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A boundary scheme in the lattice Boltzmann method (LBM) for the convection-diffusion equation, which
correctly realizes the internal boundary condition at the interface between two phases with different transport
properties, is presented. The difficulty in satisfying the continuity of flux at the interface in a transient analysis,
which is inherent in the conventional LBM, is overcome by modifying the collision operator and the streaming
process of the LBM. An asymptotic analysis of the scheme is carried out in order to clarify the role played by
the adjustable parameters involved in the scheme. As a result, the internal boundary condition is shown to be
satisfied with second-order accuracy with respect to the lattice interval, if we assign appropriate values to the
adjustable parameters. In addition, two specific problems are numerically analyzed, and comparison with the
analytical solutions of the problems numerically validates the proposed scheme.
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I. INTRODUCTION

The lattice Boltzmann method (LBM), which was devel-
oped as an alternative computational scheme to conventional
simulation methods such as finite-volume and finite-element
methods, has recently been recognized as a powerful tool
for simulating the convection and diffusion of a scalar
variable [1–12]. The LBM has not only been applied to
problems governed primarily by the convection-diffusion
equation (CDE), such as heat transfer [13,14], reaction-
diffusion system [15,16], and ion transport [17,18], but has
also been used as an auxiliary to the LBM for multiphase
flow simulation to handle the index variable in the phase-field
method [19–21]. Boundary treatments other than the standard
bounce-back rule have also been investigated in order to
apply the LBM to various types of boundary conditions.
For example, the partial bounce-back rule was proposed
in an attempt to reproduce the heat resistance condition at
the boundary [22], and special treatments to capture the
curved boundaries have recently been developed [23–25].
However, the difficulty in dealing with the interface between
two phases (or two media) with different transport properties
remains, and most of the lattice Boltzmann algorithms are
not capable of satisfying the continuity conditions of the
physical variable and its flux simultaneously in a transient
analysis [26,27]. Since such an interface is often encoun-
tered in many practical engineering problems, e.g., the heat-
conduction problem in different materials and the ion-transport
problem in porous media with different porosities, developing
a scheme that satisfies the continuity conditions is very
important.

In order to clarify the problem, we state the boundary
conditions at the interface specifically. Let us consider a scalar
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variable φ governed by the following CDE:

λ
∂φ

∂t
+ λ

∂

∂xj

(φvj ) = ∂

∂xj

(
K

∂φ

∂xj

)
, (1)

where t is the time, K(x) is the conductivity, and xj and
vj are the j th components of the spatial vector x and the
velocity of the media v, respectively. The coefficient λ controls
the relaxation speed, which corresponds to the volumetric
specific heat in the heat-conduction problem. If the media is
homogeneous and is characterized by a single set of λ and K ,
Eq. (1) is often divided by λ and the diffusivity D = K/λ

is used as a parameter. On the other hand, if there exists
an interface between two phases of different properties, the
coefficient λ and the conductivity K appear in the boundary
condition in the following form [28]:

φA = φB, (2)

(
−KA ∂φA

∂xj

+ vA
j λAφA

)
nj =

(
−KB ∂φB

∂xj

+ vB
j λBφB

)
nj ,

(3)

where nj is the normal unit vector on the interface, and the
superscripts A and B are the indexes distinguishing the values
in the different phases. Equation (2) indicates the continuity
of the scalar variable, and Eq. (3) indicates the continuity of
the flux. In this case, we need to specify the values of both λ

and K . Since the relation D = K/λ is usually exploited in the
LBM, most of the existing schemes that satisfy the conditions
specified by Eqs. (2) and (3) are restricted to the analysis
of steady states [13,26,27]. For the case of no background
flow (or v = 0) at the interface in Eqs. (2) and (3), there are
a few methods that are applicable to unsteady problems: the
method proposed by Meng et al. for heat-conduction problems
realizes the continuity of the temperature and the heat flux,
assuming a plane boundary [29]. Li et al. have very recently
proposed a method for curved interfaces, which preserves the
second-order accuracy with respect to the grid interval [30].
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In the present paper, we propose an alternative boundary
scheme for the LBM that correctly satisfies the boundary
conditions (2) and (3) at the interface between two different
phases. Here a background flow v across the boundary, which
is important in the case of diffusion process in solvent flows
through porous media, is taken into account. The present
scheme is based on two simple modifications of the collision
process and the streaming process, in the original LBM
algorithm: (i) In each phase, a different value is assigned to
the weight coefficient included in the collision term. (ii) The
velocity distribution function in the LBM is multiplied (or
divided) by a factor γ when it passes through the interface.
These modifications result in new boundary conditions at the
interface controlled by the ratio of the weight coefficients and
the value of γ . Appropriate definitions of the values of these
parameters enable the boundary conditions (2) and (3) to be
satisfied simultaneously.

