies is illustrated by its rapid adoption to a wide range of
ground state methods [14–21], while the finite temperature
generalization [13] has extended the types of systems one
can examine [22–26], allowing observation of the competition
between thermal mixing and quantum entanglement.

A common theme in all these works is that the entanglement
is measured between two spatial subregions and investigated
as the size of the bipartition is modified. This has led to the
widespread confirmation of an “area law” in the ground state of
local bosonic Hamiltonians [27–29], where the entanglement
entropy scales with the size of the boundary between spatial
subregions. More interestingly perhaps, this approach has
facilitated the calculation of universal quantities that appear in
subleading scaling terms, allowing for new methods to identify
and characterize quantum phases and phase transitions. The
consequences of this approach are potentially far reaching. For
example, the ability of the Rényi entropies to access the central
charge c of a (1 + 1)-dimensional quantum critical point’s
associated conformal field theory [30–33] was a powerful im-
provement over previous techniques that required calculation
of subleading terms of the free energy and the elimination of
nonuniversal velocities [34,35]. There is currently an active
multidisciplinary effort to extend this paradigm to higher-
dimensional quantum critical points, where a synergy between
numerical lattice simulations [16,36,37], field theory [38–40],
and holography [41,42] aims to identify similar quantities
in the entanglement entropy that can serve to classify,
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characterize, and constrain interacting fixed points of general
interest to condensed-matter physicists [43–46].

Given their potential, it is desirable to attempt to extend
these methods to off-lattice itinerant systems, with continuous
degrees of freedom. While the investigation of entanglement
in the spatial continuum is not new (e.g., see Refs. [47–61]),
the class of models where it could actually be measured has
been restricted to those without interactions or consisting of a
small number of particles. A general system with continuous
degrees of freedom has an infinite Hilbert space, and thus there
is no upper bound on the available entanglement [62,63]. In
fact, these infinite entanglement states are trace-norm dense in
the Hilbert space [64], but physical states with finite energy
(such as a quantum liquid or a gas of trapped ions) have a
bounded entanglement.

For localized particles, it is most natural to partition the
system into spatial subregions. However, when the particles are
itinerant, additional subtleties arise, and one may also choose
to partition into subsets of particles that are not localized to a
region of space [65–72]. For systems of identical particles, this
“particle partitioned” entanglement can arise from exchange
statistics alone. Proposals to quantify and ultimately use this
type of entanglement have been deterred by the fact that a
subsystem of identical particles is not physically addressable
through a measurement. Consequently, there has been much
debate in the literature over what the most appropriate
measures of entanglement of identical particles are [73–77].

The need for new insights is pressing, as itinerant boson
systems in the continuum are of particular experimental
interest, and the capabilities for manipulating quantum fluids
such as ultracold Bose gases and superfluid helium-4 are
mature and highly developed. A canonical model for such
systems consists of N interacting itinerant particles in the
spatial continuum that is described by the nonrelativistic
Hamiltonian,

H =
N∑

i=1

(
− �

2

2mi

∇2
i + Ui

)
+

∑
i<j

Vij , (1)

where mi is the mass of the ith particle subject to an external
potential Ui and two-body interaction Vij . This Hamiltonian is
general enough to describe a wide variety of systems, including
trapped ultracold atomic gases at low density (where Ui could
be a harmonic potential and Vij a hard-core repulsion) or a
high density quantum fluid such as helium-4 (with Ui = 0
and Vij an empirical dipole-dipole pair potential). Thus,
a method capable of computing the entanglement entropy
for bipartitions of the ground states of Eq. (1) could find
immediate application in experimentally accessible quantum
many-body states of matter. To this end, an alternative QMC
formulation at T = 0 based on the Feynman path-integral
description has been recently employed to compute the Rényi
entanglement entropy of a system of interacting itinerant
bosons in one spatial dimension [20] under a “particle”
bibipartitioning. In this paper, we present the details of the
algorithm presented in Ref. [20] and introduce extensions
to allow for the measurement of entanglement for spatial
bipartitions of itinerant bosons as well a method to compute the
accessible entanglement that could be potentially transferred
to a register for quantum information processing purposes.

The paper is organized as follows. We first define the
Rényi entanglement entropy in terms of the reduced density
matrices of a system and present a precise description of the
various types of bipartitions that are possible for itinerant
particles. After describing the implications of such definitions
for some canonical states in a simple model of itinerant bosons
on a lattice, we introduce our proposed QMC method and
provide its algorithmic construction. The numerical method
is then benchmarked against an exactly soluble system of
harmonically interacting bosons in a harmonic potential, where
the entanglement entropy can computed analytically. After
presenting results on the scaling properties of the algorithm
with various model parameters, we discuss further algorithmic
extensions, as well as the classes of system where they can be
immediately applied.

II. RÉNYI ENTANGLEMENT ENTROPIES

To define a measure of bipartite entanglement, one first
chooses a bipartition that divides the system into two subsys-
tems: A and B. Given the density matrix of the system ρ, this
bipartition defines the reduced density matrix of subsystem
A, by “tracing out” all degrees of freedom in the other
subsystem B,

ρA = TrBρ

Here we restrict our discussion to pure states of the full system
|�〉, where ρ = |�〉〈�|. The bipartite entanglement entropy
is a measure of the mixedness of ρA; in particular, we consider
the Rényi entropies,

Sα[ρA] ≡ 1

1 − α
ln

(
Trρα

A

)
, (2)

where α is the Rényi index. For α → 1 the Rényi entropy is
equivalent to the von Neumann entropy: S = −Tr ρA ln ρA. If
ρ can be written as a product state under this bipartition, ρA

will be pure state with Trρα
A = 1 and all Sα[ρA] will vanish.

A. Spatial mode entanglement

For systems of localized particles, such as spin models, a
natural choice of subsystem is a spatial subregion as shown in
Fig. 1, and entanglement is most commonly studied under such

FIG. 1. (Color online) A comparison of spatial and particle bipar-
titions in the continuum defined by particles shaded light (region A)
or dark (region B). Particle bipartitions are possible even in the case of
their indistinguishability through a fictitious particle labeling scheme
and subsequent average over all possible relabelings.
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a bipartition. For itinerant particle systems, a spatial subregion
corresponds to a subspace of a Fock space of single particle
spatial modes; thus, spatial-partitioned entanglement is a type
of mode partitioned entanglement. Here we discuss computing
Rényi entropy under a generic mode bipartition.

Given a single particle basis {|ψm〉}, we choose a subset of
modes {mA} and bipartition the single particle Hilbert space
accordingly such that {m} ≡ {mA} ∪ {mB}. We can define
a basis of the mode-occupation number eigenstates that is
explicitly a tensor product under this bipartition,

|{nA,nB}〉 ≡ |nA〉 ⊗ |nB〉,
where nm are the mode-occupation numbers, n = {nm} and the
eigenstates in each subset of modes are defined in the usual
second quantized form,

|n〉 ≡
∏
m

1√
nm!

(ψ†
m)nm |0A〉,

with field operators the ψ
†
m. For spatial mode entanglement,

the subset A corresponds to a spatial subregion and {mA} are
spatially localized modes.

A general N -body state |�〉 can be written in this mode-
bipartitioned basis as

|�〉 =
∑

nA,nB

cnAnB
|nA〉 ⊗ |nB〉;

particle number conservation is enforced if

N =
∑
mA

nmA
+

∑
mB

nmB
∀ cnAnB

�= 0.

The reduced density matrix ρA may then be defined as

ρA ≡
∑
nB

〈nB |�〉〈�|nB〉 =
∑

nA,n′
A

λnAn′
A
|nA〉〈n′

A|,

where the reduced density matrix elements are defined as

λnA,n′
A

≡
∑
nB

cnAnB
c∗

nB n′
A
.

