
PHYSICAL REVIEW E 90, 013306 (2014)
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Generalized Bloch wave functions of bulk structures, which are composed of not only propagating waves but
also decaying and growing evanescent waves, are known to be essential for defining the open boundary conditions
in the calculations of the electronic surface states and scattering wave functions of surface and junction structures.
Electronic complex band structures being derived from the generalized Bloch wave functions are also essential for
studying bound states of the surface and junction structures, which do not appear in conventional band structures.
We present a novel calculation method to obtain the generalized Bloch wave functions of periodic bulk structures
by solving a generalized eigenvalue problem, whose dimension is drastically reduced in comparison with the
conventional generalized eigenvalue problem derived by Fujimoto and Hirose [Phys. Rev. B 67, 195315 (2003)].
The generalized eigenvalue problem derived in this work is even mathematically equivalent to the conventional
one, and, thus, we reduce computational cost for solving the eigenvalue problem considerably without any
approximation and losing the strictness of the formulations. To exhibit the performance of the present method,
we demonstrate practical calculations of electronic complex band structures and electron transport properties
of Al and Cu nanoscale systems. Moreover, employing atom-structured electrodes and jellium-approximated
ones for both of the Al and Si monatomic chains, we investigate how much the electron transport properties are
unphysically affected by the jellium parts.
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I. INTRODUCTION

Electron transport properties of nanoscale systems com-
posed of scattering regions and electrodes, such as atomic
chains, nanowires, molecular junctions, and integrated systems
of them, have been one of the focuses of attention and
curiosity in quantum nanoelectronics, because of fundamental
understanding of the quantized behavior of electron flow and
the potential for application of the quantum phenomena toward
nanoscale electronic devices in the near future. In the past two
decades, there has been enormous effort to investigate the
electron transport properties of nanoscale junction systems
from both theoretical and experimental approaches [1].

So far, various calculation methods for simulating ballistic
electron transport through the nanoscale junctions with semi-
infinite electrodes have been developed, and a number of
impressive and interesting studies are produced by utilizing
the calculation methods, such as the nonequilibrium Green’s
function method [2], the recursion transfer matrix method [3],
the overbridging boundary matching (OBM) method [4–7], the
Lippmann-Schwinger equation method [8], and the wavelet-
basis-set method [9]. The OBM method is based on the real-
space finite-difference formalism [10] within the framework
of the density functional theory [11] and enables us to treat re-
alistic models of the semi-infinite electrodes made up of atoms
easily, instead of approximating the electrodes with an uniform
background (jellium) model [12]. The jellium approximation
has been still employed for electron transport calculations
frequently [6,13–15], because the boundary conditions of
scattering wave functions are analytically determined due to
the structureless charge distribution. Besides this, it is also
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well known that the jellium approximation of electrodes forms
an artificial interface to atomic structures, which may cause
unphysical scattering of electron flow and charge transfer
affecting the electron transport properties [16,17]. This can
be understood from the fact that the electronic complex band
structure of the jellium-approximated electrode differs from
that of the atom-structured one.

To treat the atom-structured electrode instead of the
jellium-approximated one, the OBM method calculates
the generalized Bloch wave functions in the crystalline
electrode and constructs a open-boundary basis set on the
interface plane between the scattering and electrode regions,
where asymptotic transition of scattering wave functions to
bulk wave functions is described using the basis set. Therefore,
the boundary basis set is composed of not only the propagating
Bloch wave functions but also the decaying or growing Bloch
ones of the crystalline electrode, which essentially describe
the wave components delocalizing over the junction system
and localizing only in the scattering region. To obtain the
generalized Bloch wave functions, the OBM method solves a
generalized eigenvalue problem, whose dimension depends on
the system size, especially on the extent of the boundary plane.
The real-space finite-difference approximation transforms the
kinetic-energy operator in a Kohn-Sham equation into a
sparse band matrix and helps to prevent the matrix dimension
from becoming huge. Nevertheless, in treating large and/or
realistic systems in recent high demand, such as complex
organic molecular junctions, defect systems with long-range
interaction, and multiple-electrode systems, the dimension of
the generalized eigenvalue problem increases, and the OBM
method, at some time or other, encounters the formidable
difficulty of the huge demand of computational resources such
as memory and computation time. Therefore, computing the
generalized Bloch wave functions in a more efficient manner
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contributes to larger and more realistic simulations of electron
transport by means of not only the OBM method but also other
methods using the open-boundary basis set [18].

In this paper, we present the remedy for the computational
difficulty, which drastically reduces the memory consumption
and computation time by means of a mathematical technique
without any approximation and with keeping strictness. In
addition, to demonstrate the performance of the mathematical
improvement, we calculate ballistic electron transport through
a quantum contact and a monatomic chain. Using the singular
value decomposition of a rectangular matrix [19], we are
able to reduce drastically the dimensions of the generalized
eigenvalue problem, which are solved for determining an open-
boundary basis set of atom-structured electrodes. Moreover, by
employing a novel and prominent solver for generalized eigen-
value problems, which is also suitable for massively parallel
computers, we can compute generalized Bloch wave func-
tions efficiently with reduced computational resources. Direct
comparison of the electron transport through Al monatomic
chains with atom-structured and jellium-approximated elec-
trodes clearly reveals the unphysical influence on the electron
transport, which originates from the oversimplification of the
electrodes. In addition, the electron transport property of Si
monatomic chains is also found to be more sensitive to the
energy of injected electrons than expected so far.

This paper is organized as follows: In Sec. II, we describe
the derivation of the conventional generalized eigenvalue
problem from a Kohn-Sham equation and the mathematical
reduction of the matrix dimensions of the generalized eigen-
value problem while maintaining the strictness. An efficient
construction of generalized Bloch wave functions is also
mentioned. In Sec. III, we perform several test calculations
to show the efficiency of the mathematical improvement, and
a discussion of the unphysical influence of the oversimplified
jellium approximation on electron transmission follows. In
Sec. IV, we summarize the mathematical improvement and
the performance tests. Finally, some mathematical details are
described in appendices.

II. GENERALIZED BLOCH WAVE FUNCTIONS AND
COMPLEX BAND STRUCTURE

Generalized Bloch wave functions are categorized into two
types: One is a group of propagating waves, which can be also
obtained by solving a Kohn-Sham equation under periodic
boundary conditions for bulk crystal systems, and they have
been so far exploited for studying the electronic structures
of bulk crystal systems. The other is a group of decaying and
growing evanescent waves, and they can be obtained by solving
a Kohn-Sham equation under open boundary conditions for
bulk crystal systems. These evanescent waves are unphysical
in the bulk crystal systems and unnecessary for electronic
structure studies of the bulk systems. However, in the case
of junction systems composed of a couple of semi-infinite
electrodes and a scattering region in between (see Fig. 1),
the evanescent waves are essential for reproducing the tails
of the wave function decaying toward the interiors of the
electrodes, e.g., a wave function localizing at the scattering
region. In other words, not only propagating waves but also
decaying and growing evanescent waves must be used as
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FIG. 1. Schematic representation of a junction system composed
of a scattering region and a pair of semi-infinite electrodes. A part
of the electrodes away from the scattering region can be considered
periodic, and can be divided into supercells, which have an effective
potential Veff identical to each others. The supercells are indexed as
. . . ,i − 1,i,i + 1 . . . , and the z coordinate is discretized as zi

j , which
represents the j th real-space grid point in the ith supercell. Nz denotes
the number of the grid points along the z direction in a supercell.

basis functions to describe the scattering wave functions on
the boundary planes accurately and strictly. To the best of
our knowledge, the calculation method for the generalized
Bloch wave functions based on the real-space finite-difference
formalism was first developed by Fujimoto and Hirose [7].
In this section, a brief explanation on the calculation method
is presented and a mathematical improvement to the method
follows. In addition, a convenient construction of generalized
Bloch wave functions is presented as well.

