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Role of viscous friction in the reverse rotation of a disk
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The mechanical response of a circularly driven disk in a dissipative medium is considered. We focus on the
role played by viscous friction in the spinning motion of the disk, especially on the effect called reverse rotation,
where the intrinsic and orbital rotations are antiparallel. Contrary to what happens in the frictionless case, where
steady reverse rotations are possible, we find that this dynamical behavior may exist only as a transient when
dissipation is considered. Whether or not reverse rotations in fact occur depends on the initial conditions and on
two parameters, one related to dragging, inertia, and driving, the other associated with the geometric configuration
of the system. The critical value of this geometric parameter (separating the regions where reverse rotation is
possible from those where it is forbidden) as a function of viscosity is well adjusted by a q-exponential function.
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I. INTRODUCTION

Classical mechanics of simple, low-dimensional, and inte-
grable systems can be surprisingly rich, provided that nonlin-
earity is present. These systems, although less complex than
the chaotic ones, hardly allow for full analytical treatments
and may present behaviors like reverse rotations, excitability,
transients, and hysteresis, thus constituting an important
resource in basic physics. Not less importantly, for obvious
reasons, all sorts of machinery in industries work in nonchaotic
regimes, however, displaying a variety of complex dynamical
effects arising from nonlinearities.

One class of problems that has been often considered in the
literature is that of rigid body dynamics on flat surfaces. Farkas
et al. have explored the subtle connection between translational
and spinning motions of a free disk (of radius R) moving on
a surface with Coulombian friction [1]. They showed, e.g.,
that the terminal translational (v) and rotational (�) velocities
vanish simultaneously, and that the ratio ε = v/R� always
tends to ≈0.653 in the imminence of stopping, no matter its
initial value (see also [2,3]). Complementarily, the motion of
driven disks sliding on frictionless surfaces has been shown
to be quite nontrivial regarding a dynamical behavior called
reverse rotation [4].

The position of a rigid body in two dimensions is completely
characterized by the location of its center of mass (c.m.) and by
the angle between some reference line marked on the body and
an arbitrary coordinate axis. A reverse rotation develops when
the c.m. follows a bounded trajectory in, say, the clockwise
direction and, at the same time, the intrinsic angular degree
of freedom evolves counterclockwise, or vice versa. Thus, a
reverse rotation is characterized by antiparallel orbital and
spin rotations. Famous examples of such a phenomenon are
the reverse, or retrograde, rotations of Venus [5–7] and Uranus
[5]. Behaviors belonging to the same class can be found in
the dynamics of rolling cylinders immersed in viscous fluids
[8–10] and in the chaotic response of a damped pendulum
parametrically excited [11].
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From a more applied point of view, reverse rotations may
appear, being potentially deleterious, in bearings of journal
machinery used to produce newspaper in large scale [12].
They also seem to be relevant in the problem of biological
tissue production, where a commonly used method to
generate tissue is the rotating vessel bioreactor. It consists of a
cylindrical container rotating about its longitudinal axis with
constant angular speed. A porous disk is seeded with cells to
be cultured and placed within the bioreactor which, in turn, is
filled with a nutrient-rich medium. The rotating fluid keeps the
growing tissue construct suspended against gravity and leads
to intricate dynamical regimes. Various studies on the orbits
described by the disk exist [13,14]. Although this system is
not identical to the one we study here, it is clear that a better
understanding of the regimes of intrinsic rotation, in the spirit
of the present work, is needed. For example, the existence of a
transient between two distinct spinning regimes, like the one
we find here, would produce “topological” defects in the tissue.

In this work we consider both driving and friction simul-
taneously. Our main goal is to understand how the presence
of viscous friction affects the regimes of reverse rotation that
have been shown to exist for circularly driven disks in the
nondissipative case [4]. Hereafter we refer to the regime where
both angular momenta are parallel as normal or prograde.

II. SYSTEM AND EQUATION OF MOTION

Our model system is depicted in Fig. 1. It consists of a
uniform disk of mass m and radius R, initially resting on
a horizontal surface. The system is submitted to an external
horizontal force, provided by a driving mechanism, through
a thin rod attached to a fixed point (P ) on the disk, around
which the whole body can rotate freely. The driving apparatus
takes the disk from rest and makes the point P follow a
uniform circular trajectory of radius d around a fixed origin
(O) with angular frequency ω [see Fig. 2(a)]. For definiteness
we assume the rotation to be counterclockwise and, without
loss of generality, we use a coordinate system for which the
point P lies on the positive x axis at t = 0.

