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Quantum-relativistic hydrodynamic model for a spin-polarized electron gas interacting with light
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We develop a semirelativistic quantum fluid theory based on the expansion of the Dirac Hamiltonian to second
order in 1/c. By making use of the Madelung representation of the wave function, we derive a set of hydrodynamic
equations that comprises a continuity equation, an Euler equation for the mean velocity, and an evolution equation
for the electron spin density. This hydrodynamic model is then applied to study the dynamics of a dense and
weakly relativistic electron plasma. In particular, we investigate the impact of the quantum-relativistic spin effects
on the Faraday rotation in a one-dimensional plasma slab irradiated by an x-ray laser source.
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I. INTRODUCTION

During the past decade, an increasing effort has been de-
voted to the theoretical and experimental study of laser-matter
interactions [1–4]. The experiments are usually performed
by irradiating a solid target with a high-intensity laser pulse,
which can vaporize the target and create a dense plasma, where
the electrons may sometimes be accelerated to relativistic
velocities. In some high-density plasmas, quantum effects have
also been observed [5].

On the other hand, laser-matter experiments are routinely
conducted in condensed-matter and nanophysics [6–8]. Typ-
ically, a nanometric system (thin metal film, nanoparticle) is
excited with an intense and ultrashort (femto- or attosecond)
laser pulse, and the charge and spin dynamics is probed
by measuring the change of the transmitted or reflected
polarization of the light. In such “pump-probe” experiments,
the system is first perturbed by a stronger pulse (the pump),
followed by a second weaker pulse (the probe) that acts as a
diagnostic tool. By modulating the relative amplitude of the
signals, as well as the delay between the pump and the probe,
it is possible to measure with great precision the relaxation
dynamics of the electron gas. Although earlier experiments [6]
mainly used visible light, high-intensity microwave and x-ray
lasers are now currently used in pump-probe experiments. By
varying the laser frequency and intensity, various dynamical
regimes can be attained [9–11].

Electromagnetic pulses with intensity of the order of
1018 Wcm−2 are able to break the internal Coulomb field of the
atoms in a solid. Thin films irradiated with such intense sources
of microwave radiation can expel electrons with extremely
high energies (10–100 MeV) [12,13]. Various experiments
have confirmed that bunches of electrons can be expelled from
a solid by the electromagnetic field pressure. These electrons
are locked on the crest of the electric field of the laser and
can follow the electromagnetic field for many cycles, reaching
ultrarelativistic velocities [13]. The relativistic Doppler effect
was also observed in experiments on nanometric thin foils
irradiated with strong laser pulses [14].

In the x-ray domain, lasers with intensity of 1014 Wcm−2

and energy around 1 keV (corresponding to a wave length
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around 1 nm) are currently applied to different areas [15,16].
Because of the fine spatial resolution that they provide, devices
based on such lasers can be used to investigate the local
nonequilibrium spin dynamics of an excited system. With this
approach, various physical systems were probed, including
biological systems [17], metallic films containing magnetic
walls [18], and the femtosecond spin response of thin metallic
layers [8].

Under such extreme conditions, the numerical simulation
of the relativistic electron motion is a primary tool for the
interpretation of the experimental results. A widely used
approach relies on the application of statistical Monte Carlo
methods and particle-in-cell (PIC) simulations [19–21]. These
approaches are based on the classical relativistic equations of
motion and discard spin and other quantum effects. However,
various theoretical studies have revealed that the dynamics
of a plasma interacting with an intense electromagnetic field
may be modified by spin-dependent effects. For instance,
Walser and Keitel [22] observed that the spin-orbit interaction
generates some out-of-plane acceleration that is not present
in the purely classical relativistic theory. Other theoretical
studies, based on the analysis of the motion of a Dirac wave
packet, showed that the spin precession induced by a laser field
is also modified by quantum-mechanical corrections [23–25].
Thus, the frequency and amplitude of the oscillations of the
quantum spin precession could differ significantly from the
classical evolution of an equivalent magnetic moment.

In this paper, we study the evolution of a semirelativistic
electron plasma where quantum-mechanical effects (particu-
larly the spin dynamics) also play a decisive role. Our approach
is based on the quantum hydrodynamic (QHD) representation,
which governs the evolution of a small number of macroscopic
quantities such as the particle density, average velocity, and av-
erage polarization (spin). Relativistic corrections are obtained
from the Dirac Hamiltonian, developed to second order in
the inverse speed of light by means of the Foldy-Wouthuysen
transformation. In other areas of research (particularly quan-
tum chemistry and atomic physics), relativistic corrections to
the many-electron dynamics are usually taken into account
through relativistic density functional theory (DFT) or Hartree-
Fock methods [26–30]. These approaches—although very
fundamental and potentially exact—are in general extremely
complex to handle either analytically or numerically, and
rarely include spin effects. For these reasons, QHD models
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can provide a simpler alternative that is computationally less
demanding but still captures the main physical effects.

We apply the QHD equations to the study of traveling
electromagnetic waves in a spin-polarized plasma slab. In-
terestingly, our simulations show that the inclusion of the
spin dynamics has a significant impact on the polarization
of the light reflected by or transmitted through the plasma.
These spin-related effects could in principle be measured using
state-of-the art spectroscopy techniques.

