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Three-dimensional coherent structures of electrokinetic instability
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A direct numerical simulation of the three-dimensional elektrokinetic instability near a charge-selective surface
(electric membrane, electrode, or system of micro- or nanochannels) has been carried out and analyzed.
A special finite-difference method has been used for the space discretization along with a semi-implicit
3 1

3 -step Runge-Kutta scheme for the integration in time. The calculations employ parallel computing. Three
characteristic patterns, which correspond to the overlimiting currents, are observed: (a) two-dimensional
electroconvective rolls, (b) three-dimensional regular hexagonal structures, and (c) three-dimensional structures
of spatiotemporal chaos, which are a combination of unsteady hexagons, quadrangles, and triangles.
The transition from (b) to (c) is accompanied by the generation of interacting two-dimensional solitary
pulses.
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I. INTRODUCTION

Problems of electrokinetics and micro- and nanofluidics
have recently attracted a great deal of attention due to rapid
developments in micro-, nano-, and biotechnology. Among the
numerous modern micro- and nanofluidic applications of elec-
trokinetics are micropumps, micromixers, μTAs, desalination,
fuel cells, etc. (see [1]).

Usually in such systems, the applied electric currents do not
exceed the limiting current. Recent practice in electrodialysis
and related problems has demonstrated the interest in using
intensive current regimes, wherein the applied current exceeds
its limiting value. Another interesting discovery has been the
nonstationary overlimiting currents, resulting in increased ion
transfer to the charge-selective surface because of a specific
type of electrohydrodynamic instability: the electrokinetic
instability. Motivated by the applications mentioned, we revisit
the classical problem of electrodialysis, taking into account the
electrokinetic instability in a full three-dimensional formula-
tion. Another motivation is connected with the fundamental
interest in this type of instability at the micro- and nanoscales.
In the present study, traditional macroscopic approximations
of a continuous medium are applied over the whole spatial
region, which includes the Debye layer, the extended space
charge (ESC), and vortex regions.

Micro- and nanofluidic systems pose interesting problems
for applied mathematics because the traditional macroscopic
approximations of a continuous medium break down at
small scales approaching the Debye length. To provide some
perspective on our problem, the Debye layer, depending on
the ion concentration, varies within the range of 1 to 100 nm.
The ESC length is about 200 to 500 nm, and depends on the
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voltage, and the electroconvective vortex length is about the
distance between the membranes, i.e., about 0.1 to 1.5 mm.
Taking into account a rough evaluation of the length scale at
which the continuous approximation breaks down, 10 nm for
liquids [2], we can say that in the region of the Debye layer,
the continuous model is questionable, while in the ESC and
vortex regions it seems to be applicable. The nanoscale Debye
and ESC regions are not detectable in experiments, but the
microvortices and macroscale coherent structures sustained
by them have been found experimentally (see [1], Fig. 6;
[3], Fig. 3(a); [4], Fig. 3). Chaotic behavior can be seen in
chronopotentiograms, time vs voltage, Ref. [5], Fig. 1, but
it is very difficult to relate this with the real behavior in
the Debye region. Hence the comparison of our numerics
with DNS results based on other models is promising, in
particular, with the lattice Boltzmann method (LBM) [6],
which is straightforwardly adaptable for parallel computing.
Moreover, a hybrid framework, combining mesoscopic LBM
in the Debye layer with a macroscopic continuous method in
the ESC and vortex regions, is worthwhile. Nevertheless, in
what follows, we employ only the traditional macroscopic
approximations of a continuous medium.

The electrokinetic instability describes the generation of
nonlinear coherent structures near a charge-selective surface
under a drop in the electric potential. This instability was
recently theoretically predicted by Rubinstein and Zaltzman
[7–9] and experimentally confirmed in [3,4,10–13]. The linear
stability theory of the one-dimensional (1D) quiescent steady-
state solution, based on a systematic asymptotic analysis of
the problem, was developed by Zaltzman and Rubinstein [14].
Different aspects of the linear stability of the 1D solution were
also studied in [15–17]. A qualitative discussion of the basic
mechanisms of the electrokinetic instability can be found in
[18]. The two-dimensional electroconvective rolls generated
by surfaces bearing a charge varying in space are considred in
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FIG. 1. (Color online) Comparison of our numerical predictions, dashed line, with those by Zaltzman and Rubinstein [14], solid line,
� = 0.5. (a) Space-charge density, ρ, vs y for �V = 20 and ν/

√
2 = 10−2 (lines 1 and 2) and 10−3 (lines 3 and 4). (b) Threshold of the primary

instability: triangles stand for our numerics.