A. Transformation of Kohn-Sham equation into generalized
eigenvalue problem

At the interiors of the semi-infinite electrodes of a junction
system, we can assume that the effective potential is identical
to that of a corresponding bulk crystal system along the
direction of electron flow, i.e., the effective potential in the
Kohn-Sham equation is periodic. Figure 1 exhibits a schematic
representation of a periodic part of a semi-infinite electrode,
which has a supercell structure with a effective potential
periodic in the z direction [20]. The supercells are indexed
as . . . ,i − 1,i,i + 1, . . . as shown in Fig. 1.

A generalized Bloch wave function φ(r) of a given energy
ε for the periodic system, as depicted in Fig. 1, satisfies the
following Kohn-Sham equation:

−1

2
�φ(r) + V L(r)φ(r) +

∫
d r ′V NL(r,r ′)φ(r ′)

= ε

∫
d r ′S(r,r ′)φ(r ′), (1)
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where V L(r) and V NL(r,r ′) denote the local and nonlocal parts
of an effective potential, and S(r,r ′) represents an overlap
operator [21]. � is the second-order differential operator with
respect to the real-space coordinate.

In the real-space finite-difference formalism, all the physi-
cal quantities are directly represented on discretized real-space
grid points with a uniform interval [10]. The second-order
differential operator is even discretized, as seen in Appendix A,
and represented on the real-space grid points as a matrix.
Hence, one can transcribe the Kohn-Sham equation (1) into a
discretized Kohn-Sham equation in the form of simultaneous
linear equations, as

(H − εS) φ = 0 (2)

and

H = K + VL + VNL. (3)

S is the overlap matrix which is obtained by discretizing
the overlap operator S(r,r ′). The vector φ represents the
generalized Bloch wave function on real-space grid points,
φ(r ijk). H is the Hamiltonian matrix composed of the kinetic-
energy matrix K, local-potential matrix VL, and nonlocal-
potential matrix VNL.

The kinetic-energy matrix K obtained by the real-space
finite-difference approximation is not diagonal but is still
sparse and has nonzero elements only in the vicinity of
the diagonal line. The extent of the nonzero elements to
the off-diagonal positions depends on the order of the real-
space finite-difference approximation, Nf , as described in
Appendix B. When we choose an appropriate pseudopotential
method, the overlap matrix S and the nonlocal-potential matrix
VNL also have nonzero elements only within a short distance
from some diagonal elements, which depends on the spatial
extents of the nonlocal parts of pseudopotentials. Therefore,
the Hamiltonian matrix H is a sparse matrix whose nonzero
elements are confined only within a diagonal band.

In the following equation, we rewrite the discretized Kohn-
Sham equation (2) more specifically, so one can see the
sparseness and semidiagonality of the matrix H − εS (for more
details of the matrix elements, see Appendix B):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
. . . 0

. . . 0 0

0
C B

BT A
. . .

0

. . .
. . .

0

. . .
. . .

. . .
. . .

0
. . .

. . .
0 C B

0

BT A
. . .

0 0 . . .

0
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

φ i−1
Nz−1

φ i−1
Nz

φ i
1

φ i
2

...

...

φ i
Nz−1

φ i
Nz

φ i+1
1

φ i+1
2

...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0,

(4)

where φi
j is an elemental column vector with the length of

Nxy , which denotes the generalized Bloch wave function over
the xy plane at the j th grid point in the z direction of the ith
supercell. Nxy represents the number of the grid points on a xy

plane in a supercell, and Nz the number of the grid points along
the z direction in a supercell as shown in Fig. 1. Thin vertical
and horizontal lines drawn in the matrix and vector in Eq. (4)
represent the boundaries between neighboring supercells in
the z direction. At a cross point of the boundary lines, one
can define a square submatrix as indicated by a square in
the matrix in Eq. (4), which contains nonzero elements at
around the cross point and can be partitioned into four smaller
submatrices A, B, BT, and C by the boundary lines. Throughout
this work, the matrix B at the off-diagonal position is the
most essential quantity representing the interaction between
the neighboring supercells through the off-diagonal elements
of the kinetic-energy matrix K and the nonlocal potential
matrix VNL. As described in Appendix B, the matrix B
consists of MB × NB square submatrices of the order Nxy

and, therefore, is defined as a NxyMB × NxyNB rectangular
real-number matrix. MB and NB correspond to the number
of xy planes along the z direction, which cross the nonlocal
regions of the pseudopotentials sticking into the left- and right-
neighboring supercells, respectively. Hence, A and C are the
square matrices of the orders NxyNB and NxyMB, respectively.
This treatment of the matrix dimensions is conformable to the
conventional way to include pseudopotentials into the OBM
method [5].

From the discretized Kohn-Sham equation (4), which has
infinite dimension, we extract a set of rows associating with
the grid points in the ith supercell. The set of the extracted
rows forms another system of simultaneous linear equations
with the finite dimension of NxyNz,

[εSi − Hi]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

χ i
NB

φi
NB+1

...

φi
Nz−MB

χ i
MB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

BTχ i−1
MB

0
...

0

Bχ i+1
NB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (5)

Here Si (Hi) denotes the square submatrix of the order NxyNz,
which describes the interaction within ith supercell and locates
at a diagonal position in the global matrices S (H). χ i

NB
and

χ i
MB

represent the superset vectors comprising the first NB

and last MB elemental vectors φi
j of the ith supercell and are

defined as

χ i
NB

=

⎡⎢⎢⎣
φi

1

...

φi
NB

⎤⎥⎥⎦ and χ i
MB

=

⎡⎢⎢⎣
φi

Nz−MB+1

...

φi
Nz

⎤⎥⎥⎦ . (6)

The lengths of the superset vectors χ i
NB

and χ i
MB

are NxyNB

and NxyMB, respectively, so the rectangular matrices BT (B)
is operated to the superset vector χ i

MB
(χ i

NB
), as seen in the

finite-sized Kohn-Sham equation (5).
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Introducing the Green’s function G = [εSi − Hi]−1, we
can transform Eq. (5) into the following form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

χ i
NB

φi
NB+1

...

φi
Nz−MB

χ i
MB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= G

⎡⎢⎢⎢⎢⎢⎢⎢⎣

BTχ i−1
MB

0
...