To quantify the mode entanglement, we consider the Rényi
entropies Sα(A) ≡ Sα[ρA] as defined in Eq. (2). A general
unentangled product state under a particular mode bipartition
takes the form

|�〉 =
∑
nA

cnA
|nA〉 ⊗

∑
nB

cnB
|nB〉;

clearly, all mode-occupation number eigenstates |n〉 are
unentangled under any bipartition of these modes. We note
that this mode entanglement depends on both the single particle
mode basis and the bipartition chosen, and may arise even in
the absence of interactions between particles. For example,
if the single particle ground state |φ0〉 has nonzero overlap
with both {|ψmA

〉} and {|ψmB
〉}, then |φ0〉 has nonzero mode

entanglement due to particle fluctuations between modes;
consequently, any noninteracting N -body ground state will
also be entangled under this mode bipartitoning. However, if
{|ψm〉} is chosen to be the single particle eigenbasis of the
Hamiltonian, then mode entanglement will only arise due to
interactions in systems of bosons.

B. Particle partitioned entanglement

For systems of itinerant particles, instead of partitioning the
system into subsets of modes (including spatial subregions)
we may choose to partition the system into subsystems of
particles [65–68,70] as depicted in Fig. 1. A particle bipartition
of a system of indistinguishable particles is entirely determined
by the number of particles in the subsystem, n. The particle
partitioned entanglement is a function of the n-body reduced
density matrix ρn, which is most naturally defined in first
quantized notation:

ρn ≡
∫

dd rn · · · dd rN−1〈rn · · · rN−1|ρ|rn · · · rN−1〉.

Note that we have chosen the normalization Trρn = 1. The
particle partitioned entanglement can be quantified through
the Rényi entropies Sα(n) ≡ Sα[ρn]. The particle entanglement
entropies only vanish when the many-body state is in a product
state in first quantized notation, i.e., when all particles are
condensed into one mode ψm:

Sα(n) = 0 ⇒ |�〉 =
N−1∏
i=0

|ψm〉i = |nm = N〉.

Clearly many-fermion systems always have nonzero parti-
cle entanglement entropy, but for systems of bosons with
a nondegenerate single particle ground state, the particle
entanglement entropy will vanish in the noninteracting limit,
when the ground state is a Bose-Einstein condensate. However,
bosonic systems may have “trivial” particle entanglement
entropy as well, when the single particle ground state is
degenerate, including the case where the system is taken
to be a composite of two isolated noninteracting parts. We
emphasize, therefore, that particle entanglement entropy can
arise both from interactions as well as a consequence of particle
indistinguishability.

C. Entanglement of particles

While both mode and particle partitioned entanglement
entropies may give insight into the nature of a quantum
state, neither is a direct measure of the physically accessible
entanglement that may be experimentally accessed as a non-
local resource for quantum information processing protocols,
such as quantum teleportation [78]. Accessing entanglement
as a resource requires the ability to perform local physical
operations on the subsystems. However, for those defined
by mode and particle partitions, arbitrary local physical
operations cannot be performed on the relevant subsystem.

In systems of identical particles, a subset of particles that
defines ρn is not accessible, even in principle, due to the
indistinguishability of the particles. However, recent work by
Killoran et al. [79] presents a protocol to transfer particle
entanglement of identical particles into mode entanglement
which is physically accessible. While Ref. [79] relies on non-
local operations that, in principle, can generate entanglement
on their own, Killoran et al. provide conditions under which
these nonlocal operations are sufficiently passive to merely
transfer the particle entanglement of the initial state without
generating additional entanglement [79]. For distinguishable
particles, it may be possible to address physical operations on
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one species of particle, and therefore entanglement under a
partition between species may be physically accessible [80].

In contrast, a subset of modes is in general addressable
by local physical operations. However, here we assume
that the system of itinerant particles has an underlying
conservation law that implies a particle number superselection
rule; such a superselection rule forbids physical operations
from creating superpositions of eigenstates of particle number
with different numbers of particles [81] and thus restricts the
local physical operations that are available. As discussed by
Wiseman and Vaccaro [76], entanglement generated purely by
occupation number fluctuations between subsystems cannot
be extracted by local physical operations that are constrained
by such a superselection rule. To observe such occupation
number mode entanglement (i.e., distinguishing the pure
entangled state from a mixed state) requires a common
reference phase to be shared by both subsystems [81]; such
a shared reference phase requires a nonlocal resource which
could introduce entanglement on its own [82]. Consequently,
mode-bipartitioned entanglement entropies generally overes-
timate the physically accessible entanglement of an itinerant
particle system. However, there are quantum protocols which
can take advantage of mode-occupation entanglement in the
presence of superselection rules [54].

To get a more direct measure of the entanglement that
is accessible as a nonlocal physical resource, Wiseman and
Vaccaro introduced the notion of the entanglement of particles
based on an operational definition of entanglement [76]. The
entanglement of particles Ep is defined as the amount of
entanglement under a particular mode bipartition given the
physical limitations of a superselection rule. For the mode-
bipartitioned reduced density matrix ρA, Ep is determined
by projecting onto a state of definite local particle number and
taking the weighted average of an entanglement measure. Here
we define Ep for the Rényi entropies as

Eα
p(A) ≡

∑
n

PnSα

[
ρ

(n)
A

]
, (3)

where ρ
(n)
A is the projected reduced density matrix,

ρ
(n)
A ≡ 1

Pn

P̂nρAP̂n,

P̂n are projection operators onto eigenstate of particle num-
ber in A with n particles, and Pn are the probabilities
Pn = 〈�|P̂n|�〉.

Since ρ
(n)
A has a definite particle number, Ep is not

sensitive to subsystem occupation number entanglement in
|�〉. Nonzero entanglement of particles requires that the
projected state P̂n|�〉 is not product state under the mode
bipartition for at least one value of n; this is not, in general, true
even when |�〉 itself is not a product state, as the mixedness
of ρA may be solely due to particle fluctuations between
subsystems. Consequently, for a given mode bipartition, the
mode entanglement is an upper bound on the entanglement of
particles:

Eα
p(A) � Sα(A).

Additionally, a nonzero particle partitioned entanglement
is required to have nonzero entanglement of particles. For

all particle entanglements to vanish, all particles mush be
condensed into one single-particle mode |ψ0〉 such that |�〉 =
|n0 = N〉. In an arbitrary mode basis, |ψ0〉 will have nonzero
overlap with both A and B modes such that

|ψ0〉 =
∑
mA

ψ0(mA)|ψmA
〉 +

∑
mB

ψ0(mB)|ψmB
〉,

where ψ0(mA/B) are the overlaps with the A and B modes. We
may define two modes that are completely localized to A and
B accordingly,

|a0〉 ≡ 1√
pA

∑
mA

ψ0(mA)|ψmA
〉,

|b0〉 ≡ 1√
pB

∑
mA

ψ0(mB)|ψmB
〉,

where pA/B ≡ ∑
mA/B

|ψ0(mA/B)|2. The many-body conden-
sate |�〉 may be written as

|�〉 = 1√
N !

(
√

pAa
†
0 + √

pBb
†
0)N |0〉.

We can define a Fock space from the modes a
†
0 and b

†
0, which

we represent as {|nA,nB〉}. The condensate is then written in
this basis as

|�〉 =
N∑

n=0

√(
N

n

)
p

n/2
A p

(N−n)/2
B |n,N − n〉.

In this form it is clear that for the condensate, ρ
(n)
A is a pure

state for all n:

|�〉 = |n0 = N〉 ⇒ ρ
(n)
A = |n,N − n〉〈n,N − n|.

Consequently, nonvanishing entanglement of particles requires
a nonvanishing particle entanglement:

Eα
p > 0 ⇒ Sα(n) > 0.

We see then that while both mode and particle partitioned
entanglement entropies may detect entanglement that is not
physically accessible as a nonlocal resource, both must be
nonzero for the entanglement of particles to be nonvanishing.