In the next section, a detailed description of the proposed
algorithm is presented. The theoretical analysis in Sec. III
proves that the proposed scheme reproduces the boundary con-
ditions at the interface with second-order accuracy with respect
to the lattice interval. In Sec. IV two specific problems are
numerically analyzed using the present scheme. Comparison
with the analytical solutions of the problems confirms that the
boundary scheme appropriately approximates the boundary
conditions at the interface.

II. LATTICE BOLTZMANN METHOD

This section is dedicated to the description of the proposed
algorithm. In Sec. II A we first state the lattice Boltzmann
equation (LBE) used in the present study [31], and then, in
Sec. II B, we describe the boundary scheme for the two-phase
interface.

A. Lattice Boltzmann equation

The LBE governs the behavior of the velocity distribution
function fα(t,x), which is defined for each direction labeled
α. (In the present paper, α and β designate the direction of the
velocity. Note that the summation convention for repeated α

and β is not assumed.) The summation of fα with respect
to α, φ = ∑

α fα , approximates the solution of the CDE.
Each fα travels over the uniformly distributed lattice points
with the assigned velocity. In the case of three-dimensional
computation, we use seven discrete velocities, which are
defined in terms of eα , as follows:

[e0,e1,e2,e3,e4,e5,e6]

=

⎡
⎢⎣

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

⎤
⎥⎦ . (4)

The LBM for the CDE does not require the isotropy of
the fourth-order tensor

∑
α eαieαj eαkeαl , in contrast to the

conventional LBM for flow simulation [31]. This absence of
constraint for the fourth-order tensor makes it possible to use
the small number of discrete velocities as in the above equation,
compared with that for the Navier-Stokes equation, in which
15 or 19 discrete velocities are usually employed.

Using the above-defined notation, the LBE is written as
follows:

fα(t + �t, x + eα�x) − fα(t,x)

=
∑

β

(M−1SM)αβ

(
f

eq
β − fβ

)
(t,x), (5)

where �t is the time step, and �x is the lattice interval. The
equilibrium distribution function f

eq
α is defined as follows:

f eq
α (φ) =

(
1 + �t

2	�x
vjeαj

)
ωαφ, (6)

φ =
∑

α

fα, (7)

where vj is the j th component of the background flow velocity
of the media, which is a given function. The weight coefficient
ωα is defined as

ωα =
{

1 − 6	, (α = 0)

	, (α = 1, . . . ,6)
, (8)

where 	 ∈ (0,1/6) is a constant. The explicit form of the
matrices M and S are

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1

0 1 −1 0 0 0 0

0 0 0 1 −1 0 0

0 0 0 0 0 1 −1

6 −1 −1 −1 −1 −1 −1

0 2 2 −1 −1 −1 −1

0 0 0 1 1 −1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

S−1 = diag(τ0,τ̄ ,τ̄ ,τ̄ ,τ4,τ5,τ6). (10)

With the matrix M, the distribution function expressed in
the discrete velocity space is projected onto another vector
space before the relaxation process in Eq. (5), in which the
first component of

∑
β Mαβfβ corresponds to the conserved

variable φ, and the second to fourth components are related
to the flux (or gradient) of φ; the rest of the components
do not have significant physical meanings, but affect the
computational error. The choice of the components of M is
discussed in Ref. [31]. The matrix S controls the time required
for fα to relax toward f

eq
α . If the relaxation-time coefficient τ̄

is related to K and λ through the equation below, the value of
φ obtained using the LBM converges to the solution of Eq. (1)
in the limit of �x → 0 [31]:

τ̄ = 1

2
+ �t

2	�x2

K

λ
. (11)

If the conductivity K is spatially variable, τ̄ is also a function
of x.

Note that the multiple-relaxation-time (MRT) method is
used in the collision operator as in the right-hand side of
Eq. (5) supplemented with Eqs. (9) and (10). This is because
the single-relaxation-time (SRT) collision operator, which is
most widely used in the LBM, is not sufficiently robust to
the variation of the physical relaxation time coefficient τ̄ .
[The present formulation reduces to the SRT collision operator
while setting τp = τ̄ (p = 0,4,5,6).] If the SRT was used along
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with the algorithm presented herein, the computational error
would become very large in a certain parameter range in which
τ̄ becomes very large. As demonstrated in Sec. IV A, the MRT
operator significantly improves the accuracy for such a severe
parameter range.