0

Bχ i+1
NB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

One can see that the vector at the right-hand side has a limited
number of nonzero values at the first NxyNB and last NxyMB

elements, implying that, to perform the matrix-vector product
at the right-hand side, one needs to know not all column vectors
of the Green’s function matrix G but only the first NxyNB and
last NxyMB columns. By taking advantage of the sparseness of
the right-hand-side vector, the superset vectors in the left-hand
side, χ i

NB
and χ i

MB
, which are the parts of the generalized Bloch

wave function in the ith supercell, are simply given only from
the superset vectors in the neighboring supercells, χ i−1

MB
and

χ i+1
NB

, and submatrices out of the Green’s function matrix G,
as [

χ i
NB

χ i
MB

]
=

[
GTL GTR

GBL GBR

] [
BTχ i−1

MB

Bχ i+1
NB

]

=
[

GTLBT GTRB

GBLBT GBRB

] [
χ i−1

MB

χ i+1
NB

]
, (8)

where GTL, GTR, GBL, and GBR represent the rectangular
submatrices taken from the top-left, top-right, bottom-left, and
bottom-right corners of the Green’s function matrix G and
have the dimensions of NxyNB × NxyNB, NxyNB × NxyMB,
NxyMB × NxyNB, and NxyMB × NxyMB, respectively. Be-
cause of the periodicity of the bulk crystal system in the
z direction, the superset vectors χ i

NB
and χ i

MB
satisfies the

generalized Bloch condition as well as the elemental vectors
φi

j ,

χ i+1
NB

= λχ i
NB

and χ i
MB

= λχ i−1
MB

. (9)

Here λ represents the change in the phase and amplitude of a
wave function when it moves from a boundary to the other in
the z direction and is defined as

λ = exp(ikzLz), (10)

where kz and Lz are the Bloch wave number and supercell
length in the z direction, respectively. Generally, the wave
number kz is a complex number. If the imaginary part is zero,
the corresponding generalized Bloch wave function represents
a propagating wave, and, if not, the generalized Bloch wave
function is a decaying or growing evanescent wave. The
propagating and evanescent waves make up the complex band
structure, which generally refers to eigenenergies as a function
of complex Bloch wave number [22,23].

According to the generalized Bloch condition (9), we can
replace the superset vectors in the left-hand side of Eq. (8),
χ i

NB
and χ i

MB
, with those in the neighboring supercells, χ i+1

NB

and χ i−1
MB

. Eventually, we reach the generalized eigenvalue
problem [5,7,18] with respect to the couple of the superset

vectors,

�1

[
χ i−1

MB

χ i+1
NB

]
= λ�2

[
χ i−1

MB

χ i+1
NB

]
, (11)

where �1 and �2 are both square matrices of the order
NxyMB + NxyNB and represented as

�1 =
[

GBLBT GBRB

0 INxyNB

]
(12)

and

�2 =
[

INxyMB 0

GTLBT GTRB

]
, (13)

respectively. INxyMB(NxyNB) denotes the identity matrix of
the order NxyMB (NxyNB). Hence, the generalized Bloch
wave function of the ith supercell, {φi

j |j = 1, . . . ,Nz}, is
determined through Eq. (7) using the solution of the gen-
eralized eigenvalue problem (11). Analogous expressions of
the generalized eigenvalue problem are found in previous
works [22].

B. Reduction of dimension of matrices �1 and �2

As discussed above, the dimensions of the square matrices
�1 and �2 are given as a sum of the numbers of the
rows and columns of the rectangular matrix B and are, in
general, too huge to perform practical computations. However,
when the nonlocal parts of pseudopotentials are written in a
separable form, the dimensions can be drastically reduced to
at most Nxy × Nf + NNL, where NNL denotes the number of
the basis functions of the pseudopotentials, e.g., the projector
functions of the pseudopotentials involved in the matrix B.
This is because the rank of the rectangular matrix B is much
smaller than min(NxyMB,NxyNB) in practical calculations. In
this subsection, we present how to reduce the dimension of
the huge matrices �1 and �2, as seen in the generalized
eigenvalue problem (11), by means of the singular value
decomposition [19] of the off-diagonal rectangular matrix B.

By the use of the singular value decomposition mentioned
in Appendix C, the rectangular matrix B with the dimensions
of NxyMB × NxyNB can be decomposed into a product of three
matrices, as follows:

B = ÛB̂V̂T. (14)

Here the matrix B̂ has the dimensions of NxyMB × NxyNB and
contains the reduced singular value matrix B̂r , as defined in
Eq. (C2), at the bottom-left corner, as

B̂ =
[

0 0

B̂r 0

]
, (15)

where r = rankB and generally r � min(NxyMB,NxyNB).
Note that the reduced singular value matrix B̂r is diagonal.

According to Appendix C, the other two matrices in the
right-hand side of Eq. (14), Û and V̂, are associated to the
left and right singular matrices of the matrix B, and are
unitary matrices of the order NxyMB and NxyNB, respectively.
Assuming that the superset vector χ i

NB
(χ i

MB
) defined in Eq. (6)

can be represented by the linear combination of the column
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vectors of the unitary matrix V̂ (Û), we define the following
unitary transformations:

χ i
NB

= V̂χ̂ i
NB

and χ i
MB

= Ûχ̂ i
MB

. (16)

Here, the vectors in the right-hand side, χ̂ i
NB

and χ̂ i
MB

, are both
composed of the expansion coefficients and have the lengths
of NxyNB and NxyMB, respectively.

Replacing the superset vectors χ i
NB

and χ i
MB

in Eq. (5)
with Eq. (16), we obtain the following simultaneous linear
equations:

[εSi − Hi]

⎡⎢⎢⎢⎢⎢⎢⎢⎣

V̂ 0 0

1 0

0
. . . 0

0 1

0 0 Û

⎤⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

D̂

⎡⎢⎢⎢⎢⎢⎢⎢⎣

χ̂ i
NB

φi
NB+1

...

φi
Nz−MB

χ̂ i
MB

⎤⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

BTÛχ̂ i−1
MB

0
...

0

BV̂χ̂ i+1
NB

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

Here the block diagonal matrix in the left-hand side is defined
as D̂. We notice that the block diagonal matrix D̂ is unitary.

Multiplying the transpose matrix D̂T to each side of the
linear equations (17) from the left side, we transform the linear
equations (17) to

D̂T[εSi − Hi]D̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ̂ i
NB

φi
NB+1

...

φi
Nz−MB

χ̂ i
MB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

V̂TBTÛχ̂ i−1
MB

0
...

0

ÛTBV̂χ̂ i+1
NB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (18)

Because of the unitarity of the matrices Û and V̂, one can
derive the couple of equations ÛTBV̂ = B̂ and V̂TBTÛ = B̂T

from Eq. (14). Replacing the matrix products in the right-hand
side vector of Eq. (18) with these equations, one can simplify
the right-hand side vector as

D̂T[εSi − Hi]D̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ̂ i
NB

φi
NB+1

...

φi
Nz−MB

χ̂ i
MB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̂Tχ̂ i−1
MB

0
...