III. ENTANGLEMENT IN SYSTEMS
OF ITINERANT BOSONS

To elucidate the behavior of the different entanglement
measures described above, we consider several canonical
phases that appear in lattice models of itinerant bosons (see
also [56,68,70,82] for related discussions). For concreteness
we present a study of the 1D Bose-Hubbard model on a lattice
of length L with N bosons interacting via the Hamiltonian

HBH =
∑

j

[
−t(b†j bj+1 + H.c.) + U

2
nj (nj + 1) − μjnj

]
,

(4)
where b

†
j (bj ) is the creation (annihilation) operator, nj is

the number operator, t is the hopping strength, U is an on-site
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interaction, and μj is a site dependent chemical potential. Here
we consider t > 0 and unit filling N = L.

The ground state of noninteracting bosons (U = 0) with
uniform μj is a perfect Bose condensate where all particles
condense into the single particle ground state mode

φ
†
0 = 1√

L

∑
j

b
†
j ,

such that the N particle state is

|BEC〉 ≡ 1√
N !

(φ†
0)N |0〉.

Given that |BEC〉 is a product state in first quantized notation,
all particle entanglements vanish: SBEC

α (n) = 0. However, due
to the delocalized nature of φ0, |BEC〉 is highly entangled
under any spatial bipartition [47,56]. For a subregion A of
length � the second Rényi entropy is [56]

SBEC
2 (�) = − ln

⎧⎨
⎩

L∑
j=0

[
L!

2L(L − j )!j !
�j (L − �)L−j

]2
⎫⎬
⎭ ,

which scales as (1/2) ln � for large L.
In the strongly repulsive limit, U → +∞, the ground state

is a Mott insulator, where each site is singly occupied:

|Mott〉 ≡
∏
j

b
†
j |0〉.

The Mott insulator is manifestly a product state in the spatial
mode basis, and thus all spatial entanglement entropies vanish:
SMott

α (�) = 0. However, the indistinguishability of the particles
leads to a large particle entanglement:

SMott
2 (n) = ln

L!

(L − n)!n!
.

The scaling of SMott
2 (n) ranges from ln L for n = 1 to L ln 2

for n = L/2 and L � 1.
For strongly attractively bosons, in the limit U → −∞ and

all μj equal, the ground state is a “Schrödinger’s cat” -like state
which is an equal superposition of all states with N particles
occupying the same site:

|Cat〉 ≡
∑

j

1√
L

√
N !

(b†j )N |0〉.

This cat state has both nonzero particle and spatial entangle-
ment entropies:

SCat
2 (n) = ln L,

SCat
2 (�) = − ln

[
1 − 2

�

L

(
1 − �

L

)]
.

The cat state is unstable to local perturbations and if
μj > μi ∀i �=j for some site j , then in the U → −∞ limit the
cat state will collapse to a state where particles are localized
on the site j :

|Nj 〉 ≡ 1√
N !

(b†j )N |0〉.

TABLE I. Leading order scaling of the particle and spatial second
Rényi entropies under symmetric bipartitions (n = N/2 or � = L/2)
at unit filling N = L for large L for the canonical states discussed
in Sec. III. The entanglement of particles strictly vanishes for these
states for all N and L for any bipartition.

State S2(n = N

2 ) S2(� = L

2 ) Ep(�)

BEC 0 1
2 ln L 0

Mott (ln 2)L 0 0
Cat ln L ln 2 0
Nj 0 0 0

Such a state is trivially a product state in the spatial basis with
only a single mode accessible to all particles; consequently, all
particle and spatial entanglement entropies vanish.

We note that the entanglement of particles strictly vanishes
for all the canonical states discussed above for any choice
of spatial bipartition. As mentioned in Sec. II C, Ep �= 0
requires both particle and spatial entanglement entropies to
be nonzero. Only the cat state satisfies this requirement, but
the spatial entanglement of |Cat〉 is solely due to fluctuations
of all N particles between sites and not interactions between
the subsystems. This is precisely the sort of fluctuation
entanglement that Ep is not sensitive to and thus Ep = 0 for
all states discussed above. Table I shows the leading order
scaling of various entanglement measures for large L for these
canonical states.

To illustrate the behavior of the three entanglement
measures—particle, spatial, and entanglement of particles—
away from these canonical states, we have have computed the
entropies for a small system via exact numerical diagonal-
ization. Figure 2 shows the spatial and particle second Rényi
entropies and the entanglement of particles for symmetric bi-
partitions (� = n = L/2) as a function of U/t for L = N = 4.
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1 10 100U/t
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S2(�)

10 × Ep(�)

FIG. 2. The spatial [S2(�)] and particle [S2(n)] second Rényi
entropies and the entanglement of particles [Ep(�)] for symmetric
bipartitions (� = n = L/2) of the 1D Bose-Hubbard model Eq. (4)
for a L = N = 4 system, as computed by exact diagonalization. The
left and right panels correspond to negative and positive values of
U , respectively. The dashed lines show the same quantities in the
addition of a symmetry breaking chemical potential: μ0 = 0.02 and
μj �=0 = 0. Note that the scale of Ep has been magnified by an order
of magnitude for visibility.
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For this system, SBEC
2 (� = 2) = ln(128/35) ≈ 1.3 and

SMott
2 (n = 2) = ln 6 ≈ 1.8. Note the small scale of Ep relative

to S2(n) and S2(�), which has been magnified by an order of
magnitude for clarity in Fig. 2. With a clear physical picture
of the behavior of these Rényi entanglement entropies for a
specific itinerant boson system, we now introduce a general
and scalable method for computing them for a wide class of
physically relevant Hamiltonians with QMC.

IV. METHOD

Path-integral Monte Carlo (PIMC) is a powerful tool
to study ground state and finite temperature properties of
strongly interacting many-body systems [83]. For interacting
bosons without a “sign problem,” the polynomial scaling of
computational resources required for PIMC allows for the
study of large-scale systems in any dimension described by the
Hamiltonian of Eq. (1). This includes experimentally relevant
systems such as liquid helium-4 and cold atomic gases. At
T = 0, the path-integral ground state (PIGS) algorithm [84,85]
provide access to ground state properties of a many-body
system by statistically sampling the imaginary time propagator
e−βH . Given a trial wave function �T, in the large imaginary
time limit β → ∞, e−βH |�T〉 converges to the ground state,
as long as |�T〉 has any finite overlap with it. Therefore, we
may compute ground state properties by statistically sampling
the expectation value of an observable Ô,

〈Ô〉 = lim
β→∞

〈�T|e−βH Ôe−βH |�T〉
〈�T|e−2βH |�T〉 .

A considerable benefit of PIGS over other zero temperature
methods is is that the choice of �T does not introduce any
systematic bias in the measurement of estimators [86] provided
that β is large enough.

In practice, ground state estimators for a D-dimensional
interacting continuum system are computed with PIGS by
working in an extended (D + 1)-dimensional configuration
space where the degrees of freedom involve imaginary time
world lines of the particles. The absence of a lattice requires
that the imaginary time direction be broken into an integer
number of time steps of size τ and we approximate the full
propagator e−βH as a product of an approximate short-time
propagator ρτ � e−τH . The error made in using the short-time
propagator is determined by the size of τ and the specific de-
composition employed to deal with the noncommuting parts of
H . As described in Sec. IV D, we use a form for ρτ that allows
us to use a sufficiently small τ to ensure that any systematic
errors are smaller than statistical uncertainty. The imaginary
time world lines are composed of discrete particle positions,
referred to as “beads,” connected by links representing in-
sertions of the short-time propagator. The indistinguishability
and bosonic symmetry of the particles is enforced through the
choice of the trial wave function and a proper symmetrization
of any estimator measured at the central time slice. A sample
configuration of world lines is shown in Fig. 3.