The computational algorithm of the LBM consists of the
two procedures based on Eq. (5). If the value of fα at time t is
known, then the value at time t + �t is evaluated as follows:

(i) Collision process:

f̂α(t,x) = fα(t,x) +
∑

β

(M−1SM)αβ

(
f

eq
β − fβ

)
(t,x). (12)

(ii) Streaming process:

fα(t + �t,x + eα�x) = f̂α(t,x). (13)

B. Boundary scheme at the interface

As mentioned in the introduction, in the proposed boundary
scheme both the collision and streaming processes are mod-
ified. The first modification is that different values are used
for the constant 	 in the definition of the weight coefficient,
i.e., 	A �= 	B , with superscripts A and B denoting the values
in phases A and B, respectively. Second, the streaming
process (13) is replaced by the following equation:

f B
α (t + �t,x + eα�x) = γ f̂ A

α (t,x), (14)

f A
ᾱ (t + �t,x) = (1/γ )f̂ B

ᾱ (t,x − eᾱ�x), (15)

where γ ∈ (0,1) is a constant. The superscripts A and B

are conveniently introduced to distinguish the values in the
different phases, as in Eqs. (2) and (3), though the LBM in
the present paper deals with a common distribution function
fα throughout the computational domain. The subscript ᾱ

indicates the direction opposite the direction of α, i.e.,
eα = −eᾱ . The above equation assumes that the interface
is located at the halfway point between x in phase A and
x + eα�x = x − eᾱ�x in phase B. In the next section, we
clarify the condition satisfied by the macroscopic quantity φ

when the protocol described herein is used and discuss how to
determine the values of 	A, 	B , and γ in order to satisfy the
desired conditions (2) and (3).

III. ASYMPTOTIC ANALYSIS

In this section we first outline the asymptotic analysis of the
LBE [31,32], and the explicit expressions of the asymptotic
solution of fα . We then analyze the boundary scheme described
in Sec. II B, following the methods described in Refs. [31,33],
in order to derive the relationship among the scalar variable φ

and the parameters 	A, 	B , and γ .

A. Diffusive scaling and the asymptotic solutions

Before starting the asymptotic analysis, we rescale the time
and spatial variables. We thus introduce the following rescaled
variables:

t̃ = U

L
t, x̃ = 1

L
x, ũ = 1

U
u, (16)

where L and U are the reference length and speed, respectively.
We choose the value of U based on the discussion in
Refs. [31,32]:

U = Cε, ε = �x

L
, C = �x

�t
. (17)

This definition implies that the reference speed is sufficiently
slower than the dynamics of the distribution function charac-
terized by the speed C. In the asymptotic analysis, ε defined
in Eq. (17) is used as a small parameter; i.e., we investigate
the behavior of the LBE in the limit of ε → 0.

Equation (17) defining U means that we choose the refer-
ence time as T = L/U = �t/ε2. Therefore, the time variable
defined in Eq. (16) is written as t̃ = tε2/�t . Correspondingly,
the rescaled time step �t̃ = �t/T is �t̃ = ε2, which im-
plies that the limit ε → 0 must be taken while maintaining
�t̃/ε2 = 1.

Using the rescaled variables, the LBE is rewritten as
follows:

fα(t̃ + ε2, x̃ + eαε) − fα(t̃ , x̃)

=
∑

β

(M−1SM)αβ

(
f

eq
β − fβ

)
(t̃ ,x̃). (18)

The equilibrium distribution function f
eq
α is expressed as

follows:

f eq
α =

(
1 + ε

ṽj eαj

2	

)
ωαφ, (19)

ṽ = 1

U
v. (20)

The scaling employed herein, which is referred to as diffusive
scaling, was first developed by Sone [34] in order to prove
the convergence of the continuum Boltzmann equation to the
fluid-dynamic equations [35,36] and has since been widely
applied to the analysis of the LBE [31,32,37,38].

The asymptotic analysis then begins by expanding fα in
terms of powers of ε:

fα = f (0)
α + f (1)

α ε + f (2)
α ε2 + · · · . (21)

Similarly, f
eq
α and φ are expanded:

f eq
α = f eq(0)

α + f eq(1)
α ε + f eq(2)

α ε2 + · · · , (22)

φ = φ(0) + φ(1)ε + φ(2)ε2 + · · · . (23)

After substituting Eqs. (22) and (23) into Eq. (19), equating
the coefficients of the same power of ε yields the expression
of f

eq(m)
α in terms of φ(m):

f eq(0)
α = ωαφ(0), (24)

f eq(1)
α = ωαφ(1) + ṽj eαj

2	
ωαφ(0), (25)

f eq(2)
α = ωαφ(2) + ṽj eαj

2	
ωαφ(1), (26)