The present paper is organized as follows. In Sec. II, the
details of the derivation of the hydrodynamic model are given.
In Sec. III, the model is applied to the study of a dense and
weakly relativistic electron plasma, with particular emphasis
on the effects related to the electron spin. Finally, in Sec. IV
we draw our conclusions.

II. DERIVATION OF THE MODEL

In this section, we derive a quantum hydrodynamical
model that describes the electron dynamics, including semirel-
ativistic and quantum effects. The relevant equations of
motion are obtained by the semirelativistic expansion of the
Dirac Hamiltonian. A well-established method to provide the
semirelativistic corrections to the motion was developed by
Foldy and Wouthuysen [31,32]. Within this approach, the
positive-energy spectrum of the Dirac Hamiltonian (matter)
is decoupled from the negative-energy part (antimatter) by
means of a suitable quasiunitary transformation. As a result,
a hierarchy of asymptotic Hamiltonian operators is obtained,
which are expressed in terms of an expansion in the parameter
β = v/c, where v is the typical velocity of the particle and c is
the speed of light (equivalently the parameter 1/m, where m

is the electron mass, can also be used for the expansion [33]).
With this approach, it is possible to describe the motion

of particles that travel at a sizable fraction of the speed of
light—a regime that is relatively common in atomic physics,
particularly for heavy elements. In condensed-matter systems
and dense plasmas, the relativistic regime can be attained when
the electrons are accelerated under the action of an intense laser
source, an area of research that is rapidly growing [13].

However, it should be mentioned that the Foldy-
Wouthuysen (FW) expansion is not capable of correctly
describing the ultrarelativistic regime (v ∼ c), and a fortiori
the creation of particle-antiparticle pairs. The FW approach
can be extended to ultrarelativistic velocities by applying some
renormalization techniques [34], but this approach will not be
followed here.

Following Foldy and Wouthuysen, the particle motion up
to order β2 is described by the following Hamiltonian

ĤFW = (p̂ − qA)2

2m
+ qV − μBσ · B − �

2q

8m2c2
∇ · E︸ ︷︷ ︸

HD

− �q

4m2c2
σ · E × (p̂ − qA) + �q

8m2c2
σ · (p̂ × E)︸ ︷︷ ︸

HSO

,

(1)

where m is the electron rest mass, q is the charge, p̂ is the
momentum operator, μB is the Bohr magneton, and σ is the

Pauli matrix vector. This Hamiltonian models the interaction
of an electron with a classical field described by the electric
and magnetic fields E and B, or equivalently by the scalar and
vector potentials, V and A. In the present work, we shall adopt
a mean-field approach, whereby the electromagnetic fields are
obtained self-consistently from the distributions of charges and
currents in the system (see Sec. III below). We also note that
the FW Hamiltonian Eq. (1) is a 2 × 2 matrix of operators, in
contrast to the 4 × 4 Dirac Hamiltonian. The domain of ĤFW

is the standard Hilbert space of a spin-1/2 particle and the
resulting evolution equation will be of the Pauli type.

In Eq. (1), the first two terms form the standard Schrödinger
Hamiltonian in the presence of an electromagnetic field,
whereas the third term is the Pauli spin term (Zeeman effect).
The next terms constitute the relativistic corrections: the
Darwin term HD and the spin-orbit coupling (SOC) HSO.
The former can be interpreted as the first correction to the
electric potential induced by the relativistic quivering motion
of the electron (Zitterbewegung). A detailed description of the
FW Hamiltonian containing the explanation of the physical
meaning of the various terms of Eq. (1) can be found in
Ref. [35].

Here, we are interested in the study of the quantum
motion of a relativistic particle—particularly the corrections
that are due to the electron spin—in a semiclassical and
semirelativistic regime. As is well known, the spin is one of
the physical quantities that is mostly affected by the quantum
and relativistic nature of the particle. The most celebrated
example is the spin-orbit interaction, which affects crucially,
for example, the spectrum of a valence electron. The spin-orbit
interaction can be classified as a third-order correction in
the quantities � and c−1 [as can be seen in Eq. (1), the
spin-orbit term is proportional to �c−2]. Consistently with
the semirelativistic FW expansion, we shall derive here the
QHD equation of motion up to fourth order, retaining terms
O(�ac−b) with a + b � 4. For the sake of simplicity, we will
derive explicitly the evolution equation only up to the third
order, while the fourth-order terms will be shown without
proof. In the numerical simulations of Sec. III, we shall restrict
the calculations to third order.

We derive the quantum-mechanical evolution equation for
the hydrodynamical variables [particle density n(x,t), spin
density s(x,t), and mean velocity u(x,t)] by applying the
Madelung transformation [36]. This approach dates back to
1926 when E. Madelung realized that, in the case of a spinless
particle, the Schrödinger equation can be put in the following
hydrodynamic form:

∂n

∂t
+ ∇ · (nu) = 0,

(2)
∂u
∂t

+ u · ∇u + q∇V

m
− �

2

2m2
∇

(
�

√
n√

n

)
= 0,

where the density n and the velocity u are related to the
wave function ψ by ψ = √

n eiS/� and u = m−1∇S. The QHD
equations have the form of an irrotational, compressible, and
isothermal Euler system with an additional term, of order �

2,
sometimes referred to as the Bohm potential or quantum pres-
sure [37]. As an alternative to the Madelung transformation,
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QHD models can be derived from a quantum kinetic approach
based on the Wigner quasiprobability function [38].