A. Replicated configuration space

Despite not being a conventional observable, recent work
by Hastings et al. demonstrated that Rényi entanglement

FIG. 3. (Color online) A configuration with N = 6 bosons at
zero temperature in one spatial dimension. Diagonal ground state
estimators can be measured at the central time slice as indicated by
the shaded bar.

entropies can be computed in Monte Carlo simulations by
defining a so-called “SWAP” operator in a replicated Hilbert
space [12,13]. There is a large volume of subsequent literature
that applies these and related methods to compute spatial
entanglement entropy in lattice systems with QMC (e.g., see
Refs. [15,16,18,19,22–26]). However, its measurement in
continuous-space systems has been limited to a variational
Monte Carlo method for fermionic systems [14,17,21] and
a recent study by the authors of 1D short-range interacting
bosons [20]. Here we report on details and various extensions
of the latter method, which is based on PIGS and allows
for the computation of particle and spatial-partitioned Rényi
entanglement entropy in the ground state of D-dimensional
bosonic quantum fluids.

Motivated by the algorithm of Hastings et al., we consider
a replicated Hilbert space of a continuous-space system of N

bosons in first quantized notation. A basis state of the original
system can be written as |R〉, where R = {r0, . . . ,rN−1}
is a vector of length D×N describing the position of all
particles. This Hilbert space is then replicated, producing {|R̃〉}
and allowing for the formation of a tensor product Hilbert
space {|R〉 ⊗ |R̃〉} ≡ {|R ⊗ R̃〉}. R and R̃ are noninteracting,
physically equivalent systems and the definition of an operator
that connects observables between them will allow for the
estimation of the second Rényi entropy S2. A straightforward
extension to measuring Sα would require replicating the system
α times: R̃ → Rj for j = 1, . . . ,α.

To compute a bipartite Rényi entropy, we must first
define a subsystem by a particular choice of bipartition. As
described in Ref. [20], to measure the particle entanglement,
we choose a subset of particles A, such that R = {RA,RB}.
Bosonic symmetry implies that any physical properties of this
bipartition will only depend on the number n, of particles
in A. For spatial-mode partitioning, we must define a spatial
subregion A and decompose each configuration into {RA,RB},
where we implicitly have assumed that

r ∈ RA ⇒ rA ∈ A.
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FIG. 4. (Color online) Replicated (1 + 1)-dimensional Monte
Carlo configurations of N = 4 bosons showing world lines broken at
time slice β for a particle bipartition with n = 2 (top) and a spatial
bipartition with � = L/2 (bottom). For both types of bipartitions,
particle world lines in subsystem A are discontinuous, while those
in subsystem B are continuous. Two-tone lines connecting R and R̃
correspond to insertions of the short-time propagator ρτ that are used
to measure the Rényi entropies.

To compute the Rényi entropy of the ground state of a system
with a Monte Carlo method, we must be able to sample
the ground state in the replicated Hilbert space and define
an appropriate generalization of the SWAP estimator given
a choice of bipartition. This can be achieved by generating
configurations that have a mix of closed and broken world
lines. The breaks are constrained to occur only at the central
imaginary time slice, and allow for the insertion of an
off-diagonal operator with nonvanishing weight. For particle
partitioning, there are n broken world lines in the ensemble,
whereas for spatial partitioning all world lines within A are
broken and consequently the number of such broken world
lines fluctuates. Examples of the replicated configuration space
corresponding to both types of bipartition are shown in Fig. 4.

We statistically sample an ensemble of such configurations
with a weight given by

W (Rβ,Rβ+τ ) = Wβ(Rβ)ρB
τ (Rβ,Rβ+τ )Wβ(Rβ+τ ), (5)

where Wβ(R) is the weight of the closed path on either side of
center time step,

Wβ(R) = 〈R|e−βH |�T 〉,
Rβ and Rβ+τ are the configurations on either side of the center
time step, and we have defined the reduced propagator for the
B subsystem as

ρB
τ (R,R′) ≡ n!(N − n)!

N !

∑
RnB

ρτ

(
RnB

,R′
B

)
, (6)

where nB = N − n is the number of particles in subsystem
B in R′ and RnB

is one possible subset of nB particles of

R such that RnB
∈ R. Additionally, we define ρτ (R,R′) to

be the matrix elements of the (implicitly) Bose symmetrized
propagator:

ρτ (R,R′) = 〈R|ρτ |R′〉. (7)

The weights given in Eq. (5) correspond to the weights for
paths with N − n closed world lines at the center time slice,
such as those shown in Fig. 4 without the links connecting
the two replicas. Note that R

β+τ

B is uniquely determined by
Rβ+τ (either through the spatial locations of the particles
or a fixed set of labels, depending on the type of partition)
but the R

β

B must be sampled over for any given Rβ . Such
an ensemble may be Monte Carlo sampled by standard
PIMC methods using a variety of updates to ensure detailed
balance [83]. In the replicated configuration space, we have
independent weights for each replica, so the total weight is
simply W (Rβ,Rβ+τ )W (R̃β,R̃β+τ ).

B. Monte Carlo updates

To ergodically sample configuration spaces consisting of
broken and closed world lines described above, we use a set
of updates that depend on the type of partitioning that is of
interest. In all cases, the closed world lines away from the
center or ends of the paths may be sampled with a variety
of conventional PIMC updates that are well described in the
literature [83]. For all partition choices, we update the open
ends of the world lines by generating a new free particle path
of length M/2 starting from the configuration M/2 time steps
from the end. The acceptance rate is then determined by the
ratio of the diagonal weights of the old and new paths.

1. Particle partitioning

To compute particle entanglement entropies, we sample a
configuration space with a fixed number, n, of broken world
lines. The disconnected beads at the center of the path are
not restricted in space, and the number of such beads remains
fixed at n throughout the simulation. The broken world lines at
the center of the path can be updated in the same manner
as the ends of the paths. If the same world lines remain
broken during the simulation, then the estimator will not,
in general, be symmetric over all particles, as the broken
world lines introduce an artificial label which renders them
distinguishable. To ensure that the estimator is symmetric over
particle permutations, we have implemented a “break-swap”
update that reconnects a broken world line and breaks a
connected world line. This update is summarized in Fig. 5
and the procedure to implement it is as follows.

(1) Randomly choose a bead on each side of the broken
path (ro

β and ro
β+τ ) and a closed world line with a bead at

position rc
β .

(2) Propose the formation of a link between beads ro
β and

ro
β+τ and the removal of the link between rc

β and rc
β+τ .

(3) Accept the update with probability

P b−s
acc = min

[
N − n

n2

ρτ

(
ro
β,ro

β+τ

)
ρτ

(
rc
β,rc

β+τ

) ,1

]
. (8)

(4) If the update is accepted, form a link between beads ro
β

and ro
β+τ while breaking the link between rc

β and rc
β+τ .

013308-7



HERDMAN, INGLIS, ROY, MELKO, AND DEL MAESTRO PHYSICAL REVIEW E 90, 013308 (2014)

FIG. 5. (Color online) The break-swap update used in the mea-
surement of the Rényi entropy for a particle bipartition. A (1 + 1)-
dimensional configuration of N = 3 bosons is updated by proposing
a move that swaps the location of a missing link joining time slices
β and β + τ between a broken and a connected world line. The
acceptance probability is given in Eq. (8) of the text.

For efficiency, one can build a nearest neighbor table at
the center time slice based on the free particle propagator and
only attempt to link beads within a certain length scale, as the
free particle propagator decays exponentially in distance. In
practice such an update may be unnecessary if the beads at the
center of the path do not break permutation symmetry, which
will depend on the nature of the physical ground state.

2. Spatial partitioning

For a spatial bipartition, broken beads on one side of the
center imaginary time link at β + τ are constrained to reside
in the spatial subregion A and the number of broken world
lines will fluctuate as particles move in and out of the region.
Consequently, an update which changes the number of broken
beads as they move between subregions is required, and a
schematic of the “spatial-reconnect” move is shown in Fig. 6.
The update is implemented as follows.

(1) Choose a bead at imaginary time β − M/2τ , which is
at position rβ−M/2τ .