· · · .
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Next, we substitute the expansion (21) into Eq. (18), and
apply the Taylor expansion to fα(t̃ + ε2, x̃ + eαε) about (t̃ ,x̃).
A series of equations for f (m)

α is then obtained by equating the
coefficients of the same power of ε. These equations are solved
from the lowest power using Eqs. (24) through (26). Here we
summarize the results necessary in the analysis of the boundary
scheme, the details of which are described in Ref. [31]:

f (0)
α = ωαφ(0), (27)

f (1)
α = ωαφ(1) + ṽj eαj

2	
ωαφ(0) −

∑
β

(M−1S−1M)αβeβj

∂f
(0)
β

∂x̃j

,

(28)

f (2)
α = ωαφ(2) + ṽj eαj

2	
ωαφ(1) −

∑
β

(M−1S−1M)αβ

×
(

∂f
(0)
β

∂t̃
+ eβj

∂f
(1)
β

∂x̃j

+ eβj eβk

2

∂2f
(0)
β

∂x̃j ∂x̃k

)
. (29)

In the process of obtaining the above results, it is found that
the inhomogeneous terms in the linear equations for f (m)

α

(m � 2) must satisfy the solvability conditions. In particular,
the solvability conditions of the equations for f (2)

α and
f (3)

α are effectively the same as the CDE (1) for φ(0) and φ(1),
respectively. We then prove that the numerical solution of the
LBM appropriately approximates the solution of the CDE (1).

B. Analysis of the boundary scheme

We now analyze the boundary scheme described in
Sec. II B, by means of a similar expansion method [31,33]. In
the course of the analysis, the explicit forms of the asymptotic
solutions (24) through (29) are used to transform the conditions
for the distribution function into those for the scalar variable
φ. Here we restrict ourselves to the case in which the interface
passes through the midpoint between the two lattice points,
at which the expansion is conducted: x̃C = x̃ + eαε/2 =
x̃ − eᾱε/2 (eᾱ = −eα). Equations (14) and (15) are rewritten
in terms of x̃C as follows:

f B
α (t̃ + ε2,x̃C + eαε/2) = γ

[
f A

α (t̃ ,x̃C − eαε/2) +
∑

β

(M−1SM)αβ

(
f

eqA

β − f A
β

)
(t̃ ,x̃C − eαε/2)

]
, (30)

f A
ᾱ (t̃ + ε2,x̃C + eᾱε/2) = 1

γ

[
f B

ᾱ (t̃ ,x̃C − eᾱε/2) +
∑

β

(M−1SM)ᾱβ

(
f

eqB

β − f B
β

)
(t̃ ,x̃C − eᾱε/2)

]
. (31)

In a manner similar to that described in Sec. III A, we substitute the expansion of Eqs. (21) and (22) into the above equations
and apply the Taylor expansion about (t̃ ,x̃C). Then, the conditions at the interface that should be satisfied by f (m)

α are obtained
by equating the coefficients of the same power of ε. With the aid of the asymptotic solutions, these conditions are expressed in
terms of φ(m).

In the leading order (ε0), the following condition is obtained from Eq. (30):

f B(0)
α = γ

⎡
⎣f A(0)

α +
∑

β

(M−1SM)αβ

(
f

eqA(0)
β − f

A(0)
β

)⎤⎦ , (32)

where the argument (t̃ ,x̃C) is omitted for the sake of simplicity. Substituting Eqs. (24) and (27) yields the following condition
for φ(0):

γ	AφA(0) = 	B(0)φB(0). (33)

Here ωα = 	 (α �= 0) has been used [Eq. (8)]. In addition to Eq. (32), a similar relation is obtained from Eq. (31), which ends
up with the same condition for φ(0) as Eq. (33).

Proceeding to the next order (ε), we obtain the following conditions:

eαj

2

∂f B(0)
α

∂x̃j

+ f B(1)
α = γ

{
− eαj

2

∂f A(0)
α

∂x̃j

+ f A(1)
α +

∑
β

(M−1SM)αβ

[
− eαj

2

∂

∂x̃j

(
f

eqA(0)
β − f

A(0)
β

) + (
f

eqA(1)
β − f

A(1)
β

)]}
, (34)

eᾱj

2

∂f
A(0)
ᾱ

∂x̃j

+ f
A(1)
ᾱ = 1

γ

{
− eᾱj

2

∂f
B(0)
ᾱ

∂x̃j

+ f
B(1)
ᾱ +

∑
β

(M−1SM)ᾱβ

[
− eᾱj

2

∂

∂x̃j

(
f

eqB(0)
β − f

B(0)
β

) + (
f

eqB(1)
β − f

B(1)
β

)]}
. (35)