0

B̂χ̂ i+1
NB

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (19)

Now we will reveal that the the numbers of nonzero
elements at the both ends of the right-hand side vector, which
amounts to NxyMB + NxyNB in Eq. (19), can be reduced to
only 2r by taking advantage of the sparseness of the matrix B̂
as seen in Eq. (15). First, we divide each of the vectors χ̂ i

MB

and χ̂ i
NB

into two subvectors as

χ̂ i
NB

=
[
χ̂ i

NB,r

χ̂ i
NB,0

]
and χ̂ i

MB
=

[
χ̂ i

MB,0

χ̂ i
MB,r

]
. (20)

In the former equation, the subvector χ̂ i
NB,r is composed of the

first r elements of the vector χ̂ i
NB

, and the other one, χ̂ i
NB,0, is of

the rest. In the latter equation, the subvector χ̂ i
MB,r is composed

of the last r elements of the vector χ̂ i
MB

and the other one,
χ̂ i

MB,0, is of the rest. According to Eq. (16) and Appendix C,
one can see that the subvectors χ̂ i

NB,r , χ̂ i
MB,r , χ̂ i

NB,0, and χ̂ i
MB,0

represent the vectors in the row space, column space, null
space, and left null space of the matrix B, respectively.

From the definitions of the matrix B̂ in Eq. (15) and the
couple of vectors χ̂ i

NB
and χ̂ i

MB
in Eq. (20), the matrix-vector

products in the right-hand side vector of Eq. (19) are changed
into the following sparser forms:

B̂Tχ̂ i−1
MB

=
[

0 B̂r

0 0

] [
χ̂ i

MB,0

χ̂ i
MB,r

]
=

[
B̂r χ̂

i−1
MB,r

0

]
(21)

and

B̂χ̂ i+1
NB

=
[

0 0

B̂r 0

] [
χ̂ i

NB,r

χ̂ i
NB,0

]
=

[
0

B̂r χ̂
i+1
NB,r

]
. (22)

Therefore, using the reduced singular value matrix B̂r and
the r-dimensional subvectors χ̂ i

NB,r and χ̂ i
MB,r , the linear

equations (19) can be rewritten as

D̂T[εSi − Hi]D̂

⎡⎢⎢⎢⎢⎢⎢⎢⎣

χ̂ i
NB,r

χ̂ i
NB,0

φ̂
i

NB–MB

χ̂ i
MB,0

χ̂ i
MB,r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̂r χ̂
i−1
MB,r

0
...

0

B̂r χ̂
i+1
NB,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (23)

where φ̂
i

NB–MB
denotes the superset vector

φ̂
i

NB–MB
=

⎡⎢⎢⎣
φi

NB+1

...

φi
Nz−MB

⎤⎥⎥⎦ . (24)

This form of the discretized Kohn-Sham equation corresponds
to Eq. (5) in the previous subsection, but the number of
the nonzero elements involved in the right-hand side vector
amounts to only 2r . From the discussion so far, one can see
that the submatrices A, B, and C illustrated in Eq. (4) are found
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to be transformed into the following form:

C B

BT A

−→

UTCU
Br

Br

VTAV

(25)

The matrices at the off-diagonal positions are seen to shrink,
while those at the diagonal positions retain the original
dimensions.

Next, we transform the discretized Kohn-Sham equa-
tion (23) into a generalized eigenvalue problem by means of
the similar way to that mentioned in the previous subsection.
Let us introduce the Green’s function matrix Ĝ associated to
the Kohn-Sham equation (23). The Green’s function matrix Ĝ
is defined and converted as

Ĝ = [D̂T[εSi − Hi]D̂]−1

= D̂T[εSi − Hi]−1D̂

= D̂TGD̂. (26)

Note that D̂−1 = D̂T because the block diagonal matrix D̂ is
unitary. By multiplying the Green’s function Ĝ to the both sides
of the Kohn-Sham equation (23) from the left, one obtains the
following linear equations:

⎡⎢⎢⎢⎢⎢⎢⎢⎣

χ̂ i
NB,r

χ̂ i
NB,0

φ̂
i

NB–MB

χ̂ i
MB,0

χ̂ i
MB,r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= D̂TGD̂

⎡⎢⎢⎢⎢⎢⎢⎣
B̂r χ̂

i−1
MB,r

0
...
0

B̂r χ̂
i+1
NB,r

⎤⎥⎥⎥⎥⎥⎥⎦ . (27)

This expression corresponds to the linear equations (7) in the
previous subsection. As discussed in the previous subsection,
we can easily see that because of the sparseness of the right-
hand side vector, we need only the first r and last r column
vectors of the Green’s function matrix Ĝ = D̂TGD̂ introduced
in Eq. (26) to complete the operations in the right-hand side.
However, if we straightforwardly follow Eq. (26) to determine
the only 2r necessary column vectors, we are subjected to huge
computation that calculates the first NxyNB and last NxyMB

column vectors of the Green’s function matrix G.
To avoid the inefficient computations, we now introduce an

alternative solution which determines the necessary column
vectors of the Green’s function matrix Ĝ without computing
the huge amount of the column vectors of the Green’s function
matrix G. Defining the new matrices F̂ = GD̂ and F̂2r as the
matrix composed of the first r and last r column vectors of F̂,

the linear equations (27) is rewritten in the following form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

χ̂ i
NB,r

χ̂ i
NB,0

φ̂
i

NB–MB

χ̂ i
MB,0

χ̂ i
MB,r

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= D̂TF̂

⎡⎢⎢⎢⎢⎢⎢⎣
B̂r χ̂

i−1
MB,r

0
...
0

B̂r χ̂
i+1
NB,r

⎤⎥⎥⎥⎥⎥⎥⎦
= D̂TF̂2r

[
B̂r χ̂

i−1
MB,r

B̂r χ̂
i+1
NB,r

]
. (28)

According to the definition F̂ = GD̂, the matrix F̂2r being
necessary for calculating the left-hand side vector of Eq. (28)
is determined by solving the following matrix equation:

[εSi − Hi ]̂F2r =

⎡⎢⎣ V̂r 0

0 0

0 Ûr

⎤⎥⎦ , (29)

where each of the matrices V̂r and Ûr is composed of only r

column vectors, as defined in Appendix C.
Analogously with the original OBM method mentioned in

the previous subsection, from the linear equations (28) we
can construct the 2r-dimensional linear equations describing
the relationship between the r-dimensional vectors in the
ith supercell, χ̂ i

NB,r and χ̂ i
MB,r , and those in the neighboring

supercells, χ̂ i−1
MB,r and χ̂ i+1

NB,r , as[
χ̂ i

NB,r

χ̂ i
MB,r

]
=

[
ĜTL ĜTR

ĜBL ĜBR

] [
B̂r χ̂

i−1
MB,r

B̂r χ̂
i+1
NB,r

]

=
[

ĜTLB̂r ĜTRB̂r

ĜBLB̂r ĜBRB̂r

] [
χ̂ i−1

MB,r

χ̂ i+1
NB,r

]
. (30)

Here ĜTL, ĜTR, ĜBL, and ĜBR represent the square sub-
matrices of the order r , which are taken from the top-left,
top-right, bottom-left, and bottom-right corners of the Green’s
function matrix Ĝ, respectively. When we define the top-left
NB × r , top-right NB × r , bottom-left MB × r , and bottom-
right MB × r submatrices of the rectangular matrix F̂2r as F̂TL