For later times we denote the position vector of P by d and
the vector locating the c.m. by r. Since the disk is assumed to
be perfectly rigid, P is always a distance l away from the c.m.
The relative position of these two points is given by the vector
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FIG. 1. (Color online) Pictorial representation of the proposed
model system.

l, as shown in Fig. 2(a). Finally, the angle between the x axis
and the line connecting the c.m. and P is denoted by φ. The
variables r and φ completely specify the position of the disk,
while ω reflects the strength of driving.

In a previous work the scenario of negligible friction was
assumed [4]. Here we remove this restriction by considering
that a thin layer of fluid exists between the disk and the
horizontal surface, giving rise to wet friction. This amounts
to viscous forces and torques that are proportional to the local
relative velocity between the surfaces.

A. Viscous friction

The overall viscous force acting on the disk is given by the
surface integral

F = − b

πR2

∫
disk

ṡρdαdρ, (1)

where b is the drag constant and s is the vector that locates the
element of area ρdαdρ [see Fig. 2(b)]. Taking into account
the constraints r + l = d and r + ρ = s, the result reduces to
that of a rectilinear, irrotational, motion of the disk: F = −bṙ.
In addition, the forces on each element of area give rise to a
torque:

T = − b

πR2

∫
disk

s × ṡ ρdαdρ = −br × ṙ − bR2

2
φ̇ẑ, (2)

where φ is the angle between the vector l and the x axis, and ẑ is
the unit vector perpendicular to the plane of motion. Plugging
these expressions into Newton’s second law and eliminating
the c.m. degrees of freedom we get

IP φ̈ + b

(
l2 + R2

2

)
φ̇ − mdlω2 sin(φ − ωt)

− bdlω cos(φ − ωt) = 0, (3)

r
ld

r

s ρ

FIG. 2. (Color online) Schematic upper view of the system where
the relevant geometric quantities are depicted (a), and integration
variables for the calculation of the viscous force and torque (b).

where IP is the moment of inertia relative to the pivot point
P . By writing

θ = φ − ωt + arctan

(
b

mω

)
+ π, (4)

the equation of motion considerably simplifies to

S θ̈

ω2
+ θ̇

ω
+

√
S2 + 1

H
sin θ + 1 = 0, (5)

where the parameter

H = L2 + 1/2

DL
, (6)

with D = d/R ∈ [0,∞) and L = l/R ∈ [0,1], contains all the
relevant information on the scale-free geometry of the system,
and S = mω/b gives the relative strength of the inertial and
driving versus viscous forces on the disk. Although in our
calculations we will use Eq. (5), it is possible to obtain a
formally simpler equation by using the dimensionless time
τ = (SA/ω)t , with A = H 1/2(S

√
S2 + 1)−1/2. The resulting

two-parameter differential equation reads

d2θ

dτ 2
+ Adθ

dτ
+ sin θ + SA2 = 0. (7)

The cost is that A is an involved mixture of geometry, inertia,
driving, and viscosity. From Eq. (7) we see that our problem
can be mapped into the dynamics of a pendulum immersed in
a fluid and subjected to a constant torque [15]. It is interesting
to note that a number of quite distinct physical systems
are, in some regimes, described by the very equation (7).
Examples are the dynamics of the phase difference between
the collective wave functions through a Josephson junction
[16,17], the excitable behavior of microparticles under the
action of an optical torque wrench [18], and alternating
currents in electrical devices [19,20]. It is, however, important
to note two points. First, the physical quantity we are interested
in, which defines reverse or normal rotations, is φ and not
θ . Second, to completely characterize the problem, we must
provide physically valid initial conditions. In the present case
it is natural to assume that, at first, the disk is resting on
the horizontal surface, and at a certain instant, say t = 0, the
driving apparatus is turned on. If the driving mechanism is
robust enough, we can assume that this initial dynamics is
impulsive, that is, the pivot point is taken from rest to the final
constant angular velocity in a time interval much shorter than
any other time scale in the problem. Under these conditions it
has been shown in Ref. [4] that, given the initial angle of the
static disk, the angular velocity it acquires immediately after
the driving apparatus is switched on is

φ̇0 = ω

H
cos φ0. (8)

Replacing this relation in the equation of motion we also find
that φ̈0 = (ω2/H ) sin φ0. In the original derivation the friction
was not taken into account. This, however, does not affect the
above result due to the hypothesis of impulsivity.