We then substitute the asymptotic solutions (24), (25), (27), and (28), to obtain the following conditions for φ(0) and φ(1):

γ	AφA(1) = 	BφB(1), (36)

γ

(
−D̃A ∂φA(0)

∂x̃j

+ ṽA
j φA(0)

)
eαj =

(
−D̃B ∂φB(0)

∂x̃j

+ ṽB
j φB(0)

)
eαj , (37)
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where D̃ = 2	(τ̄ − 1/2). If we proceed to the analysis of the
second order (ε2), we similarly obtain the conditions for φ(1)

and φ(2). Here we write only the condition for φ(1):

γ

(
−D̃A ∂φA(1)

∂x̃j

+ ṽA
j φA(1)

)
eαj

=
(

−D̃B ∂φB(1)

∂x̃j

+ ṽB
j φB(1)

)
eαj . (38)

Next, we integrate the conditions (33), (36), (37), and (38)
by using φ = φ(0) + φ(1)ε + · · · , and rewrite them in terms
of the variables before rescaling. Then φ is found to satisfy
the following conditions at the interface with second-order
accuracy with respect to the lattice interval:

γ	AφA = 	BφB, (39)

γ

(
−KA

λA

∂φA

∂xj

+ vA
j φA

)
nj =

(
−KB

λB

∂φB

∂xj

+ vB
j φB

)
nj .

(40)

Relation (11) was used in obtaining Eq. (40). Clearly, the
desired boundary conditions (2) and (3) are satisfied if the
following relation among γ , 	A, and 	B holds:

γ = 	B

	A
= λA

λB
. (41)

The values of 	A and 	B are not unique in the range (0,1/6),
because only the ratio is specified in Eq. (41). In the numerical
analysis in Sec. IV, we assign the value of 1/8 to the larger 	.
Note that the choice of the value of 	 affects the relaxation-
time coefficient τ̄ through Eq. (11). Therefore the value of
the time step �t should be carefully chosen, in the case of
an extreme value for 	, because the value of τ̄ influences the
numerical errors, as will be discussed in Sec. IV A.

IV. NUMERICAL ANALYSIS

In this section we numerically examine the boundary
scheme described in Sec. II B with the parameter setting (41),
in order to confirm that it correctly satisfies the boundary
conditions at a two-phase interface. For this purpose, we
consider in Sec. IV A the convection-diffusion process near
a plane interface between two phases, and in Sec. IV B the
diffusion in a core-shell sphere with an interface between the
core and the shell. In both problems, the numerical results are
compared to the exact solutions.

A. Convection and diffusion near a plane interface

We consider two phases (or media) that are streaming in
the x direction, while keeping the interface at x = 0. Phases A
and B are in the regions x > 0 and x < 0, respectively, and the
values of λ and K are constant but different in the two regions
(λA �= λB , KA �= KB). The velocities of phase A and B are
vA

x and vB
x , respectively. We investigate the diffusion process

of a scalar variable φ using Eq. (1). A physical example of
this problem is ion diffusion in an electrolyte solution flowing
through two porous media with different porosities λA and λB

in contact. Then the scalar variable φ is identified with the ion

concentration, with K being the effective diffusion coefficient
in the porous media. Note that, in this case, the relation
λAvA

x = λBvB
x should hold because of mass conservation for

the electrolyte solution.
Initially, φ = φin in x > 0, and φ = 0 in x < 0, and the

boundary conditions at x = 0 are given in the following form:

φA = φB, (42)

− KA ∂φA

∂x
+ vA

x λAφA = −KB ∂φB

∂x
+ vB

x λBφB. (43)

This initial- and boundary-value problem in the case of
vA

x = vB
x = 0 (pure diffusion case) has the following exact

solution [39]:

φA(t,x) = φin

1 + 


[
1 + 
erf

(
x

2
√

KAt/λA

)]
, (44)

φB(t,x) = φin

1 + 

erfc

(
− x

2
√

KBt/λB

)
, (45)

where 
 = (λBKB/λAKA)1/2. On the other hand, the exact
solution in the case of vA

x �= 0 and vB
x �= 0 is obtained via

Laplace transformation as follows:

φm(t,x) = − 1

π

∫ ∞

0
2Im[�m(w2eiπ ,x)]e−w2tw dw, (46)

�A(s,x) = 1

s
[F (s) − φin] exp

[
xvA

x

2DA
− xGA(s)

2

]
+ φin

s
,

(47)

�B(s,x) = 1

s
F (s) exp

[
xvB

x

2DB
+ xGB (s)

2

]
, (48)

F (s) = φin
[
KAGA(s) − vA

x λA
]

λAvA
x − λBvB

x + KAGA(s) + KBGB(s)
, (49)

Gm(s) =
[(

vm
x

Dm

)2

+ 4s

Dm

]1/2

, (50)

where superscript m indicates the phase (m = A,B), and i is
the imaginary unit. (Recall Dm = Km/λm.) In Eq. (46), Im[·]
denotes the imaginary part of the argument. Since Im[�m]
decays as w → ∞, the numerical values of the exact solution
are obtained with integrating Eq. (46) over a finite range.