(2) Traverse the world line to the center link β which
defines the bead at rβ .

(3) If rβ is on a broken world line, choose a disconnected
bead rβ+τ at random; otherwise, rβ+τ is defined by the center
link.

(4) Move M/2 additional steps along the chosen world line
to reach rβ+(M/2+1)τ . This defines the world lines that will be
potentially updated.

(5) Generate a new free particle path between rβ−M/2τ and
rβ+(M/2+1)τ , and label this path of M new bead positions as r ′.
This can be done in a rejection-free manner by standard PIMC
methods [83].

(6) The probability of accepting the update depends on
which of the four possible sceneries occur, where e−δV is the
ratio of the initial to final diagonal weights:

(a) (rβ+τ ∈ A) ∧ (r ′
β+τ ∈ A),

P AA
acc = min

[
ρτ (rβ,rβ+τ )

ρτ (r ′
β,r ′

β+τ )
e−δV ,1

]
; (9)

FIG. 6. (Color online) The spatial-reconnect update used in the
measurement of the Rényi entropy for a spatial bipartition. A (1 + 1)-
dimensional configuration of bosons is updated by proposing a move
that generates a new free particle trajectory between time slices
β − M/2τ and β + (M/2 + 1)τ . If the bead at β is moved into region
A after the update, a link across the central time slice is removed. If
the modified path moves a bead at time slice β from region A into
region B, the world line is reconnected. The acceptance probabilities
for the various possibilities are given in Eqs. (9)–(12) in the text.

(b) (rβ+τ ∈ A) ∧ (r ′
β+τ ∈ B),

P AB
acc = min[ρτ (rβ,rβ+τ )e−δV ,1]; (10)

(c) (rβ+τ ∈ B) ∧ (r ′
β+τ ∈ A),

P BA
acc = min

[
1

ρτ (r ′
β,r ′

β+τ )
e−δV ,1

]
; (11)

(d) (rβ+τ ∈ B) ∧ (r ′
β+τ ∈ B),

P BB
acc = min(e−δV ,1). (12)

(7) Accept the update with probability Pacc given above.
(8) If the move is accepted and (rβ+τ ∈ B) ∧ (r ′

β+τ ∈ A),
remove the link between r ′

β and r ′
β+τ . If the move is accepted

and (rβ+τ ∈ A) ∧ (r ′
β+τ ∈ B), preserve the link between r ′

β

and r ′
β+τ .

C. Measuring Rényi entropies in PIGS

We define a permutation operator �A
α that maps RA from

one replica to another, modulo α, and acts as the identity on
all RB [87]. In the case of the second Rényi entropy, �A

2
then simply interchanges the subset A and Ã between the two
subsystems,

�A
2 [{RA,RB} ⊗ {R̃Ã,R̃B̃}] = {R̃Ã,RB} ⊗ {RA,R̃B̃},

which when written in operator notation is

�A
2 |R ⊗ R̃〉 = ∣∣�A

2 [R ⊗ R̃]
〉
.

The expectation value of this permutation operator of state
|�〉 in the doubled Hilbert space is related to the second Rényi
entropy of |�〉, S2 [12,88]:

〈� ⊗ �̃|�A
2 |� ⊗ �̃〉 = e−S2 .

The estimator for the �A
2 operator corresponds to sampling the

statistical weight linking the world lines of the A particles with
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Ã particles across the central time slice, as illustrated in Fig. 4.
In this ensemble, the estimator for the permutation operator is

〈
�A

2

〉 = 1

ZA
2

〈
ρA

τ

(
Rβ ⊗ R̃

β
; �A

2 [Rβ+τ ⊗ R̃
β+τ

]
)〉
, (13)

where we have defined a reduced propagator,

ρA
τ (R ⊗ R′; R′′ ⊗ R′′′)≡ ρτ (R; R′′)ρτ (R′; R′′′)

ρτ (RB ; R′′B)ρτ (R′
B ; R′′′

B )
, (14)

and ZA
2 is the closed path normalization:〈

ZA
2

〉 = 〈
ρA

τ (Rβ ⊗ R̃
β
; Rβ+τ ⊗ R̃

β+τ
)
〉
.

The expectation value in Eq. (13) corresponds to the statistical
weight of the “permuted” path and ZA

2 is a normalization
factor arising from the weight of the paths under the identity
permutation. This form of the estimator is independent of the
choice of the short-time propagator, which in general will
involve diagonal weights at each bead as well as off-diagonal
weights for the links.

Notice that one has the freedom to choose to account for
diagonal weights in either the configuration weights given
in Eq. (5) or the estimator Eq. (13). For simplicity, in the
results presented below we have chosen to include the diagonal
weights of ρA

τ in the configuration weights such that the
estimator Eq. (13) must be reweighted accordingly.

The estimator in Eq. (13) is composed of the product of
Gaussian short-time propagators for both A and Ã and thus
both its numerator and denominator will be exponentially
suppressed in the size of the chosen bipartition. This behavior
is expected from an understanding of the behavior of the
SWAP operator for spatial bipartitions in local lattice models
due to the presence of the area law [12]. We expect then,
for bipartitions that are large in either their spatial regions
or number of particles n, that a generalized ratio sampling,
involving computing S(A) from smaller bipartitions, will be
required [12], thus curing the exponential decay of the bare
estimator at an additional quadratic cost in computational
time.

1. Entanglement of particles

The entanglement of particles, Ep, is a weighted average of
spatial Rényi entropies, as defined by Eq. (3). We can compute
Ep simultaneously with Sα(A) from an ensemble described in
Sec. IV A under a spatial partitioning. This is accomplished in
practice, by binning the numerator and denominator of Eq. (13)
according to the number of particles in subregion A. We define
an estimator for this projected permutation operator,〈
�A

2 (n)
〉

= 1

ZA
2 (n)

〈
ρA

τ

(
Rβ ⊗ R̃

β
; �A

2 [Rβ+τ ⊗ R̃
β+τ

]
)
δn,nA

δn,ñÃ

〉
,

where nA and ñÃ are the number of particles in subregion A

and Ã at time slice β + τ , respectively, and the normalization
factor is〈

ZA
2 (n)

〉 = 〈
ρA

τ (Rβ ⊗ R̃
β
; Rβ+τ ⊗ R̃

β+τ
)δn,nA

δn,ñÃ

〉
.

The entanglement of particles may be then computed from this
projected permutation estimator,

Ep = −
N∑

n=0

Pn ln
[〈
�A

2 (n)
〉]
,

where Pn the probability of having n particles in subregion A.
In this ensemble, Pn may be computed from

Pn =
√

ZA
2 (n)

ZA
2

.

D. Explicit form of the 〈�A
2 〉 estimator for an O(τ 4) propagator

For clarity, we present the explicit form of the �A
2 estimator

and ensemble weights for the commonly used fourth order
propagator described in Ref. [89] for a Hamiltonian de-
composed as H = T + V . To implement this approximation,
we decompose the short-time propagator, e−τH , into two
off-diagonal time steps and add an additional ancillary bead
between the physical beads,

e−2τH � e−ceτVe−τT e−coτ Ṽe−τT e−ceτV , (15)

where Ṽ is a diagonal weight determined by the total potential
energy V = U + V and a higher order correction term,

Ṽ ≡ V + ccτ
2[V,[T ,V]],

and e−τT is the free kinetic propagator for all particles. To
reduce the overall number of costly numerical evaluations of
Ṽ , we have chosen ce = 2/3, co = 4/3, and cc = 1/12. The
short-time action is computed over two links involving three
beads. Notice that each even bead has a factor of e−ceτV for
each link: In the middle of a path this gives a factor of 2 in the
potential action, whereas on the end of a path, there is only one
factor. For finite temperature PIMC simulations with periodic
imaginary time boundary conditions, this action requires the
path to have an even number of beads, Nτ = 2p, for integer
p, 2β = Nττ . For PIGS with open imaginary time boundary
conditions, we require Nτ = 2p + 1 as the time slices at the
two ends are not identified.