To illustrate the restrictions imposed by the previous
relation we remark that the system studied in Ref. [15]
presents the interesting behavior of excitability, namely, the
existence of a dynamical regime with sharp spikes in θ (t).
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The authors observe this phenomenon for a condition that, in
our notation, reads ω > (b/m)

√
H 2 − 1 with initial condition

θ̇0 = 0, and arbitrary θ0. Replacing this condition in Eq. (8) we
get H = cos φ0, which implies H � 1, leading to a negative
argument in the square root. Therefore, our system, does not
present the excitability observed in Ref. [15] due to the initial
conditions we are concerned with.

B. Limiting cases

We start this section with a summary of the main con-
clusions obtained in the frictionless (b = 0) case [4]. It was
found that a regime of perennial reverse rotations is possible
for an interval of initial angles {π − φB,π + φB} centered at
π (the subscript B stands for “boundary”), provided that the
geometrical constraint

H < 0.793 (9)

is satisfied. In fact, it can be derived from Eqs. (5) and (11)
of [4] that, with a fixed angle φB , the critical value of H

below which reverse rotations occur can be determined by the
solution of the transcendental equation

K

(
2
√

H√
H 2 + 2H + cos2 φB

)
= π

2H

√
H 2 + 2H + cos2 φB,

(10)

where K denotes the complete elliptic function of the first
kind. For φB = 0, the only angle leading to reverse dynamics
is φ0 = π . In this case the above equation reduces to
K[2

√
H/(H + 1)] = π (H + 1)/2H , whose nontrivial solu-

tion is Hc = 0.793. For all other situations, where φB �= 0, Hc

assumes smaller values. For H > 0.793 no initial condition
may develop a reverse rotation. Note that this necessary and
sufficient condition does not depend on the driving frequency
ω, on the mass m, or on the absolute values of the lengths
d, l, and R. Initial conditions that do not satisfy the previous
requirements lead either to a permanent regime of normal
rotations or, in the boundary between the two regimes, to an
oscillatory motion with a vanishing average of φ as time goes
by (see Fig. 3 of Ref. [4]).

In the opposite limit b → ∞, Eq. (5) becomes

θ̇ + ω

H
sin θ + ω = 0, (11)

whose fixed points are given by sin θ∗ = −H and cos θ∗ =
±√

1 − H 2. Let us summarize the three qualitatively distinct
solutions of this equation [17]. (i) If H < 1 we have two fixed
points in the interval [0,2π ), the stable one having cos θ∗>0,
and no oscillation. (ii) For H = 1 we have a saddle-node
bifurcation with no oscillation for any finite time. (iii) If H > 1
there are no fixed points and the system oscillates with a period
given by

T = 2π

ω
√

1 − H−2
� 2π

ω
. (12)

The important point is that, by inspecting Eq. (4), we note that,
in any case, φ(t) is an increasing function of time, on average,
thus, presenting normal rotations only.

2 Π Π 2 Π
Θ

5
3

3
5

Θ

FIG. 3. (Color online) Phase-space trajectories for three different
initial conditions. More details are given in the text.

Therefore, we conclude that while in the frictionless case
reverse rotations may occur, they are forbidden in the high-
viscosity limit. The question arises what happens in between?