Whereas the exact solution is for the infinite domain x ∈
(−∞,∞), the LBM computation is carried out in a bounded
domain x ∈ (−20L,20L) with L being a reference length.
The periodic condition is assumed in the y and z directions,
restricting the domain to y,z ∈ (0,L). The lattice interval is
�x = L/N , and the time step is (KA/λAL2)�t = 0.125 ×
(1/N )2. The present problem is characterized by the four
dimensionless parameters: λB/λA, KB/KA, (λAL/KA)vA

x ,
and (λBL/KA)vB

x .
Figure 1 shows the time evolution of the profile of φ for

the case of λB/λA = 0.5 and KB/KA = 0.53/2. The lattice
interval is �x = L/40. The diffusion layer, in which a steep
gradient of φ is observed, is formed adjacent to the interface
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FIG. 1. Time evolution of the profiles of φ around the interface for the case of λB/λA = 0.5 and KB/KA = 0.53/2. (a) vA
x = vB

x = 0 and (b)
(λAL/KA)vA

x = (λBL/KA)vB
x = 1. The symbol indicates the LBM results, and the solid line indicates the exact solutions given in Eqs. (44)

and (45) [panel (a)], and Eq. (46) [panel (b)].

in the short-time regime and then relaxes and becomes thicker
as time advances. In the case of vA

x = vB
x = 0, as indicated by

both the exact solution [Eqs. (44) and (45)] and Fig. 1(a), the
value of φ at the interface is constant independent of time. On
the other hand, in the case of (λAL/KA)vA

x = (λBL/KA)vB
x =

1 [Fig. 1(b)], the diffusion layer flows in the x direction and
the value of φ at the interface decreases as time advances. The
LBM results are in agreement with the exact solution, includ-
ing the discontinuity of the gradient at the interface [Eq. (43)],
which shows that the boundary scheme described in Sec. II B
with the parameter set given in Eq. (41) works correctly.

In the theoretical analysis described in Sec. III, the
accuracy of the scheme is predicted to be of the second
order with respect to the lattice interval (or ε). In order to
examine the theoretical prediction, we show, in Fig. 2, the
errors defined by E∞ = max |φnumerical − φexact|/φin and E2 =
[
∑

x(φnumerical − φexact)2/NE]1/2/φin as functions of the lattice
interval �x. The sum in the definition of E2 runs over the lattice
points in −5L � x � 5L, and then NE = 10N . The errors are
estimated at time (KA/λAL2)t = 1.25. Since the log-log plots
of the errors are parallel to the line having a slope equal to 2,
the scheme is shown to possess second-order accuracy.

The magnitude of the error also depends on the value of
λB/λA (and KB/KA). This is because the relaxation-time
coefficients are dependent on λ and K through Eq. (11),
and the error then depends on the relaxation-time coefficient.
In order to suppress the increase in the error for small
values of λB/λA, in the present paper, we used the multiple-
relaxation-time (MRT) method in the collision operator as
defined in Eq. (5) with Eqs. (9) and (10). We demonstrate the
improvement in accuracy achieved by using the MRT method.
Figure 3 compares the errors for various values of λB/λA

with those obtained using the ordinary single-relaxation-time
(SRT) method. More specifically, in the SRT computation, we
set τp = τ̄ (p = 0,4,5,6), whereas in the MRT computation,
τp(p = 0,4,5,6) is maintained at unity irrespective of the value
of τ̄ . The collision operator of the SRT method, which is
often referred to as the BGK operator, is the most widely used
operator because of its simplicity. One of the drawbacks of
this operator, however, is that the error is very sensitive to the
variation of the relaxation-time coefficient, which is crucial in
the application of the present boundary scheme, as shown in
Fig. 3. This is the reason we use a rather complicated MRT
in the present paper.

FIG. 2. Error versus the lattice interval in the plane-interface problem. (a) E∞ and (b) E2. The value of conductivity ratio is KB/KA =
(λB/λA)3/2. A dashed line indicating a slope of 2 is also shown in the figure.
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FIG. 3. Error versus λB/λA in the plane-interface problem for the case of vA
x = vB

x = 0 and KB/KA = (λB/λA)3/2. (a) E∞ and (b) E2.
The lattice interval is fixed at �x/L = 0.025. The symbol � indicates the results obtained using the multiple-relaxation-time (MRT) collision
operator, and the symbol � indicates the results obtained using the single-relaxation-time (SRT) collision operator.