To make an off-diagonal estimator symmetric in imaginary
time, we choose to have a central double time slice of length
2τ corresponding to one complete application of e−2τH ;
consequently, this requires the path length Nτ = 4p + 1.
A general off-diagonal operator can be estimated from an
ensemble of particle world lines that are broken adjacent to the
center time slice. Here we label the central time slice Rβ and
the adjacent time slices Rβ−τ and Rβ+τ . We decompose Rβ+τ

into particles in the two subsystems: Rβ+τ = {Rβ+τ

A ,Rβ+τ

B }.
We can generate an ensemble where the world lines of Rβ+τ

A

are broken but those of Rβ+τ

B are connected to Rβ with a free
propagator as shown in Fig. 4. The corresponding weights for
such paths are

W (Rβ−τ ,Rβ,Rβ+τ )

= Wβ(Rβ−τ )e−ceτV(Rβ−τ )ρ0(Rβ−τ ,Rβ)e−coτ Ṽ(Rβ )

× ρB
0 (Rβ,Rβ+τ )e−ceτV(Rβ+τ )Wβ(Rβ+τ ), (16)
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where we have defined the matrix elements of the free
propagator ρ0(R,R′) and the reduced propagator ρB

0 (R,R′
B)

in analogy with Eqs. (6) and (7). For a particle bipartition, n

will correspond to the fixed subsystem size used to compute
Sα(n); for a spatial bipartition, n will fluctuate as particles
move in and out of Rβ+τ

B . In practice, one term in the sum ρB
0 ,

corresponding to a particular choice of Rβ
nB

will be sampled

at a time as a particular choice of links between Rβ+τ

B and
Rβ will represent a given configuration; other link choices
are then appropriately sampled via the updates described in
Figs. 5 and 6. There is no need to explicitly sample over
the permutations of R

β

A as all such configurations come with
equal weight, thus generating an additional factor of n! in the
weight given by (16). Notice that in Eq. (16) we have chosen to
include the full closed path diagonal weight for Rβ+τ ; instead,
one could choose to only include the diagonal weights for the
connected world lines Rβ+τ

B and adjust the estimator below
accordingly. For the doubled path configuration space, the
total weight is simply the product of the weights of both paths:

W (Rβ−τ ,Rβ,Rβ+τ ; R̃
β−τ

,R̃
β
,R̃

β+τ
)

= W (Rβ−τ ,Rβ,Rβ+τ )W (R̃
β−τ

,R̃
β
,R̃

β+τ
).

The estimator for �A
2 then takes the form

〈
�A

2

〉 = 1

ZA
2

〈
ρA

0

(
Rβ ⊗ R̃

β
; �A

2 [Rβ+τ ⊗ R̃
β+τ

]
)

× exp
[−ceτ

{
V

(
�A

2 [Rβ+τ ⊗ R̃
β+τ

]
)

−V(Rβ+τ ) − V(R̃
β+τ

)
}]〉

,

where

V(R1 ⊗ R2) ≡ V(R1) + V(R2),

with the normalization factor

ZA
2 = 〈

ρA
0 (Rβ ⊗ Rβ+τ ; R̃

β ⊗ R̃
β+τ

)
〉

and the reduced free propagator ρA
0 is defined in analogy

with Eq. (14).

V. HARMONICALLY INTERACTING BOSONS
IN A HARMONIC POTENTIAL

Although the PIGS method for computing Rényi entropies
that we have presented above is general to all systems described
by Eq. (1) in any spatial dimension D, we have chosen to
benchmark it for an interacting many-body system where the
Rényi entropies are analytically soluble. We consider a system
of N bosons of mass m in one spatial dimension, interacting
via a harmonic two-body potential and subject to an external
harmonic potential. The Hamiltonian is given by

H = − �
2

2m

∑
i

d2

dx2
i

+ 1

2
mω2

0

∑
i

x2
i

+ 1

2
mω2

int

∑
i<j

(xi − xj )2, (17)

where xi is the spatial position of boson i. In Eq. (17),
ω0 is the oscillator frequency of the external potential, and

ωint characterizes the strength of the interaction. We define
the length scale of the noninteracting oscillator to be σ0 =√

�/mω0.
For N = 2, the ground state of Eq. (17) takes the form of

two decoupled oscillators [90–92] with frequencies ω0 and ω1,
where ω1 = ηω0, with η � 1 given by

η =
√

1 + N
ω2

int

ω2
0

.

The ground state wave function �0(x0,x1) is the product of
two Gaussians:

�0(x0,x1)

= η1/4

√
π

exp

{
− 1

2σ 2
0

[
1

2
(1 + η)

(
x2

0 + x2
1

) + (1 − η)x0x1

]}
.

(18)

A. Particle partitioning

We begin with a discussion of the analytical solution of
the single particle (n = 1) Rényi entanglement entropy for
N = 2 and demonstrate agreement with QMC calculations.
We then compare QMC calculations for n = 1 and N � 2
to the analytical solution presented in Ref. [92]. Finally, we
extend our analysis to the measurement of the two-particle
(n = 2) entropy for the specific case of N = 3.

1. Single particle entanglement for N = 2

Given the exact form of the ground state in Eq. (18), the one-
particle reduced density matrix ρ1 is easily determined [90,91]:

ρ1(x,x ′) =
∫ ∞

−∞
dx ′′�∗

0 (x,x ′′)�0(x ′,x ′′)

=
√

2√
πσ0

√
η

1 + η
exp

{
− 1

4σ 2
0

[
(1 + η)(x2 + x ′2)

− 1

2

(1 − η)2

1 + η
(x + x ′)2

]}
.

The single particle second Rényi entropy is then

S2 (n = 1) = − ln

[∫ ∞

−∞
dx

∫ ∞

−∞
dx ′ρ2

1 (x,x ′)
]

= ln

[
1

2
(η1/2 + η−1/2)

]
. (19)

Figure 7 shows the single particle 2nd Rényi entropy as
computed by the permutation estimator, compared to the exact
result, for N = 2 harmonically coupled bosons over a range
of interaction strengths. Note that S2(n = 1) vanishes in the
noninteracting limit (ωint = 0). Table II shows the numerical
values of S2(n = 1) as computed by QMC and the exact value,
for several choices of ωint; we find systematic errors smaller
than 10−3.

2. Single particle entanglement for general N

The single particle density matrix for general N was re-
cently computed in Ref. [92] using a Wigner quasidistribution
approach. The authors find that the eigenvalues of ρ1 which
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FIG. 7. The single particle second Rényi entropy S2(n = 1) vs
interaction strength ωint/ω0 computed by QMC (points) and the
exact result (solid line) for two harmonically interacting bosons in a
harmonic potential, described by Eq. (17).

correspond to the occupation numbers {nk} of the “natural
orbitals” and are given by

nk = 2λN

1 + λN

(
1 − λN

1 + λN

)k

,

where λN � 1 is defined as

λN ≡
[(

N − 1

N

1√
η

+
√

η

N

)(
1

N

1√
η

+ N − 1

N

√
η

)]− 1
2

.

The second Rényi entropy is therefore given by

S2(n = 1) = − ln

[∑
k

n2
k

]
= − ln λN

= 1

2
ln

[(
N − 1

N

1√
η

+
√

η

N

)

×
(

1

N

1√
η

+ N − 1

N

√
η

)]
. (20)

The single particle second Rényi entropy is shown in Fig. 8 as
a function of system size for N = 2–32 for several values of
the interaction strength ωint as computed by QMC; the lines
correspond to the exact values in Eq. (20).