2r ,
F̂TR

2r , F̂BL
2r , and F̂BR

2r , respectively, the square submatrices of the
Green’s function matrix Ĝ are determined as ĜTL = V̂T

r F̂TL
2r ,

ĜTR = V̂T
r F̂TR

2r , ĜBL = ÛT
r F̂BL

2r , and ĜBR = ÛT
r F̂BR

2r .
The generalized Bloch condition, as seen in Eq. (9), still

holds for the r-dimensional vectors χ̂ i
NB,r and χ̂ i

MB,r , as

χ̂ i+1
NB,r = λχ̂ i

NB,r and χ̂ i
MB,r = λχ̂ i−1

MB,r . (31)

By applying the generalized Bloch conditions (31) to the
2r-dimensional linear equations (30), the subvectors χ̂ i

NB,r

and χ̂ i
MB,r in the left-hand side drop out, and we can obtain

the linear equations containing only the subvectors χ̂ i+1
NB,r

and χ̂ i−1
MB,r , which is in the form of a generalized eigenvalue

problem with the reduced dimension of 2r as follows:

�̂1

[
χ̂ i−1

MB,r

χ̂ i+1
NB,r

]
= λ�̂2

[
χ̂ i−1

MB,r

χ̂ i+1
NB,r

]
, (32)
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where �̂1 and �̂2 are both square matrices of the order 2r and
are represented as

�̂1 =
[

ĜBLB̂r ĜBRB̂r

0 Ir

]
(33)

and

�̂2 =
[

Ir 0

ĜTLB̂r ĜTRB̂r

]
. (34)

Here Ir denotes the identity matrix of the order r . We would
like to emphasize that this generalized eigenvalue problem (32)
has much smaller dimension than that mentioned in previous
subsection [see Eqs. (11)–(13)], but these two generalized
eigenvalue problems are exactly equivalent to each other
mathematically.

By taking advantage of the block form of the reduced
matrix �̂2, we can easily obtain the inverse of the matrix
�̂2 analytically. Following the description in Appendix D, we
have

�̂
−1
2 =

[
Ir 0

−B̂−1
r Ĝ−1

TRĜTLB̂r B̂−1
r Ĝ−1

TR

]
. (35)

Therefore, the generalized eigenvalue problem (32) can be
turned into a standard eigenvalue problem, as

�̂
−1
2 �̂1

[
χ̂ i−1

MB,r

χ̂ i+1
NB,r

]
= λ

[
χ̂ i−1

MB,r

χ̂ i+1
NB,r

]
. (36)

C. Construction of generalized Bloch wave function

In the previous subsection, it has been shown that by
solving the generalized eigenvalue problem (32) or (36), we
can determine the couple of the subvectors χ̂ i−1

MB,r and χ̂ i+1
NB,r ,

which are only parts of a generalized Bloch wave function. In
this subsection, we will address how to calculate generalized
Bloch wave functions over the whole supercell as shown in
Fig. 1. According to Eqs. (6) and (16), the generalized Bloch
wave function in the ith supercell φi can be associated with
the subvectors χ̂ i−1

MB,r and χ̂ i+1
NB,r through the unitary matrix D̂,

which contains the left and right singular matrices V̂ and Û of
the matrix B,

φi =

⎡⎢⎢⎢⎢⎢⎢⎣

χ i
NB

φi
NB+1
...

φi
Nz−MB

χ i
MB

⎤⎥⎥⎥⎥⎥⎥⎦ = D̂

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ̂ i
NB,r

χ̂ i
NB,0

φ̂
i

NB–MB

χ̂ i
MB,0

χ̂ i
MB,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (37)

Substituting the right-hand side vector with Eq. (28), we
transform Eq. (37) to

φi = F̂2r

[
B̂r χ̂

i−1
MB,r

B̂r χ̂
i+1
NB,r

]
, (38)

where the generalized Bloch wave function φi is represented
as a simple and small matrix-vector product.

The conventional way to calculate the self-energy matrix
within the real-space finite-difference formalism is described
in Eqs. (14) and (18) in Ref. [18].

D. Implementation

In practical computations, although the singular value
decomposition of the matrix B is expected to cost a lot
because of the large dimension of NxyMB × NxyNB, this can
be managed by means of mathematical library software such
as SCALAPACK [24], which is particularly tuned for massively
parallel computer architectures at a recent trend.

To work out the conventional generalized eigenvalue
problem (11) numerically, Fujimoto and Hirose have employed
a two-stage process, that is, the QZ algorithm followed by a
continued-fraction method [7]. The latter stage is not suitable
for massively parallel computers and, hence, costs a lot to
obtain generalized Bloch wave functions accurately. Instead
of the two-stage process, we here propose to employ the
Sakurai-Sugiura projection method [25] as a solver of the
reduced generalized eigenvalue problem (32) or the reduced
standard eigenvalue problem (36). In the use of the former
eigenvalue problem, one does not need to compute any matrix
inverse, and in the use of the latter one, one can save
computational memory space. The Sakurai-Sugiura method
projects the matrix pencil derived from an eigenvalue problem
onto a subspace associated with a domain on the complex plane
and finds all the eigenvalues and functions in the given domain.
What we need for electron transport calculations are not all
of generalized Bloch wave functions but propagating waves
with the eigenvalues of |λ| = 1 and only gently decaying or
growing evanescent waves with the eigenvalues of |λ| �= 1 and
cmin < |λ| < cmax. Here cmin and cmax denote a certain distance
from the unit circle |λ| = 1 on the complex plane. Note that
rapidly decaying or growing evanescent waves with |λ| < cmin

or cmax < |λ| can be excluded, because such wave components
are unphysical or already vanish before reaching the boundary
planes. Therefore, the projection method is appropriate to solve
the reduced generalized and standard eigenvalue problems (32)
and (36) under such conditions. Moreover, the projection
procedure is carried out via numerical integration which can be
performed in parallel, and, thus, the Sakurai-Sugiura method is
suitable for massively parallel computer architectures as well.
Note that the improved generalized eigenvalue problems (32)
and (36) with the reduced dimension are applicable not only
for the OBM method but also for the real-space nonequilibrium
Green’s function method proposed by Ono et al., as the
alternative of Eq. (12) in Ref. [18].

III. PERFORMANCE TEST

In this section, we present a series of test calculations for
the electronic complex band structures of generalized Bloch
wave functions and their applications to electron transport
through nanoscale structures. Effective local potential and
pseudopotential parameters, being necessary for constructing
the Hamiltonian H in Eq. (3), are determined by an electronic
structure calculation code [5,26] based on the real-space
finite-difference formalism. The pseudopotential data sets are
given by the NCPS2K package [27], which is constructed
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FIG. 2. Electronic complex band structures of generalized Bloch
wave functions. (a) and (b) show the schematic representation of
an Al infinite chain and an Al fcc bulk, respectively. In (a), each
supercell contains two Al atoms to form an equidistant chain through
the supercells. The circles and gray balls in (b) represent Al atoms,
and the former and the latter are in different planes in the direction
perpendicular to the paper. The electronic complex band structures
obtained by the present method are plotted in (c) and (e) for the chain
and bulk, respectively. The open circles and crosses represent the
real and imaginary wave numbers, respectively. (d) and (f) exhibit
the conventional electronic band structures of those systems, which
are calculated by a conventional electronic structure method for the
reference. Note that in (e) the calculation is performed in the energy
range between −2.10 and +0.02 eV, as indicated by the dashed lines.

using the norm-conserving pseudopotentials method proposed
by Troullier and Martins [28]. The exchange-correlation
interaction is treated by the local density approximation [29].
All the calculations to be presented here are carried out on
Intel Xeon X5570 and X5670 computers with a clock speed
of 2.93 GHz and 24 GB of memory.