The conductivity K in Eq. (1) is in general spatially
variable. Here we check the continuity of φ and its flux at
the interface for such a case using a similar one-dimensional
problem. To this end, we replace the constant K by K(1 +
a
√|x/L|) in the above problem, with a being a constant

parameter. Table I lists the values of φ and the flux J =
−K(∂φ/∂x) + vλφ at the interface, with the superscripts
A and B indicating the values at x = 0+ and x = 0−,
respectively. Clearly, the continuity of φ and J realized using
the present scheme is not violated by the spatial variation of K .
In the numerical tests here, the lattice interval is �x = L/20,
and other parameters are the same as those of the case in
Fig. 1(b). Since the interface is located at the midpoint between
two lattice points, the values in the table are measured by
means of the second-order polynomial extrapolation, using
the values of φ at the lattice points around the interface at the
instant (KA/λAL2)t = 1.25.

B. Diffusion in a core-shell sphere

Let us consider a sphere with a core filled with another
phase (or media). The core shares its center with the shell at
x = 0, and the radii of the core and the shell are RA and RB ,
respectively (Fig. 4). We investigate the behavior of the scalar
variable φ inside the sphere, based on the diffusion equation.
The values of (λ,K) are constant and denoted by (λA,KA)
in 0 < r < RA, and (λB,KB) in RA < r < RB , with r being
the radial coordinate, i.e., r = (x2 + y2 + z2)1/2. Initially the
value of φ is uniform in the sphere, i.e., φ = φin at t = 0 in 0 <

r < RB . The surface of the sphere (r = RB) is maintained at
φ = 0 for t > 0. The internal boundary condition at r = RA is

TABLE I. Continuity check for the case of spatially variable K .

a φA/φin φB/φin (L/φinKA)J A (L/φinKA)J B

1 0.5989 0.5988 0.5565 0.5565
10 0.6833 0.6833 0.6688 0.6688
100 0.7555 0.7556 0.7410 0.7411

described by Eqs. (2) and (3) without the background velocity
v. This initial- and boundary-value problem has the following
exact solution [40]:

φA(t,r) = 2RBφin

r

∞∑
n=1

1

g(θn)
sin(rθn) sin(RAθn)

× sin[(RB − RA)kθn] exp
[−(KA/λA)θ2

n t
]
, (51)

φB(t,r) = 2RBφin

r

∞∑
n=1

1

g(θn)
sin2(RAθn)

× sin[(RB − r)kθn] exp
[−(KA/λA)θ2

n t
]
, (52)

where

g(θn) = RAθn



sin2[(RB − RA)kθn]

+ (RB − RA)kθn sin2(RAθn)

+ 1 − k/


RAkθn

sin2[(RB − RA)kθn] sin2(RAθn), (53)

k =
(

λBKA

λAKB

)1/2

, 
 =
(

λBKB

λAKA

)1/2

, (54)

FIG. 4. Core-shell sphere with two phases.
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FIG. 5. Time evolution of the profiles of φ in the radial direction in the core-shell sphere. (a) λB/λA = 0.5 and KB/KA = 0.53/2 and
(b) λB/λA = 2 and KB/KA = 23/2. The symbol indicates the LBM results, and the solid line indicates the exact solution given in Eqs. (51)
and (52).

and θn is the root of the following equation for θ :

KB{RAkθ cot[(RB − RA)kθ ] + 1}
+KA[RAθ cot(RAθ ) − 1] = 0. (55)

Note that the above solution is valid only for the irrational
values of k(RB − RA)/RA; otherwise correction terms are
necessary [40]. In the present paper, we consider only the
cases in which k(RB − RA)/RA is irrational.

Although the problem is one-dimensional in the radial
direction, in order to examine the capability of handling a
curved interface, we carry out the three-dimensional LBM
computation using a Cartesian coordinate system, in which
the lattice points in 0 < r � RA belong to phase A and the
points in RA < r < RB belong to phase B. The computational
domain is restricted to x,y,z ∈ (0,RB), imposing the symmet-
ric boundary condition (no-gradient condition) at the planes
x = 0, y = 0, and z = 0. The other parameters, such as the
lattice interval and the time step, are specified similarly to
those in Sec. IV A, choosing RA as the reference length. In
Fig. 5 we show the time evolution of the profiles of φ in the
case of RB/RA = 2. The lattice interval is �x = RA/40. In
the case of λB/λA = 0.5 and KB/KA = 0.53/2 [Fig. 5(a)],
since the conductivity is higher in phase A, the gradient of φ

relaxes and the profile flattens faster than that in phase B. On
the other hand, in the case of λB/λA = 2 and KB/KA = 23/2

[Fig. 5(b)], the gradient of φ remains in phase A because of the
lower conductivity. In both cases, the LBM results correctly
capture the behavior of the exact solution, which demonstrates
the applicability of the proposed scheme to the case of a curved
boundary. Note that in Fig. 5, the value of φ at r is obtained
by averaging the values at all of the lattice points within the
gap r − �x/2 < (x2 + y2 + z2)1/2 � r + �x/2.