In order to extend the Madelung approach to spin-1/2
particles, one can generalize the Madelung ansatz as follows
[39]:

ψ(x,t) =
√

n(x,t)eiS(x,t)/�φ(x,t), (3)

where the phase S is a real function, and φ is a normalized two-
component spinor (φ†φ = 1). The spin probability density can
be constructed as s = φ†σφ. In the case of a particle with spin,
it is more difficult to define an average velocity. A possible
strategy is to first compute the time derivative of the density
n and then impose that the continuity equation be satisfied. It
is convenient to write the particle velocity as the sum of two
terms: u ≡ v + w, where v and w are, respectively, the fluid
and spin velocities

v ≡ 1

m
∇S − q

m
A − i�

m
φ†∇φ, (4)

w ≡ − q�

4m2c2
s × E. (5)

By using the Schrödinger equation with the FW Hamiltonian
i�∂tψ = ĤFWψ , it is easy to verify that the continuity equation
holds true:

∂tn + ∇ · (nu) = 0. (6)

We see that in our formulation the velocity field u has two
spin-dependent contributions. The first enters the fluid velocity
v and was already present in the nonrelativistic theory [39,40],
while the second (w) is a relativistic correction that also
appears in the semirelativistic kinetic theory [41,42].

We now derive the evolution equation for the spin density
s = φ†σφ. We obtain

∂ts = s
n
∇ · (nu) + 2

n
Re{ψ†σ∂tψ}, (7)

where we used the continuity Eq. (6). The time derivative of
the particle wave function was obtained by calculating the
matrix elements of the FW Hamiltonian in the Madelung
representation (details are given in Appendix A). By using
Eqs. (A15)–(A19), we get

∂ts = s
n

(w · ∇n) + s(∇ · u) + q

m
s × B

+ �

2mn
∂j (ns × ∂j s) + q

m2c2

×
[

�

n
(E × ∇n) × s + 2m(E × v) + �b − �∇ × E

]
,

(8)

where the components of the vector b are defined as

bi ≡ εirlεrjkEj∂ksl.

Here, εirl is the Levi-Civita symbol and we use the Einstein
summation convention on repeated indices, which run on the
three spatial coordinates (x,y,z). It is more convenient to
express the temporal evolution of the spin density in Eq. (8)
in terms of the convective derivative D/Dt ≡ ∂/∂t + u · ∇.

After some simple algebra, we obtain

Ds
Dt

= S(n,s,u), (9)

where

S ≡ q

m
s ×

(
B − u × E

2c2
+ B∗

)
+ q�

2m2c2
[(E × s) · ∇] s

(10)

and

B∗ ≡ �

2qn
(∂jn∂j s) + q�

4m2c2n
s × [∇ × (nE)] . (11)

Various corrective terms to the classical precessional motion
appear in Eqs. (9)–(11). The first term describes the spin pre-
cession in the presence of the Lorentz-transformed magnetic
field B − u × E/(2c2), with the additional contribution of the
effective field B∗. This effective field is a purely quantum
mechanical effect that causes the spin to precess even in the
absence of any external field [40].

We now consider the evolution equation for the velocity
field. From Eq. (3), we have

∂tS + i�φ†∂tφ = 1

n
Im{�ψ†∂tψ}. (12)

Taking the derivative of Eq. (12) with respect to the ith
component, we obtain

∂i[∂tS + i�(φ†∂tφ)]

= ∂t [∂iS + i�(φ†∂iφ)] − �

2
(s × ∂is) · (∂ts), (13)

where we used Eq. (A3) in Appendix A. Equations (4), (12),
and (13) lead to

∂tvi = �

2m
(s × ∂is) · (∂ts) − q

m
∂tAi

+ 1

m
∂i

(
1

n
Im{�ψ†∂tψ}

)
. (14)

By using Eqs. (A10)–(A14) in Appendix A, we obtain

∂tvi + uj∂ivj = �

2m
(s × ∂is) · (∂ts) − q

m
∂tAi − vj∂iwj

+ ∂i

[
�

2

2m2

∇2√n√
n

− �
2

8m2
(∂ksj )2 (15)

− q

m
V + μB

m
s · B

]
. (16)

In order to proceed, we note that, for every vector a, we have∑
j

aj ∂ivj = (a · ∇)vi − q

m
[a × B]i

− �

2m
(s × ∂is) · [(a · ∇)s] . (17)

Equation (17) can be obtained by using

∂ivj = ∂jvi + q

m
(∂jAi − ∂iAj )

+ i�

m
[∂j (φ†∂iφ) − ∂i(φ

†∂jφ)],
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which follows directly from the definition of the velocity v in
Eq. (4) and from Eq. (A3). Using the above results, we obtain

Dvi

Dt
= q

m
[E + v × B]i + �

2m
(s × ∂is) · Ds

Dt
− vj∂iwj (18)