A. Generalized Bloch wave functions of Al chain and bulk

To confirm that the improved method for generalized Bloch
wave functions outputs electronic complex band structures
consistent with the electronic band structures obtained by con-
ventional electronic structure calculation codes, we perform
test calculations of generalized Bloch wave functions for an
Al atomic chain and an Al bulk with the order of the real-space
finite-difference approximation Nf = 2 (see Appendix A).
Figures 2(a) and 2(b) exhibit schematic representations of the
calculation models employed in this work. For the Al atomic
chain, the distance between the neighboring atoms is set to be

TABLE I. Actual values concerning to the dimensions of the
matrices B, �1, �2, B̂, �̂1, and �̂2 for the calculations of the Al
infinite atomic chain and Al fcc bulk.

NxyMB NxyNB NxyMB + NxyNB r 2r

Al chain 588 1372 1960 396 792
Al fcc bulk 3380 3380 6760 1424 2848

2.86 Å (5.40 bohrs) and one supercell with the dimensions of
4.45 × 4.45 × 5.72 Å3 (8.40 × 8.40 × 10.80 bohrs3) contains
two Al atoms. The atoms are placed to be asymmetric with
respect to the center of the supercell. This causes MB �= NB

and forms the matrix B in Eq. (4) into a rectangular shape.
For the Al bulk, one supercell consists of 2 × 2 × 1 Al fcc
unit cells and has the dimensions of 8.08 × 8.08 × 4.04 Å3

(15.27 × 15.27 × 7.64 bohrs3) with the periodic boundary
conditions in the x and y directions.

In the test calculations, we can specifically see how much
the dimensions of the conventional generalized eigenvalue
problem (11) decrease when the eigenvalue problem (11) is
transformed into the reduced generalized eigenvalue prob-
lem (32) through the decomposition of the matrix B. Table I
summarizes the actual values obtained in the test calculations.
The dimensions of the generalized eigenvalue problem de-
crease from 1960 to 792 for the Al chain and from 6760 to
2848 for the Al bulk. This fact results in the reduction of 84%
and 82% of the matrix elements for the Al chain and Al bulk,
respectively.

The real and imaginary wave numbers calculated for the two
systems using the improved formalism are plotted in Figs. 2(c)
and 2(e) to form electronic complex band structures, i.e., in
the kz-ε curves the wave numbers kz are determined from the
eigenvalues λ according to Eq. (10), while the energy ε is
input. In Figs. 2(d) and 2(f), the electronic band structures
calculated by a conventional electronic structure code are
drawn as the references. One can see that the real wave
numbers obtained by the present method are in good agreement
with the electronic band structures drawn by the conventional
method, and the imaginary wave numbers smoothly connect
to the curves formed by the real wave numbers. We also
confirm the fact that through the Sakurai-Sugiura projection
method, the relation between the eigenvalues of Eq. (32),
|λmax| × |λmin| = 1, holds even in the real-space grid spacings
of 0.32 Å (0.60 bohrs) for the Al chain and 0.29–0.30 Å (0.55–
0.57 bohrs) for the Al fcc bulk. Note that in the conventional
method solving the generalized eigenvalue problem (11), this
rule has broken down even at such course grid spacings, as
seen in Fig. 3 in Ref. [7]. Therefore, we can conclude that
the improved formalism proposed in the previous section
can successfully reproduce band structures from electronic
structure calculations with less expensive computational effort.

B. Electron transport through a Cu point contact

Now we apply generalized Bloch wave functions obtained
by the present method as the boundary basis set of a scattering
wave function in ballistic electron transport calculations. The
test system employed here is a Cu quantum point contact. The
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FIG. 3. (Color online) Electron transmissions and spatial distri-
butions of transport channels for a Cu quantum point contact.
In (a), total electron transmissions are drawn as black dots, and
channel-decomposed transmissions are drawn as open symbols as
functions of injected electron energy ε. The open squares (circles)
stand for the electron transmission of the first (second) channel. The
spatial distributions of the first and second transmission channels at
the energy indicated by the arrow in (a) are depicted in (b) and (c),
respectively. The schematic representation of the geometry of the Cu
point contact is superimposed on (b) and (c).

scattering region of the point contact, composed of two Cu
atoms in the center and six Cu (110) layers at each side,
is schematically drawn in Figs. 3(b) and 3(c). Hence, the
boundary planes interfacing the semi-infinite electrode regions
are set at the both ends of Figs. 3(b) and 3(c). The electrode
region is composed of four Cu (110) layers in the z direction
and 2 × 2 Cu (110) unit cells in the x and y directions.

The transport calculation is carried out in a non-self-
consistent manner by importing predefined effective potential
and pseudopotential parameters, which has been determined
by electronic structure calculations based on the real-space
finite-difference formalism [5,26]. The transport code em-
ployed in the computation [4,6,7] is also based on the real-
space finite-difference formalism to keep consistency with the
electronic structure calculations as well as the calculation of
the generalized Bloch wave functions mentioned above. The
order of the real-space finite-difference approximation is set
to Nf = 2. Electron transmissions to be present hereafter are
evaluated from scattering wave functions using the Landauer
formula [30] and the channel-decomposition technique [31].
The grid spacings are 0.16 (0.30), 0.18 (0.34), and 0.16
(0.30) Å (bohrs) for the x, y, and z directions, respectively.

Figure 3(a) shows the electron transmissions at around
the Fermi level EF. The first transmission channel is almost
quantized to 1.0G0 (G0 = 2e2/h, where e is the electron
charge and h is Planck’s constant) at the Fermi level and
above. This is consistent with the experimental measurements
using mechanically controllable break junction technique [32]
and with the theoretical evaluation based on the screened
Korringa-Kohn-Rostoker Green’s function method [33]. The
second transmission channel is observed to have a sharp and
quantized transmission peak only at the energy of +0.5 eV.
In the spatial distributions of the transmission channels at the
energy of +0.5 eV, as depicted in Figs. 3(b) and 3(c), one
can see that the first and second channels have the ground and
first excited transverse mode, respectively. This is the typical
transport property of the quantum point contact.