3. Two particle entanglement for N = 3

For N = 3, we can benchmark calculations of the two
particle entanglement, S2(n = 2), in a simple system where
it must be equal to the single particle entanglement S2(n = 1),
due to the identity S(n) = S(N − n). The results are shown

TABLE II. The single particle second Rényi entropy S2(n = 1)
for several values of the interaction strength ωint/ω0 computed by
QMC vs exact result for two harmonically interacting bosons in a
harmonic potential, described by Eq. (17).

ωint/ω0 1.0 2.0 4.0 8.0

Exact 0.0373 0.1438 0.3415 0.6062
QMC 0.0374(2) 0.1437(2) 0.3417(2) 0.6066(3)
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ωint/ω0 = 4.0
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FIG. 8. (Color online) Single particle second Rènyi entropies
S2(n = 1) for harmonically interacting bosons in a harmonic poten-
tial, described by Eq. (17), as a function of system size N as computed
by QMC (points), for several values of interaction strength ωint/ω0.
The solid lines correspond to the exact result given by Eq. (20).

in Fig. 9 as a function of the interaction strength ωint/ω0,
displaying this agreement. The extension to n > 2 is straight-
forward, albeit more computationally difficult without the aid
of a generalized ratio trick discussed in Sec. VI below.

B. Spatial partitioning

Next, we consider the spatial mode entanglement and
the entanglement of particles for two choices of the spatial
subregion A which are parametrized by the dimensionless
parameter a:

A1: x ∈ (−aσ0,aσ0) ,

A2: x ∈ (−∞,aσ0) ,

where Bj :x ∈ R \ Aj .

0 2 4 6 8 10
ωint/ω0

0.0
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0.2

0.3

0.4
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0.7

0.8

S
2
(n

=
2)

exact
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FIG. 9. Two particle second Rènyi entropy S2(n = 2) for an
N = 3 system of harmonically interacting bosons in a harmonic
potential, described by Eq. (17), as computed by QMC. The solid
line corresponds to the exact value of S2(n = 1) given by Eq. (20).
The demonstrated equivalence, due to the identity S(n) = S(N − n),
is a proof of principle of the QMC method for n > 1.
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1. Spatial mode entanglement entropy

First we present the exact solution for the spatial mode-
bipartitioned Rényi entropy of N noninteracting bosons in a
harmonic potential, with the Hamiltonian given by Eq. (17)
with ωint = 0. The N -body ground state has all particles
condensed into the single particle ground state:

ψ0(x) = 1

π1/4√σ0
e−x2/2σ 2

0 .

We may now use a spatial Fock space basis {|nA,nB〉}
following the discussion in Sec. II C and write the N particle
space in this basis:

|�N 〉 =
N∑

nA=0

√(
N

nA

)
p

nA/2
A p

(N−nA)/2
B |nA,N − nA〉.

This Fock space is the Schmidt basis which diagonalizes the
reduced density matrix:

ρA =
N∑

nA=0

(
N

nA

)
p

nA

A p
N−nA

B |nA,N − nA〉〈nA,N − nA|. (21)

Given the form of the reduced density matrix ρA in Eq. (21),
the second Rényi entropy may be written in terms of pA

and pB :

S2 (N ) = − ln

[
N∑

nA=0

(
N

nA

)2

p
2nA

A p
2(N−nA)
B

]
.

The probabilities pA and pB are defined by the single particle
ground state,

pA =
∫

x∈A

dx|ψ0(x)|2, pB = 1 − pA,

and these are readily computed for both bipartition choices,

pA1 =
∫ aσ0

−aσ0

dx
1√
πσ0

e−x2/σ 2
0 = Erf(a),

pA2 =
∫ aσ0

−∞
dx

1√
πσ0

e−x2/σ 2
0 = 1

2
[1 + Erf(a)],

where Erf(x) = 2
∫ x

0 dte−t2
/
√

π is the error function.
Figure 10 shows the second Rényi entropy under spatial
bipartitions A1 and A2 as a function of bipartition size for
N = 2 and N = 4 noninteracting bosons described by Eq. (17)
with ωint = 0.

2. Entanglement of particles

As the entanglement of particles vanishes in the noninter-
acting limit (ωint = 0), we must consider ωint > 0 such that
Ep > 0. Given the definition of Ep from Eq. (3), we see that
only local particle number sectors where the projected reduced
density matrix ρ

(n)
A is not a pure state will contribute to Ep. For

n = 0 and n = N , one of the subregions will be in the vacuum
state,

ρ
(0)
A = |0A〉〈0A|, ρ

(N)
B = |0B〉〈0B |;

consequently, ρ
(n)
A is pure in each case so such sectors do

not contribute to Ep. For N = 2, the entanglement of particle
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FIG. 10. Comparison of the spatially bipartitioned second Rényi
entropy S2(A) computed by QMC (points) and the exact result (line)
for N = 2 (top) and N = 4 (bottom) noninteracting bosons in a
harmonic potential vs bipartition size a for the symmetric (A1) and
asymmetric (A2) subregions.

simplifies to

Ep = −P1 ln
{
Tr

[(
ρ

(1)
A

)2]}
,

where P1 is given by

P1 ≡ 2
∫

∈A

dx0

∫
∈B

dx1|�0(x0,x1)|2, (22)

and the one-particle spatial reduced density matrix is

ρ
(1)
A ≡

∫
∈A

dxρ
(1)
A (x,x ′)|x〉A〈x ′|A,

ρ
(1)
A (x,x ′) ≡ 2

P1

∫
∈B

dx ′′�∗
0 (x,x ′′)�0(x ′,x ′′).

We then must compute the trace:

Tr
[(

ρ
(1)
A

)2] =
∫

∈A

dx

∫
∈A

dx ′ρA
1 (x,x ′)2. (23)

Equations (22) and (23) require two and three finite integrals
over Gaussian functions. As the integration of error functions
cannot be done analytically, we use numerical integration to
compute Ep with arbitrary precision. Figure 11 presents a
comparison of Ep computed by numerical integration of the
exact ground state with that computed by QMC.
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FIG. 11. Comparison of the entanglement of particle Ep vs
interaction strength ωint/ω0 computed by QMC (points) and numer-
ical integration of exact ground state (line) for two harmonically
interacting bosons in a harmonic potential, with a spatial bipartition
of type A1 with a = 0.6.

C. Scaling of Rényi entropy in PIGS simulations

The coupled boson pair system studied above provides an
excellent arena to benchmark our PIGS method for computing
Rényi entropies. In this section, we present the details of how
the �2 estimator for the second Rényi entropy scales with the
standard PIGS parameters, the length of imaginary time paths,
β, and the size of the imaginary time step, τ , that control the
systematic error of simulations. We focus on S2(n = 1) for the
one dimensional system described by Eq. (17) for N = 2 with
fixed interaction strength ωint = 4ω0. In our PIGS simulations,
we use the O(τ 4) decomposition of the short-time propagator
ρτ = e−τH [89] described in Eq. (15) and employ identity trial
wave functions |�T〉 = 1 at the terminus of all world lines. In
principle, one can use a variationally optimized wave function
to get convergence to the ground state with a smaller β, but in
practice we found this unnecessary for this model.

Figure 12 shows the exponential convergence of S2(n = 1)
with imaginary time length β to the exact value, Sexact of

0 1 2 3 4 5 6
βω0

0.3

0.4

0.5

0.6

0.7

0.8

S
2
(n

=
1)

exact

fit

QMC

FIG. 12. Scaling of the single particle second Rényi entropy
S2(n = 1) with imaginary time length β for the N = 2 coupled boson
system with ωint = 4ω0 and τ = 0.05/ω0. The dashed line represents
the exact ground state value and the solid line represents the best
exponential to the finite imaginary time error.
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FIG. 13. Scaling of the single particle second Rényi entropy
S2(n = 1) with discrete imaginary time step τ for the N = 2 coupled
boson system ωint = 4ω0 and β = 4.0/ω0. The dashed line represents
the exact ground state value and the solid line represents the best fit
power-law fit to the finite time-step error.