+ ∂i

[
�

2

2m2

∇2√n√
n

− �
2

8m2
(∂ksj )2 + μB

m
s · B

]
, (19)

where the total spin derivative is given by Eq. (9). After some
straightforward calculations, we obtain the evolution equation
of the total velocity field u:

Du
Dt

= U(n,s,u), (20)

where

U ≡ q

m
(E + u × B) + �

2

2m2
∇

(
�

√
n√

n

)
+ q�

2m2
sj∇

[
Bj − 1

2c2
(u × E)j

]
− �

2

4m2n
∂k[n(∇sj )(∂ksj )]

− q�

4m2c2
s × (∂t + u · ∇)E − q�

4m2c2
[(s × E) · ∇] u − q2

�

4m3c2
[s × (E × B)] . (21)

The evolution Eq. (20) shows that, in the semiclassical
and semirelativistic regime, the motion is strongly affected
by the interaction between the spin and the velocity of the
particle. When the spin is neglected, we obtain the simple
Madelung system of Eqs. (2). In the general case, the
evolution equation takes a complex form with an intricate
interplay between spin and velocity degrees of freedom. In
particular, the term q�

2m2 sj∇[Bj − 1
2c2 (u × E)j ] describes the

deviation of the particle velocity caused by the presence of
an inhomogeneous Lorentz-transformed magnetic field (this
is the effect responsible for the spin-dependent deviation of an
electron beam in a typical Stern-Gerlach experiment). Further,
the term �

2

4m2n
∂k[n(∇sj )(∂ksj )] is known as the spin potential

and is described in some details in Ref. [40].
As mentioned above, the calculations leading to the

evolution Eq. (20) are correct up to the third order in the
small parameters � and c−1. For the sake of completeness,
we provide here also the result at the next (fourth) order, i.e.,
�

ac−b, with a + b � 4:

Dui

Dt
= Ui − q�

2

8m3c2
∂i(∇ · E) − q�

2

8m3c2n

× {εijkEk∂n(nεjlmsl∂nsm) − εjklsk(∂isl)[∇ × (nE)]j }

+ q�
2

8m3c2
[εojkεnlmslsjEk(∂ism)(∂osn)

− εojkεolm∂i(Ejsl∂ksm)]. (22)

We will not include the fourth-order terms in the final version
of our model that will be solved numerically in Sec. III.

Equations (6), (9), and (20) constitute the model that we
shall use in the next section as the basis of our numerical
simulations of an intense laser pulse impinging on a solid
target. Similar relativistic equations were obtained in the past
directly from the Dirac equation [43,44]. In particular, the
work of Asenjo et al. [43] provides a set of fully covariant
hydrodynamic equations that is consistent with the nonrela-
tivistic theory [39] in the limit of low velocities. The covariant
model [43] is nevertheless very complex to implement in
practical situations, notably for numerical applications. Our
semirelativistic fluid model—based on an extension of Pauli’s
two-component spinor approach in contrast to the four-
component approach of Ref. [43]—is more easily amenable to
numerical studies, as will be shown in the next section.

III. APPLICATION TO RELATIVISTIC LASER-PLASMA
INTERACTIONS

In this section, we apply the semirelativistic QHD model
to study the propagation of an electromagnetic wave (referred
to as the “light”) in a plasma slab. We will focus on the effects
induced by the spin-dependent semirelativistic corrections
on the polarization of the incoming light. We consider a
simplified slab geometry where the plasma is finite along one
dimension (z direction), whereas it is uniform in the transverse
plane. Such plasmas can be created by irradiating a solid film
target with an intense laser pulse that extracts the electrons
from the solid [2,12], while the more massive ions are still
immobile and can be modeled by a continuous positive charge
density n0 (jellium model). Although the model is essentially
one-dimensional (1D), the spin direction is maintained as a
three-dimensional vector s(z,t). Assuming that the dynamical
variables n, u, and s depend only on the longitudinal coordinate
z, the system of Eqs. (6), (9), and (20) simplifies to

∂tn + ∂z(uzn) = 0, (23)

∂ts + (uz − vc) ∂zs

= s ×
[
βξB − ξβ2

2
u × E + γ

2n
∂z(n∂zs) + s × R

]
, (24)

∂tu +
(
uz + vc

2

)
∂zu

= ξ (E + βu × B) + γ

2

[
ξβ(s · ∂zB)

− γ

2n
∂z(n|∂zs|2) − γβ2ξ

4
∂2
z Ez

]
êz

− γ ξβ2

4
[ξs × (E × B) + s × (∂t + uz∂z)E], (25)

where êz is the unit vector along the z axis and we defined

vc = γ ξβ2

2
(E × s)z , (26)

R = γ ξβ2

4n
∇ × (nE). (27)

All the quantities that appear in Eqs. (23)–(25) are dimension-
less. We applied the following scaling: z′ = z/l0, t ′ = t/t0,
n′ = nl3

0 , u′ = ut0/l0, E′ = E/E0, B′ = BE0/c, where the
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primed variables are dimensionless quantities (in order to
simplify the notation, we dropped the prime symbol in the
final equations). Here, l0 and t0 are the characteristic length
and time of the system, and E0 is a typical value of the electric
field. With this normalization, the evolution Eqs. (23)–(25) are
expressed in terms of the three dimensionless parameters