III. ARBITRARY VISCOSITY

Although a closed analytical solution for our problem
with arbitrary viscosity is not available, we can establish the
stationary points and their stability properties before going into
numerical solutions. By setting θ̈ = 0 and θ̇ = 0 in Eq. (5) we
obtain stable fixed points satisfying

θ∗ = − arcsin

(
H√
S + 1

)
± 2nπ, (13)

with n = 0,1,2, . . . . The unstable stationary points are given
by π − θ∗. Our numerical investigation for intermediate values
of the parameter b/m begins with some typical trajectories in
the plane θ -θ̇ . We employed the auxiliary variables directly
because only in terms of them does the equation of motion
not contain time explicitly. In Fig. 3 we show a phase-space
diagram for three initial conditions θ0 ≈ 2π (φ0 = π ) for the
triangle, θ0 ≈ π (φ0 = 0) for the square, and θ0 = 2π − π/8
(φ0 = π − π/8) for the circle, with the corresponding initial
velocities given by relation (8), represented by the dashed line
in the diagram. The other parameters are as follows: b/m =
0.09, ω = 1.9, and H = 0.45. This leads to sin θ∗ = −0.021
and θ∗ ≈ −1◦,2◦. The horizontal dash-dotted line represents
the negative of the driving angular frequency ω. Recall that,
to have a reverse rotation [〈φ̇(t)〉 < 0 over a time scale of
2π/ω], we must get 〈θ̇ (t)〉 < −ω over a time scale of 2π/ω.
We note that the first initial condition immediately leads to
normal rotation, for the second condition a reverse behavior
develops during a single cycle, while the third initial condition
presents two cycles of reverse rotation before spiraling to the
leftmost stable fixed point.

Going to the physical variable φ, the first important thing
to note is as follows. For every initial condition that started to
develop a reverse rotation, after some time, the spin invariably
flips to a regime of prograde rotation for any b �= 0. This can
be understood by noting that the oscillations in φ(t) eventually
fade out, with φ̈ → 0 for sufficiently long times, an effect
observed in all investigated configurations. When this regime is
reached the equation of motion becomes identical to Eq. (11),
for which reverse rotations have been shown to be absent.
Therefore, at some moment, reverse dynamics is replaced by
normal rotation, and the smaller the drag the longer the flip
time tf , which is determined by the global minimum of φ(t).
In Fig. 4 we show φ as a function of t for ω = 0.2 rad s−1,
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FIG. 4. (Color online) The angle φ as a function of t for ω =
0.2 rad s−1 and φ0 = π . Curve (a) presents a prograde dynamics, as
expected, since H = 1.0 > Hc. For H = 0.3 and b/m = 0.014 s−1

(b), b/m = 0.008 s−1 (c), and b/m = 0.004 s−1 (d), reverse rotations
are observed.

and initial condition φ0 = π (the most favorable to reverse
rotations). The first curve (a) occurs for H = 1.0 (no reverse
motion) and b/m = 0.008 s−1. The three other curves refer to
H = 0.3 with distinct values of the drag parameter: b/m =
0.014 s−1 (b), b/m = 0.008 s−1 (c), and b/m = 0.004 s−1

(d). We therefore conclude that no steady reverse rotation is
allowed for any finite value of b/m. This regime, however,
can exist as a transient that lasts longer for smaller values of
viscosity.

The lifetime of reverse rotations must be null in the
limit of high viscosity and has to diverge in the frictionless
regime. Dimensional analysis leads us to infer that, if this
divergence is described by a power law, then we should have
tf ∼ ωγ−1(b/m)−γ . In Fig. 5 we record tf as a function of
b/m in a log-log plot. The discontinuities happen when the
global minimum jumps between neighboring local minima.
Despite these jumps, a linear backbone is noticeable in a broad
range of viscosity values, and a power-law divergence in the
low-viscosity limit is clear. The obtained relation is

tf ∼
(

b

m

)−1

(14)

which we found to be asymptotically independent of ω [21].
The variation of the drag parameter has a much less dramatic
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FIG. 5. (Color online) Log-log plot of the flip time tf , as a
function b/m, showing a power-law behavior in the regime of low
viscosity. The discontinuities are due to the passage of the global
minimum through consecutive local minima. The inset depicts a
region of much weaker viscosity.
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FIG. 6. (Color online) Dimensionless flip time (b/m)tf as a
function of the initial condition φ0 for four different values of b/m.
The plots completely overlap. The inset shows the uncollapsed curves
of tf against φ0. Further details are given in the text.

effect on the regime of normal rotations, the only difference
being the rate at which the amplitude of the oscillations in φ(t)
goes to zero.