Finally, we investigate the accuracy in greater detail. In
Fig. 6 we show the error E∞ (defined in Sec. IV A) as a function
of the lattice interval. Since, in the three-dimensional LBM,
the spherical interface at r = RA and the surface at r = RB

are approximated by the stepwise voxel data, the convergence
of the positions of the interface and the boundary exhibits
first-order accuracy with respect to the lattice interval. This
is why the error of the results obtained using the Cartesian

coordinates exhibits first-order accuracy. In the figure, for
comparison, we also show the results of the one-dimensional
LBM in the spherical polar coordinate system (see Ref. [41]
for details of the LBM in curvilinear coordinate systems). The
second-order accuracy observed in the case of the spherical
polar coordinates, in which the interface and boundary pass
through the halfway point between two lattice points, also
confirms that the deceleration of the convergence in the
Cartesian coordinates is due to the approximation accuracy
of the position of the interface and the boundary. The absolute
values of the error are sensitive to the value of λB/λA in
the case of the spherical polar coordinates. This is because the
benefit of using the multiple-relaxation-time collision operator
is less pronounced if we use the one-dimensional LBM in
which the relaxation-time matrix is small [41]. Another point
observed in Fig. 6 is that, in the range of the lattice interval

FIG. 6. Error versus the lattice interval in the core-shell sphere
problem for the cases of λB/λA = 0.1, 0.5, and 2 ; KB/KA =
(λB/λA)3/2. The filled symbols indicate the results of the three-
dimensional LBM using Cartesian coordinates, and the open symbols
indicate the results of the one-dimensional LBM using spherical polar
coordinates. Dashed lines indicating slopes of 1 and 2 are also shown.
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size investigated herein, the errors of the two results are
comparable, which implies that the simple algorithm of the
proposed scheme is promising for practical applications, in
which curved boundaries exist. If the second-order accuracy
is essential in analyzing a problem with curved boundaries
using a Cartesian grid, the method proposed recently by Li
et al. [30] is a promising alternative. Note that, however, if
a background velocity across the boundary exists, one must
extend the method in Ref. [30], though the extension should
be straightforward.

V. SUMMARY

We have proposed a modified algorithm of the lattice
Boltzmann method (LBM) at the two-phase interface, which
includes new parameters, i.e., the ratio of the weight coeffi-
cients in the equilibrium distribution function and the factor
that multiplies (or divides) the distribution function in the
streaming process. The asymptotic analysis of the algorithm,
which is based on the method in Refs. [31,33], shows that
the boundary conditions described in Eqs. (39) and (40) are
satisfied with second-order accuracy with respect to the lattice
interval, if the interface passes through the median point
between lattice points. The new boundary conditions (39)
and (40) are correctly reduced to the desired boundary
conditions, i.e., Eqs. (2) and (3), by applying the relation (41)
among the parameters appearing in the scheme.

We numerically analyzed two specific problems, i.e., an
expanding diffusion layer adjacent to a plane interface, and

the relaxation process in a sphere with a core. The results for
the former problem numerically confirmed the theoretically
predicted second-order accuracy. In addition, the necessity
of the multiple-relaxation-time collision operator was also
demonstrated. In the latter problem, although the convergence
was decelerated, the leading-order accuracy was guaranteed
even if we approximate the shape of the interface by means
of the voxel data, and the applicability of the scheme to the
curved interface was confirmed.

One possible extension of the present research is to
incorporate a jump of the scalar variable at the interface,
an example of which is the interfacial thermal resistance
in heat-conduction problems. If the jump at the interface is
prescribed as a ratio, the present scheme is directly applied
with tuning the values of 	 and γ in Eq. (39). However, the
prescribed difference of the scalar variable, e.g., the Kapitza
resistance of the form (φA − φB)/(∂φ/∂x) = const, is not
covered by the present scheme. In that case, combining the
present scheme and the partial bounce-back scheme [22,38],
which realizes a jump condition prescribed as a difference,
would be a promising approach.
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