γ = �t0

ml2
0

, ξ = qt2
0 E0

ml0
, β = l0

ct0
, (28)

where α = e2/(4πε0�c) is the fine-structure constant.
The electric and magnetic fields consist of external and

self-consistent fields, the latter being generated by the plasma
internal charge density and current. The external fields are
the electromagnetic field of the laser (described by the vector
potential Alas) and an external constant magnetic field B0. We
decompose the electric field in the longitudinal and transverse
components, E = Ezêz + E⊥. The longitudinal field Ez is
obtained from Poisson’s equation

∂zEz = χ (n − n0) , (29)

where χ = q/(ε0E0l
2
0). The transvere field is given by E⊥ =

−∂t (A⊥ + Alas), where the vector potential A⊥ satisfies the
d’Alembert equation

∂2
t A⊥ − β−2∂2

z A⊥ = χ j. (30)

The expression for the current j is more difficult to de-
termine. In a relativistic framework, the quantum-mechanical
current contains other terms beyond the usual Schrödinger
expression [35]. The first of such terms is the so-called spin
current, which is proportional to the curl of the magnetization
density [45]. For the sake of simplicity, we will only retain this
correction and write the total current as

j = n
(

u + γ

2
∇ × s

)
. (31)

Finally, the total magnetic field is given by B = Belm + B0

where Belm = β−1∇ × (A⊥ + Alas).
We study the evolution of a laser beam propagating

along the z direction and impinging on the plasma slab
with positive momentum. At t = 0 the system is at rest
and n(z,t = 0) = n0(z). The density profile is depicted in
Fig. 1. In our simulations, we consider a plasma with a
thickness l0 = 40 nm and we study two different regimes of
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FIG. 1. (Color online) Plot of the ion density profile.
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FIG. 2. (Color online) Trajectory of the electric field in the trans-
verse (x,y) plane, for the transmitted (left panel) and reflected (right
panel) light, with spin effects (blue continuous line) and without spin
effects (red dashed line). The plasma density is n0 = 1.5 × 10−1nm−3

and the laser frequency is equal to 2 keV (wavelength λ = 2 nm).

plasma density: n0 = 1.5 × 10−4 nm−3 (rarefied plasma) and
n0 = 0.15 nm−3 (dense plasma). The external magnetic field
B0 = 10−2 T is uniform and directed along the longitudinal
direction z. We also assume that the electron gas is initially
fully polarized along the same direction; i.e., s(0) = êz. We
excite the system by an intense source of linearly polarized
light in the x-ray range (laser power 1016 W/cm2). The electric
field generated by the laser is of the order of 1010 V/m. In
the simulations, the laser wavelength λ will be varied in the
range between λ = l0/35 and λ = l0. The above parameters are
compatible with those normally achieved in current laser-solid
experiments [2,12].

In the forthcoming description of the numerical results, we
will focus on the polarization of the reflected and transmitted
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FIG. 3. (Color online) Same as described in the legend of
Fig. 2, but for a larger laser frequency equal to 4 keV (wavelength
λ = 1 nm).
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FIG. 4. (Color online) Same as described in the legend of Fig. 2
(left panel) for the transmitted light. (a) Classical case, obtained by
setting γ = 0 in Eqs. (23)–(25) and (31); (b) intermediate case with
γ = 0 in Eqs. (23)–(25) but γ 	= 0 in Eq. (31); (c) result from the full
model.

light. These quantities are particularly relevant since they
could be directly measured in pump-probe experiments. They
are related to the Faraday angle for the transmitted light
and the Kerr angle for the reflected light [33,46,47], defined
as the angle θ between the components of the electric field in
the transverse plane, θ = tan−1(|Ey/Ex |).

The laser pulse is switched on at t = 0 and, after a delay
of nearly 10 periods of the incoming radiation (T = λ/c), the
system reaches a stationary regime. In Figs. 2 and 3, we show
the trajectory of the transverse components of the electric field
at the boundaries of the simulation domain, for two values
of the laser frequency. For the sake of comparison, we depict
(red dashed line) the same quantity for a case where all spin
effects are neglected (i.e., by setting s ≡ 0 everywhere). The
simulations show that irradiating the plasma with a strong laser
pulse can trigger semirelativistic spin effects that have a clear
signature in the polarization of the emitted light. In particular,
the modification of the Kerr-Faraday angles increases with
the laser frequency, as can be seen by comparing Fig. 2 with
Fig. 3.

A priori, it is not easy to guess which terms in the evolution
Eqs. (23)–(25) have a larger impact on the modification of

the Kerr-Faraday angles. In order to clarify this point, we
performed two further simulations that retain only some of
the terms in the equations (see Fig. 4). For the case (a) on
the figure, all the quantum terms were suppressed, which
amounts to setting γ = 0 everywhere in Eqs. (23)–(25) and
also in the definition of the current in Eq. (31) (notice that γ is
proportional to �). The run (b) was obtained by setting γ = 0 in
Eqs. (23)–(25) but not in Eq. (31); in other words, we took into
account the spin-current term, which is a nonrelativistic spin
correction. The case (c) represents the result obtained with the
full model (including relativistic terms). It is clear from Fig. 4
that, although the nonrelativistic spin-current correction has an
impact on the Kerr rotation angle [curve (b)], the relativistic
terms also play a significant role. Indeed, the two effects seem
to have a comparable importance, at least in the present case.