C. Comparison between realistic and
jellium-approximated electrodes

The jellium approximation of the interiors of the electrodes
is well known to bring a benefit in electron transport calcu-
lations that the boundary conditions of the scattering wave
functions can be described in analytic forms. However, we
have to be very careful about unphysical influence brought
by the approximation, such as undesirous scattering at the
interface between a jellium part and an atomic structure [17]
and unexpected charge transfer between them [16]. In our
previous work on the electron transport through molecular
junctions, we have pointed out the unphysical influence on the
electronic structure originating from the jellium approximation
of the interiors of the electrodes [13]. Fujimoto and Hirose
have also showed for a gold atomic chain that employing
the ideal distance between the surface of a jellium electrode
and the attaching Au (100) layer, the half of the interlayer
distance in the [100] direction, the conductance calculated is
≈5% less than that calculated with crystalline electrodes [7].
To the best of our knowledge, no other direct comparison
of electron transport properties of atomic chains with and
without the jellium approximation of the interiors of the
electrodes have been reported, while only Asari et al. has
discussed the artificial influence of the jellium model on the
electron transport properties of an Al monatomic chain by
varying the number of Al (100) layers attached on the jellium
surface [34]. Now we can directly compare the two systems
with atom-structured and jellium-approximated electrodes
and discuss the unphysical influence caused by approximat-
ing atomic structures with the uniform background jellium
model.

For this purpose, we choose an Al monatomic chain
suspended between a pair of Al electrodes, because the Al
chain system has been already studied both with crystalline
electrodes [35] and with jellium electrodes [8,34,35]. The Al
monatomic chain system employed here is composed of five
Al atoms in a line, a pair of square Al bases, and three Al
(100) layers at each end, as depicted in Figs. 4(c)–4(f). The
interatomic distance of the linear chain is fixed to 2.89 Å
(5.46 bohrs), and the distance between an end of the chain
and a square base is 2.02 Å (3.82 bohrs), which is equivalent
to the interlayer distance in the [100] direction of an Al fcc
bulk. The generalized Bloch wave functions in the electrode
region are calculated using the supercell with the dimensions
of 12.12 × 12.12 × 4.04 Å3 (22.91 × 22.91 × 7.68 bohrs3)
corresponding to 3 × 3 × 1 unit cells of an Al fcc structure
under the real-space finite-difference approximation order
of Nf = 2. The grid spacings are 0.30 (0.57), 0.30 (0.57),
and 0.29 (0.55) Å (bohrs) for the x, y, and z directions,
respectively.

The Al monatomic chain system with jellium-approximated
electrodes, being the target for comparison, has the same
structure to that with atom-structured electrodes as mentioned
above, except for both ends of the scattering region. To be
more precise, the outermost Al layer in each end of the
scattering region is replaced by a jellium model with the length
corresponding to three Al (100) layers in the z direction. This
length in the direction of the electrode depth is necessary
for damping down influence from the atomic structure. Only
the tunable parameter of the jellium model, the Wigner-Seitz
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FIG. 4. (Color online) Electron transmissions and spatial distri-
butions of transport channels for an Al monatomic chain. (a) and
(b) show the electron transmissions of the atomic chains with the
atom-structured and jellium-approximated electrodes, respectively.
The black solid and red dashed curves denote the total and first
channel transmissions, respectively. The blue dotted curve represents
the electron transmission of the second and third channels, which
are degenerated. The spatial distributions of the channel-decomposed
scattering wave functions, indicated by the arrows in (a), are depicted
in (c)–(f).

radius rs, is set to 1.10 Å (2.07 bohrs) to preserve the original
charge density of an Al bulk.

Figure 4(a) shows the electron transmissions of the Al
monatomic chain with the atom-structured electrodes, while
those of the Al chain with the jellium-approximated electrodes
are drawn in Fig. 4(b). From Figs. 4(c)–4(f), we can confirm
the typical features of the Al chains that the first transmission
channel has the ground transverse mode without any node
on the xy plane and the second channel has p-like spatial
distribution. One can clearly see that the transmission curve
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FIG. 5. (Color online) Electron transport property of Si
monatomic chain. (a) shows the graphical representation of the Si
monatomic chain, which is attached to the hollow sites of Al (100)
surfaces at the both ends. The red and white spheres represent the
Si and Al atoms, respectively. (b) shows the electron transmissions
as the function of the energy of the electrons injected to the system,
which is measured from the Fermi level. The solid line represents
the total transmission, and the dashed lines the channel-decomposed
transmissions.

shifts to the lower-energy side by the jellium approximation,
in particular, the first peak of the second transmission channel
[indicated by (e) in Fig. 4(a)] moves from just above to
below the Fermi level. This fact implies that the jellium
approximation causes the electron transfer from the jellium
part to the Al chain part, because transmission peaks are, in
general, closely related to the electronic structure of scattering
regions. Such charge transfer induced by the jellium model
is also observed in our previous work on electron transport
through molecular junction [13].

As another test, we consider a Si monatomic chain sand-
wiched between the Al (100) surfaces of crystalline electrodes
and discuss how the electron transport property differs from
the case where the Si chain is directly connected to the surfaces
of Al jellium bulk electrodes [14,35]. To the best of our
knowledge, there are no reports on the electron transport
property of the Si monatomic chain with Al crystalline
electrodes, which is comparable to the previous works using
the jellium electrodes.

Figure 5(a) shows the graphical representation of the Si
monatomic chain system employed here. The linear chain
is composed of three Si atoms with the fixed distance of
2.33 Å (4.40 bohrs) to compare the transport property with
Ref. [14] and is attached to the hollow sites of the Al (100)
surfaces of the crystalline electrodes with the contact distance
of 2.00 Å (3.78 bohrs) [36]. In the directions perpendicular to
the chain axis, we have assumed periodic boundary conditions
with a large supercell size of 12.12 × 12.12 Å2 (22.89 ×
22.89 bohrs2) so the interaction from the mirror images are
negligible. In the direction parallel to the chain axis, four Al
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(100) layers are included in the each side of the scattering
region (see Fig. 1) as the parts of the electrodes.

Figure 5(b) shows the electron transmissions of the Si
monatomic chain system, where total transmission and its
channel-decomposed transmissions are drawn as a function
of the energy of injected electrons. Only the first channel is
seen to contribute to the electron transport through the atomic
chain up to the energy of −2.5 eV, and, in addition, the degen-
erated second and third channels become gradually opened
above the energy of −2.5 eV. At energies above −2.5 eV,
the transmission of the first channel gradually decreases,
and the second and third channels compensate for the de-
crease in the total electron transmission. Therefore, the total
transmission looks to be stable at around a quantized value
1G0 and to have a steep rise up to more than 2G0 above
the energy of −1.5 eV. In comparison with the previous
works [14,35,37], which employ jellium electrodes instead
of the crystalline electrodes, the general behaviors of the
transmission curve mentioned above are almost consistent
with those from the previous works but are not as smooth
as those in the previous works, especially in the energy range
above −3.0 eV. Moreover, the transmission curve of the first
channel in the present work does not exhibit the broad dip
extending over several eV around the Fermi level, which is
commonly observed in comparable works. Consequently, the
Si monatomic chain system employed here exhibits that all
three channels are almost fully opened at the Fermi level
and the total transmission value reaches up to 2.94G0. Note
that the rough dip and bump structure of the transmission
curves found in the present work is rather similar to the
other previous works, which employ a couple of Al atomistic
nanowires as the crystalline leads [36,38]. In general, the
electron transport properties in the vicinity of the Fermi level
have significant influence to device functionality. In the case
of the Si monatomic chain employed here one may utilize the
steep depression in the transmission curve at the energy of
−0.8 eV for a functionality specific to the Si chain device,
which has not been reported for the system with jellium
electrodes.