Eq. (19). We fit the error to an exponential,

S(τ ) = Sexact + cβe−�β,

where cβ is a constant and find �/ω0 = 2.183 ± 0.005 and
cβ � 0.90. This rapid exponential decay allows us to work
with βω0 = 4.0.

Fixing β, we now investigate the scaling of S2(n = 1) with
imaginary time step τ , with the results shown in Fig. 13. Again
comparing with the exact result of Eq. (19) we fit the finite
time-step error to a power law,

S(δ) = Sexact + cτ τ
δ,

where cτ is a constant and find δ = 2.70 ± 0.03 and
cτ = 0.743 ± 0.001. This analysis demonstrates that these
systematic errors can be chosen to be smaller than any
statistical error, while retaining the fundamental power-law
scaling of computational resources required for the QMC
algorithm. From this analysis of the scaling with PIGS
parameters, we choose τ = 0.2/ωint and β = 4.0/ω0, which
reduces the systematic errors in our PIGS calculations of S2 to
less than 10−3.

VI. FUTURE ALGORITHMIC DEVELOPMENT

We have presented a fundamental algorithm for computing
Rényi entropies using the PIGS QMC method. Given the poly-
nomial resources required for such stochastic computations,
this approach offers the potential of studying entanglement
entropies in large-scale interacting systems of bosons in the
spatial continuum. The biggest impediment to immediate
application of the method for N � 1 is the fact that the expec-
tation value of the permutation estimator decays exponentially
with the bipartition size. This exponential decay of the bare
�2 estimator is due to the Gaussian free propagator associated
with each particle in the bipartition. This is indicative of the
linear scaling of the particle entanglement with bipartition size
and the “area law” scaling of the spatial entanglement entropy.
While this might first appear to be a fundamental limitation of
Monte Carlo methods to compute Rényi entropies, there has
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been much algorithmic development in lattice formulations
to address this issue. The solutions that have already been
successfully implemented in lattice Monte Carlo methods
use some variant of a “ratio sampling” method [12,16,93],
reducing an exponentially decaying expectation value to a
product of finite values.

The analogous approach for computing particle entangle-
ment via our PIGS method is as follows. First, observe that the
ratios

Rdn
α (n) ≡ �n+dn

α

�n
α

can be directly computed by sampling a configuration space
where n world lines are permuted between the α replicas (i.e., n
world lines from each replica are connected to another replica
at the center time slice by a “link”) and dn world lines are
broken. The estimator for Rdn

α (n) just involves permuting the
remaining dn broken world lines. Following Ref. [12], we
then note that the expectation value of the overall permutation
operator �n

α is related to a product of R(ni):〈
�n

α

〉 = 〈
Rdn

α (0)
〉 · · · 〈Rdn

α (n − dn)
〉
.

Consequently, a single calculation of �n
α , which would be

an exponentially small quantity, can be replaced by n/dn

calculations, each of which has a sufficiently large value,
where dn � 1 can be chosen for maximum efficiency. This
adds an additional linear scaling in n, and if one is interested
in studying extensive values of n (e.g., 1 � n � N/2), this
adds a factor of N2 to the overall scaling, where the second
factor of N is required to keep the statistical error fixed when
multiplying many ratios together.

For a spatial bipartition, an analogous approach may be used
where the ratios are taken between different spatial regions
and the number of closed permuted world lines will fluctuate.
While such calculations are more computationally expensive
than computing traditional observables, the polynomial scal-
ing, as well as the demonstrated success of related methods for
lattice systems, suggests that this approach could be fruitfully
applied to a range of models in the D-dimensional spatial
continuum.

A major advantage of using a method based on PIMC is that
it allows us to import many PIMC techniques for efficiently
sampling the configuration space required to compute the �α

estimator. In particular, the worm algorithm [94] is a powerful
method for sampling the configuration space of bosonic world
lines, involving both closed and open imaginary time paths. In
the worm algorithm, broken world lines, or worms, are allowed
to wander in space and imaginary time. Such worms could be
used to efficiently update the broken world line configuration
space by allowing the worm head and tail to attach and detach
from the center time slice during an update. These moves
would be ergodic on their own and alleviate the necessity for
the updates described in Sec. IV B. In the language of the worm
algorithm, closed path configurations belong to the so-called
Z sector while configurations with open world lines belong
to the so-called G sector (they contribute to the one-particle
Matsubara Green’s function and are therefore labeled G as
they relate to an off-diagonal density matrix). At present, we
perform Z sector simulations to compute properties such as the
energy in order to optimize the projection time β and time step

τ parameters. These parameters are then used in open path
(G-sector) simulations for the computation of the �α esti-
mator. The use of a worm type algorithm would allow us
to compute all properties in a single simulation. Note that
since both closed and open word lines are sampled in a worm
algorithm simulation, the ensemble partition function, ZW ,
corresponds to a generalization of the form ZW = Z + Z′,
where Z is the regular closed path partition function and
Z′ is the G-sector partition function [94]. For the G-sector
configurations, the number of continuous variables is not
constant and therefore suggests the use of diagrammatic
Monte Carlo techniques [95] for updates, as the number of
variables is also a degree of freedom. The possibility of
using diagrammatic techniques for the design of more efficient
simulations to compute the �α estimator along with other
observables is a very promising area for future investigation.

VII. DISCUSSION

In this paper, we have presented a general, scalable Monte
Carlo simulation method for computing Rényi entanglement
entropies in continuum systems of itinerant bosons based
on the replica trick. We have implemented the algorithm in
ground state PIGS [84,85] and benchmarked its accuracy in
a simple system of N harmonically trapped and interacting
bosons in one spatial dimension. Detailed convergence tests
of the algorithm demonstrate the fundamental power-law
scaling of computational resources required for simulations
in both total system size N and the size of the particle
bipartition n. This work opens the door to several immediate
extensions of the replica trick Rényi entropy algorithm to
other nontrivial models of interacting bosons, both in one
and higher dimensions. A straightforward adaptation of the
algorithm to finite temperature path-integral methods based
on the partition function [83,94] will also provide access to
Rényi entropies at T > 0 and associated quantities, like the
mutual information [9,96].

The immanent adoption of replica trick methods to PIMC
simulations based on the presented algorithm is poised to
make significant headway in a variety of problems of physical
interest in the continuum. This could have a significant impact
on our understanding of such interacting many-body systems
in analogy to what has been learned for lattice models since
2010 [12,13]. One of the primary advantages of this technique
is that after being implemented in a QMC code base, it can be
easily applied to any quantum many-body system described by
the Hamiltonian of Eq. (1), regardless of the spatial dimension
or the form of the external and interaction potentials U and
V , with extremely minimal programmatic modifications. This
generality opens up the ability to quantitatively measure the
entanglement properties of experimentally relevant systems
of identical bosons, including quantum fluids of helium-4
and ultracold atomic gases. For the latter, there is currently
a coordinated experimental and theoretical effort under way to
create and manipulate entangled multiparticle states [97–104]
for quantum metrology and information processing purposes.
Many other applications and extensions of this work become
immediately apparent, including the study of phase transitions
in itinerant boson systems; the correlation between super-
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fluidity, condensate fraction, and entanglement in superfluid
droplets [105–107]; and much more.

Finally, as has been previously demonstrated with similar
techniques, we expect that the ability to measure Rényi
entropies in large-scale computer simulations of interacting
quantum systems in the continuum will synergistically feed
back into related areas of quantum information science and
beyond. For example, PIGS simulations of interacting bosonic
systems of relevance for condensed-matter physics will allow
for the evaluation of the appropriateness of tensor network
ansätze for the spatial continuum, which require significant
restrictions in the scaling of entanglement entropy to be
valid [108]. Also, PIGS measurements of entanglement in
quantum phases like Bose-Einstein condensates may become
essential when evaluating the resource capabilities of such
states for quantum information processing. This may prove

particularly important, as recent work indicates that identical-
particle entanglement may be useful as a resource for standard
quantum information tasks [79].
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