The study of the variation of the Kerr angle with respect to
the laser energy (or frequency) is presented in Fig. 5, where
we show the modification of the light polarization for different
laser frequencies and two values of the plasma density. The
values of the laser frequency are displayed on the figure. The
simulations show that, in the dense plasma regime (left panel
of Fig. 5), the polarization of the light is strongly influenced
by the frequency of the laser.

For low laser frequencies (smaller than 7.5 × 102 eV), the
behavior of the light polarization is presented in Fig. 6. In the
left panel, we depict the ratio between the power of the reflected
light and the power injected in the slab by the laser, while in the
right panel we show the Kerr angle. The plots show that these
quantities display a series of maxima separated by a period
of roughly 2 × 102 eV. The origin of these oscillations can
be explained in terms of the number of the laser wavelengths
contained in the slab thickness, each oscillation corresponding
to adding one complete wavelength of the electromagnetic
wave inside the slab. The transmission of light through the
plasma slab (Fig. 6, left panel) is maximal when the laser
wavelength fits the size of the slab. The plot of the Kerr angle
(Fig. 6, right panel) displays several peaks that follow a similar
pattern.

At the frequency 3 × 102 eV, the electromagnetic wave
makes one complete oscillation inside the slab. This is
illustrated in Fig. 7, where we depict the mean velocity (right
panel) and the self-consistent vector potential A (left panel) at
a given time. The density profile is also shown for comparison.
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FIG. 6. (Color online) Left panel: Ratio between the power of the reflected light and the laser power as a function of the laser energy. Right
panel: Kerr angle as a function of the laser energy.

The right panel of Fig. 7 shows that the laser field can accelerate
the plasma up to 0.1% of the speed of light.

The spin distribution is shown in Fig. 8. We represent
the transverse components of the electron spin multiplied
by the density profile: sn/ max(n). This 3D plot, which
displays the spatial and time variation of the spin waves,
illustrates one of the principal results of our study of the
laser-plasma interaction. It shows that an intense laser wave
propagating along the slab excites transverse spin waves with
the wavelength of the impinging wave. The spin precession in
the transverse plane is mainly produced by the first two terms
on the right-hand side of Eq. (24), which are proportional to
the total magnetic field and to the plasma current. According
to Eq. (31) the plasma current has a contribution proportional
to the curl of the spin distribution. For this reason, transverse
spin oscillations generate a current and consequently a field
directed in the transverse plane. This field is, in general, rotated
with respect to the polarization plane of the laser and modifies
the Kerr-Faraday angle. Moreover, the spatial gradient of the
spin distribution increases with increasing laser frequency, and
consequently the modification of the polarization plane of the
electromagnetic wave is accentuated, as was shown in Figs. 2
and 3.

We note that temperature effects were disregarded alto-
gether in our treatment. The reason is that, for the high-
intensity laser pulses that we considered, the coherent motion
is dominant over thermal effects. For instance, for an electron
gas at room temperature, the thermal speed is more than 20
times smaller than the coherent velocity gained by the electrons
in response to the laser excitation (which is about 0.5% of the
speed of light; see Fig. 7). For longer times, this coherent
motion may be converted into heat [48,49], thus leading to
thermal effects (e.g., Landau damping) not included in our
model. Our results are thus valid for the initial stages of the
evolution, during which the coherent motion is dominant. In
order to properly include such thermal effects, a kinetic [42],
rather than fluid, model should be employed.

IV. CONCLUSION

Relativistic effects can have an impact on the electron
dynamics in heavy atoms, dense plasmas, and condensed-
matter systems excited with intense and ultrafast laser pulses.
In particular, the electron spin can couple not only to the
electric field of the static nuclei (this is the ordinary spin-orbit
coupling), but also to the self-consistent mean field generated
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Right panel: Mean plasma velocity (continuous blue line). The dashed green line represents the ion density profile. The laser frequency is
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by all the other electrons, or directly to the magnetic and
electric fields of the incident laser pulse. In view of this
complex variety of possible physical mechanisms, it may be
necessary to go beyond the lowest-order description of an
electron with spin, i.e., the Pauli equation.

The purpose of this paper was to derive a self-consistent
quantum hydrodynamic model that incorporates quantum,
spin, and relativistic effects up to second order in 1/c. We
started from the second-order Hamiltonian derived from the
Dirac equation through a Foldy-Wouthuysen transformation.
The set of hydrodynamic equations was obtained by perform-
ing a Madelung transformation of the wave function. The
model comprises a continuity equation, an Euler equation
for the mean velocity, and an evolution equation for the spin
density.