IV. CONCLUSION

We have presented the mathematical improvements that
drastically reduce the dimension of the generalized eigenvalue
problem for generalized Bloch wave functions without any
approximation and losing the strictness. Hence, we have drawn
electronic complex band structures of large systems within
realistic computation costs. The test calculations reveal that the
dimension of the reduced matrix in the generalized eigenvalue
problem amounts to only ≈40% of that in the conventional
generalized eigenvalue problem.

Moreover, we have also proposed, as a solver of the gen-
eralized eigenvalue problem, the Sakurai-Sugiura projection
method, which is suitable not only for massively parallel
computers in the recent trend but also for our demand that we
need only a limited number of eigenfunctions with eigenvalues
in a certain domain in the complex plane. Due to the projection
method, we succeeded in saving computational resources
so the test calculations are all performed on usual cluster
computers.

The comparison of the electron transport properties be-
tween atom-structured and jellium approximated electrodes
has been carried out using the Al monatomic chain and Si
monatomic chain suspended between the Al (100) electrodes
as a part of the test calculations. In consequence, considerable
differences originating from the oversimplified jellium model
are clearly demonstrated. In addition, by comparing the
electron transmissions of the Al and Si monatomic chains
one can expect that the Al atomic chain device is more sensitive
to the Si atomic chain device because the former has more
sharp-peaked electron transmission than the latter.
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APPENDIX A: REAL-SPACE FINITE-DIFFERENCE
APPROXIMATION OF KINETIC-ENERGY TERM

In the real-space finite-difference formalism, the kinetic
energy term in the Kohn-Sham equation (1), which is in the
form of a second-order derivative of a wave function φ, is
approximated as

−1

2
�φ(r i,j,k)

≈
Nf∑

n=−Nf

[
−c

(|n|)
x

2h2
x

φi+n,j,k − c
(|n|)
y

2h2
y

φi,j+n,k − c
(|n|)
z

2h2
z

φi,j,k+n

]
.

(A1)

Here Nf and c
(n)
x(yz) represent the order and coefficients of

the real-space finite-difference approximation, respectively.
The actual values of the coefficients c

(n)
x(yz) are described

elsewhere [10,39]. hx(yz) is the interval of neighboring real-
space grid points in the x(yz) direction.

APPENDIX B: DETAILED DESCRIPTION OF THE
KOHN-SHAM SUBMATRICES

The Kohn-Sham submatrices C, A, and B, which are
introduced in Eq. (4), can be partitioned into MB × MB, NB ×
NB, and MB × NB submatrices, respectively. The submatrices
are square of the order Nxy and are referred to as Ckk′ , Akk′ , and
Bkk′ , where k and k′ correspond to the real-space grid indexes
in the z direction. Ckk′ , Akk′ , and Bkk′ are defined as

Ckk′ = Hkk′ − εSkk′ for k, k′ = Nz − MB + 1, . . . ,Nz,

Akk′ = Hkk′ − εSkk′ for k, k′ = 1, . . . ,NB,

Bkk′ = Hkk′ − εSkk′ for k = Nz − MB + 1, . . . ,Nz

and k′ = 1, . . . ,NB, (B1)
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where Skk′ and Hkk′ are the submatrices of the order Nxy and represent the overlap matrix S and Hamiltonian matrix H on a xy

plane, respectively. The kinetic-energy matrix K, which composes the Hamiltonian matrix H as shown in Eq. (3), is

K(i,j,k)(i ′,j ′,k′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

− c
(0)
x

2h2
x

− c
(0)
y

2h2
y

− c
(0)
z

2h2
z

for i = i ′, j = j ′, and k = k′,

− c
(|i−i′ |)
x

2h2
x

for 0 < |i − i ′| � Nf , j = j ′, and k = k′,

− c
(|j−j ′ |)
y

2h2
y

for i = i ′, 0 < |j − j ′| � Nf, and k = k′,

− c
(|k−k′ |)
z

2h2
z

for i = i ′, j = j ′, and 0 < |k − k′| � Nf,

0 otherwise.

(B2)

APPENDIX C: SINGULAR VALUE DECOMPOSITION

Singular value decomposition [19] of the rectangular matrix
B of the dimension NxyMB × NxyNB is defined as

B = ÛSVDB̂SVDV̂T
SVD, (C1)

where ÛSVD, B̂SVD, and V̂SVD are the left singular matrix,
singular value matrix, and right singular matrix, respectively.
The singular value matrix B̂SVD is the rectangular diagonal
matrix with the same dimensions as the matrix B, and the
diagonal elements are composed of the singular values of the
matrix B as

B̂SVD =
[

B̂r 0

0 0

]
and B̂r =

⎡⎢⎢⎣
b1 0

b2

. . .
0 br

⎤⎥⎥⎦ .

(C2)
Here r = rankB < min(NxyMB,NxyNB) and the singular val-
ues are arranged in descending order b1 � b2 � · · · � br > 0.
The submatrix B̂r is called as reduced singular value matrix.
Hence, the left and right singular matrices, ÛSVD and V̂SVD, are
square matrices of the order NxyMB and NxyNB, respectively.
The column vectors of each singular matrix are orthonormal to
each other to make the matrix unitary. The left singular matrix
ÛSVD is divided into two orthogonal subspaces, i.e., the first r

column vectors and the rest span the column space Ûr and the
left null space Û0, respectively. Similarly, the right singular
matrix V̂SVD is divided into two orthogonal subspaces, i.e.,
the first r column vectors and the rest span the row space V̂r

and the null space V̂0, respectively. Therefore, the singular
matrices, ÛSVD and V̂SVD, can be expressed as

ÛSVD = [Ûr | Û0] and V̂SVD = [V̂r | V̂0]. (C3)

Note that the r-dimensional column space Ûr and row space
V̂r are uniquely determined, but the left null space Û0 and the
null space V̂0 are underspecified.

The matrices Û, B̂, and V̂, which are introduced in Eq. (14),
can be determined from the matrices ÛSVD, B̂SVD, and V̂SVD,
respectively.

Û = ÛSVD�, B̂ = �TB̂SVD, and V̂ = V̂SVD, (C4)

where � is the unitary matrix of the order NxyMB, and can
be partitioned into 2 × 2 submatrices. The two of them at the
off-diagonal positions are identity matrices and the others are
zero ones, as

� =
[

0 Ir

INxyMB−r 0

]
. (C5)

Hence, the matrix � exchanges the positions of the first r

column vectors of a matrix and the rest column vectors, when
the matrix � operates to the matrix from the right.

APPENDIX D: INVERSE OF BLOCK MATRIX

A matrix A is assumed to be partitioned into 2 × 2
submatrices (blocks), where Aij denotes the ith row and j th
column block of the matrix A, as

A =
[

A11 A12

A21 A22

]
. (D1)

The inverse of the matrix A is known to be expressed as

A−1 =
[

C−1
1 −A−1

11 A12C−1
2

−C−1
2 A21A−1

11 C−1
2

]
, (D2)

where

C1 = A11 − A12A−1
22 A21, (D3)

C2 = A22 − A21A−1
11 A12. (D4)
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