In spite of this, we verified that the initial conditions that
lead to reverse rotations in the case of vanishing viscosity are
the same that give rise to the reverse transient, the interval
{π − φB,π + φB} being insensitive to the value of b. This
is expected due to the impulsive nature of the initial energy
input. In addition, due to relation (14) we suspected that the
dependence of tf with φ0 might be universal with respect
to the dimensionless time (b/m)tf . This is indeed the case,
as Fig. 6 shows for different values of b/m. In the inset we
plot the uncollapsed curves of tf alone against φ0. We used
a high angular velocity ω = 200 rad s−1, in order to suppress
oscillations and make the plot clearer. For lower values of
ω the results are qualitatively the same and Fig. 6 would
represent the envelope of the actual plots. The other parameters
employed are H = 0.3, and b/m = 0.1 s−1 (a), b/m = 0.2 s−1

(b), b/m = 0.5 s−1 (c), and b/m = 1.0 s−1 (d). The invariant
value of φB is approximately 3π/5.

We now turn our attention to the geometric parameter
defined in Eq. (6). In the absence of friction, we found that
reverse rotations are possible only if H < 0.793 = Hc(0),
according to (9). Although perennial reverse rotations are not
present for b �= 0, one may ask which values of H allow for
transient reverse behavior. In Fig. 7 we display the maximum
value of H below which reverse dynamics can occur as a
function of b/mω, with φ0 = π . Interestingly enough, the

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

b mΩ

Hc

FIG. 7. (Color online) Critical geometric parameter Hc versus
the dimensionless variable S−1 = b/mω. Hc falls off following a
q-exponential function with q = 1.7 for φ0 = π . The open circle
represents Hc = 0.793.
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numerical data are very well described by a q-exponential
function:

Hc(b/mω) = Hc(0)

[
1 − λ(1 − q)

(
b

mω

)]1/(1−q)

, (15)

with q = 1.7 and λ = 3.47. When φ0 departs from π , both the
values of q and Hc(0) tend to decrease. For φ0 = 2.5, e.g., we
get q ≈ 1.5 and λ ≈ 2.23, while Hc(0) drops considerably to
0.40. The values of Hc(0) quickly become very restrictive
to reverse motion as, for example, φ0 = 2.0, leading to
Hc(0) ≈ 0.09. For L = 0.5, such a condition on H would be
satisfied only for D � 17, hindering in practice the occurrence
of reverse rotations. We thus see that increasing wet friction
not only decreases the lifetime of reverse rotations, but also
reduces the region in the space of parameters L and D for
which they are possible.

IV. CONCLUSIONS

In this work we studied the influence of wet friction in
the circularly driven motion of a disk. We found that the
spinning dynamics of the disk is given by a combination
(competition) between a uniform motion and a pendular
motion (associated with a pendulum immersed in a viscous
fluid and acted upon by a constant torque); see Eq. (7).
While in the frictionless case reverse rotations may exist in
steady regimes, for any finite value of viscous damping, this
behavior becomes a transient, thus having a finite lifetime. This
transient have been completely characterized: (i) Its lifetime
follows a power law with tf ∼ m/b; (ii) the presence of
viscosity reduces the possible geometric configurations that
lead to rotations that are initially reverse due to the fall of
Hc, according to a q-exponential; (iii) however, the interval
of initial conditions φ0 that leads to retrograde behavior is

insensitive to the value of b. In fact the whole shape of
the function (b/m)tf (φ0) is independent of the dragging.
A natural extension of the present work is to consider the
analogous situation with Coulombian (dry) friction. This leads
to a more complex equation of motion involving elliptic
functions of intricate arguments and requires a full numerical
treatment.

Regarding the appearance of a q-exponential (introduced
in the context of statistical physics by Tsallis [22]) describing
the behavior of a critical parameter in a situation that does
not explicitly involve statistics, it might look unexpected.
Although the classical foundations of nonextensive statistical
mechanics may be formally understood via generalizations
of the Langevin equation [23], where viscous friction plays
an essential role, one cannot easily relate our result to this
kind of microscopic description. A more plausible possibility
is simply attributed to the ability of q-exponentials to fit a
broad class of decreasing functions. Whether Eq. (15) is a
pure mathematical fact, as we strongly believe, or has a deeper
statistical explanation, is a matter to be investigated. The same
observation is valid for the range of values we obtained for
q, which also appears in the statistical studies of complex
systems, e.g., in the distribution of urban agglomerates in
Brazil and the USA [24].
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