Using this model, we studied the quantum-relativistic cor-
rections to the electron spin precession in a one-dimensional
plasma slab excited by a laser field. The simulations showed
that quantum-relativistic effects have a clear signature on the
polarization of the laser electromagnetic wave transmitted
through the slab. Our results should be relevant to laser-
plasma interactions at solid-state densities (hence the need
to include quantum effects) and for large laser powers (which
can accelerate the electrons to weakly relativistic velocities
[12]). Other possible areas of applications involve inertial
confinement fusion [50] and astrophysical plasmas [51], as
well as nanometric systems (nanoparticles, thin films) excited
with ultrashort laser pulses in the femto- or attosecond domain
[7]. The signature of the spin effects should be detectable using
standard spectroscopy techniques.
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APPENDIX A: MATRIX ELEMENTS OF THE FW
HAMILTONIAN IN THE MADELUNG REPRESENTATION

We evaluate the matrix elements of the Foldy-Wouthuysen
Hamiltonian for the Madelung hydrodynamic description of

the particle wave function. Although the calculations proceed
straightforwardly, some technical problems arise concerning
the relationship between the microscopic variables (S,φ) and
the macroscopic (s,u) quantities. We are interested in the
following terms:

H1 ≡ 1

n
Re{ψ†Ĥψ} (A1)

H2 ≡ 1

n
Im {ψ†σ Ĥψ}. (A2)

The relationship s = φ†σφ shows that the macroscopic
quantity s is easily obtained from the spinor φ. Equations (A1)
and (A2) are nonlinear expressions of the spinor φ. In order to
close the equations of motion, Eqs. (24) and (14), φ should be
expressed in terms of s. Although this is, in principle, possible
(it is easy to check that the maps are invertible), the direct
computation of the inverse map leads to some cumbersome
expressions. One way to circumvent this difficulty is to express
the product of spinors in some symmetric form that can be
easily computed. As a preliminary step, we state here one of
the key relationships between the spinor and the spin density,
which reads as

I3 ≡ ∂j (φ†∂iφ) − ∂i(φ
†∂jφ) = − i

2
(s × ∂is) · (∂j s)

i,j = x,j,z,t. (A3)

Here, i,j = x,j,z,t are fixed indices where, extending our
previous notation, we also include the time variable. The
validity of Eq. (A3) can be established with a few calculations
that we now detail in the following paragraphs. We have

I3 = (∂jφ
†)∂iφ − (∂iφ

†)∂jφ = ∂j [φ†(2φφ† − σ · s)]∂iφ

− (∂iφ
†)∂j [(2φφ† − σ · s)φ]

= 3I3 − (∂j sk)ηki, (A4)

where we used Eq. (A5), the relation (∂φ†)φ = −φ†∂φ, and
the following general property of the product between two
spinors:

φφ† = 1
2 (σ0 + s · σ ), (A5)

where σ denotes the vector of Pauli matrices and σ0 is the
2 × 2 identity matrix. Finally, we define

ηki ≡ φ†σk∂iφ − (∂iφ
†)σkφ. (A6)
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By using the identity Eq. (A5), we obtain

ηij = φ†σi∂j [(2φφ† − s · σ )φ]

− {∂j [φ†(2φφ† − s · σ )]}σiφ

= 3ηij − 4si φ†∂jφ − (∂j sk)φ† [σi,σk] φ, (A7)

where the square brackets denote the commutator. Using the
well-known commutation properties of the Pauli matrices
[σi,σj ] = i2εijkσk , one gets

ηij = 2siφ
†∂jφ − iεiklsk∂j sl . (A8)

Plugging Eq. (A8) in Eq. (A4) yields the following:

2I3 = (∂j sk) · [2skφ
†∂jφ − is × ∂is]. (A9)

Since s is a unit vector, Eq. (A3) follows.
We now move to the evaluation of the matrix elements H1

and H2. It can be proven that the term H1 is the sum of the
following terms:

I0 ≡ 1

n
Re

{
ψ† (p̂ − qA)2

2m
ψ

}
= �

2

2m

∇2√n√
n

− �
2

8m
(∂isj )2

− 1

2m
(∂iS − qAi − i�φ∂iφ)2 , (A10)

I ≡ 1

n
Re

{
ψ†

[
qV − μBσ · B − �

2q

8m2c2
∇ · E

]
ψ

}

= q

(
V − �

2

8m2c2
∇ · E

)
− μBs · B, (A11)

II ≡ 1

n
Re

{
−ψ† �q

4m2c2
σ · E × (p̂ − qA) ψ

}
, (A12)

= q�

4m2c2
s · [E × (∇S − qA)] + q�

2

4m2c2
(s × E)

· Im(φ†∇φ) + q�
2

8m2c2
εijkEjεirlsr∂ksl, (A13)

III ≡ 1

n
Re

{
−ψ† i�2q

8m2c2
σ · ∇ × Eψ

}
= 0. (A14)

In particular, concerning the II matrix element, we used

II = q�

4m2c2
s · [E × (∇S − qA)]

+ q�
2

4m2c2
E · Im(φ†σ × ∇φ).

Furthermore, Eq. (A3) gives

Im(φ†σi∂kφ) = 1

2i
{si[φ

†∂kφ − (∂kφ
†)φ]} + 1

2
(−εirlsr∂ksl)

= −siIm(φ†∂kφ) − 1

2
εirlsr∂ksl

and we obtain Eq. (A13).
In the same way, we calculate the term H2 as the sum of

the following terms:

I0 = 1

n
Im

{
ψ†σ

(p̂ − qA)2

2m
ψ

}

= �s
2n

(v · ∇)n + �
2

4m
∂j (ns × ∂j s), (A15)

I = −1

n
Im

{
ψ†σ

[
qV − μBσ · B − �

2q

8m2c2
∇ · E

]
ψ

}

= μBs × B, (A16)

II = �q

4m2c2

1

n
Im{ψ†σ [σ · E × (i�∇ − qA)ψ]}, (A17)

= − q�

4m2c2

{
�

n
(E × ∇n) × s + 2m(E × v) + �a

}
,

(A18)

III = �
2q

8m2c2

1

n
Im{iψ†σ [σ · (∇ × E)]ψ} = �

2q

4m2c2
∇ × E,

(A19)

where we defined ai ≡ εirlεrjkEj∂ksl .

APPENDIX B: MANY-PARTICLE AVERAGING

Equations (6), (9), and (20) constitute the fluid equations
in the single-particle approximation. The simplest way to
describe an N -particle system is to assume that the state of the
system is represented by a statistical mixture of single-particle
wave functions: ψα = √

nαeiSα/�φα , with a certain probability
pα (α = 1 . . . N ). In this framework, the expectation value of
any quantity A is obtained by the simple average

〈A〉 ≡ 1

n

∑
α

pαψ†
αAψα, (B1)

where 〈n〉 ≡ ∑
α nα is the total density. Taking A equal to s

or u in Eq. (B1), we obtain the average spin density 〈s〉 and
average velocity 〈u〉:

〈u〉 = 1

n

∑
α

pαnαuα, (B2)

〈s〉 = 1

n

∑
α

pαnαsα. (B3)

Applying the above averaging procedure to the microscopic
continuity Eq. (6) (where we now add an index α to all the
quantities) we obtain

∂t 〈n〉 + ∇ · (〈n〉〈u〉) = 0. (B4)

From the statistical average of Eq. (24) we obtain

D〈si〉
Dt

=Si (〈n〉,〈s〉,〈u〉) − 1

〈n〉∂jTij

− q

2c2m〈n〉εijkεklmTjlEm, (B5)

where we have defined the spin-velocity tensor

Tij = 〈n〉[〈siuj 〉 − 〈si〉〈uj 〉]. (B6)

The last two terms in Eq. (B5) constitute the first many-
body correction to the single-particle equation for the spin
density. The tensor Tij was also found in Ref. [39], where
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the nonrelativistic QHD model with spin was derived. The
spin-velocity tensor can be interpreted as representing the
correlations between the microscopic spins and velocities, just
like the ordinary pressure tensor (see below) represents the
correlations between the microscopic velocities. This tensor
also appears naturally in the fluid equations derived from
a kinetic theory [52] through a moment expansion. Note,
however, that the spin-velocity tensor vanishes at thermal
equilibrium [52].

In the derivation of Eq. (B5), we have also used the
following approximations:

∑
α

pα

�

2m
εikl∂j (nαsk,α∂j sl,α)≈ �

2m
εikl∂j (〈n〉〈sk〉∂j 〈sl〉),

∑
α

pα

q�

4m2c2
si,αsα · ∇ × (nαE)≈ q�

4m2c2
〈si〉〈s〉 · ∇ × (〈n〉E),

∑
α

pα

q�

2m2c2
nα(E × sα) · ∇si,α ≈ q�

2m2c2
〈n〉(E × 〈s〉) · ∇〈si〉.

(B7)

These approximations are all in the same spirit as the ap-
proximation that is usually employed for the Bohm potential,
i.e.,

∑
α

pα

(
∂2
x

√
nα√

nα

)
≈ ∂2

x

√〈n〉√〈n〉 , (B8)

which was also used in the derivation of Eq. (B5) and is
generally valid in the long wavelength limit [53]. Besides,
we note that all terms in Eqs. (B7) are quadratic in the spin
variable, and therefore will not change the linear response and

the dispersion relations, although they may affect the nonlinear
behavior of the system.

For the velocity field, the many particle averaging yields

Dui

Dt
= U(〈n〉,〈s〉,〈u〉) − 1

m〈n〉∂jPij

− q�

4m2c2〈n〉 (εfjkTji∂iEk + εjklTjk∂f El)

− q�

4m2c2
εjklWjf kEl − q�

4m2c2
εijkEkWjif , (B9)

where we have defined the pressure Pij and the spin-pressure
Wijk tensors as follows:

Pij ≡ 〈n〉m[〈uiuj 〉 − 〈ui〉〈uj 〉], (B10)

Wijk ≡ 〈n〉[〈si∂juk〉 − 〈si〉〈∂juk〉]. (B11)

In order to solve the many-body Eqs. (B5)–(B9), we need
a suitable closure expression for the tensors Tij , Pij , and Wijk .
For the pressure tensor, a number of different choices can be
made. In the isotropic case, we may write

Pij

P0
=

( 〈n〉
n0

)γ

δij , (B12)

where P0 and n0 are reference values for the pressure and
density. Depending on whether the plasma is degenerate or
not, different values of γ are required in order to agree with
the results from kinetic theory. For instance, the choice γ = 3
yields the correct dispersion relation for linear waves in a
zero-temperature fully degenerate plasma [53].

It is more difficult to establish appropriate closure relations
for the tensors involving the spin variables, T and W . This
important issue will be investigated in a forthcoming work.
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