[19]. The electrokinetic instability is reminiscent of Rayleigh-
Bénard convection [20], but from both the physical and
mathematical points of view, it is much more complicated.
The Reynolds number in the electrokinetic instability is very
small and, hence, the dissipation is very large and the nonlinear
terms in the Navier-Stokes system are negligibly small. The
nonlinearity responsible for bifurcations arises from other
equations of the system. This explains the dramatic distinction
between the bifurcations, instabilities, and transitions in the
macro- and microhydrodynamics.

Not all important facts of the electrokinetic instability can
be described by an asymptotic analysis and linear stability
theory. Only direct numerical simulations (DNS) of the Nernst-
Planck-Poisson-Navier-Stokes equations can be relied on in
the study of all the details of the electrokinetic instability.
In the first DNS studies [5,21–26], the nontrivial stages of a
noise-driven nonlinear evolution towards overlimiting regimes
were identified, the space charge in the extended space-charge
region was found to have a typical spikelike distribution,
the dynamics of the spikes was investigated along with the
physical mechanisms of the secondary instabilities, and it was
demonstrated that the transition between the limiting and the
overlimiting current regimes can exhibit a hysteretic behavior
(subcritical bifurcation).

All the previous results were obtained in the two-
dimensional (2D) formulation. Actually, the electrokinetic
instability is three dimensional (3D) and such a fact should
dramatically affect the DNS results. In the present paper,
3D numerical simulations of the electrokinetic instability are
carried out. White-noise initial conditions to mimic “room
disturbances” and the subsequent natural evolution of the
solution are treated. The following regimes, which replace
each other as the potential drop between the selective surfaces
increases, are obtained: a 1D quiescent steady-state solution,
2D steady electroconvective rolls (vortices), unsteady 2D
vortices regularly or chaotically changing their parameters,
steady 3D hexagonal patterns, and a chaotic spatiotemporal
3D motion.

The space-charge region profile for the 2D rolls has long
flat and short wedgelike regions with a cusp at the top. The
cusp angle does not depend on the parameters and is about
111◦. The 3D hexagonal structures consist of six wedgelike
lateral faces, and six pyramids are located at their intersection.
The angle of the wedgelike faces is close to that for the 2D
rolls, and the dependence of this angle on the parameters of
the problem is also weak. A rough evaluation of the pyramidal
angle gives its value as about 87◦.

An interesting phenomenon found is the generation of
two-dimensional running solitary waves either inside the
hexagonal structure or at one of its lateral sides. If another
solitary wave forms, a complex head-on or an oblique
pulse-pulse interaction occurs. For a large potential drop, the
pulse-pulse interaction becomes strong enough to destroy the
hexagonal structure and a transition to spatiotemporal chaos
results.

II. FORMULATION OF THE PROBLEM

A symmetric, dilute binary electrolyte with a diffusiv-
ity of cations and anions D̃, dynamic viscosity μ̃, and
electric permittivity ε̃, and bounded by ideal, semiselec-
tive ion-exchange membrane surfaces, ỹ = 0 and ỹ = L̃,
is considered. Tildes indicate the dimensional variables, as
opposed to their dimensionless counterparts without tildes.
x̃, ỹ, and z̃ are the coordinates, where x̃ and z̃ are
directed along the membrane surface, and ỹ is normal
to it.

The characteristic quantities to make the system dimension-
less are as follows: L̃ is the distance between the membranes;
L̃2/D̃ is the characteristic time; the dynamic viscosity μ̃ is
taken as the characteristic dynamical quantity; the thermic
potential �̃0 = R̃T̃ /F̃ is taken as the characteristic potential;
and the bulk ion concentration at the initial time c̃0 is the
characteristic concentration. Here, F̃ is Faraday’s constant, R̃

is the universal gas constant, and T̃ is the absolute temperature.
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The electroconvection is described by the equations for ion
transport, Poisson’s equation for the electric potential, and the
Stokes equations for a creeping flow:

∂c±

∂t
+ u · ∇c± = ±∇ · (c±∇�) + ∇2c±,

(1)
ν2∇2� = c− − c+ ≡ −ρ,

−∇	 + ∇2u = �

ν2
ρ∇�, ∇ · u = 0. (2)

Here, the c± are the concentrations of the cations and anions;
u = {u,v,w} is the fluid velocity vector; � is the electrical
potential; 	 is the pressure; ν is the dimensionless Debye
length or Debye number,

ν = λ̃D

L̃
, λ̃D =

(
ε̃�̃0

F̃ c̃0

)1/2

=
(

ε̃R̃T̃

F̃ 2c̃0

)1/2

,

and � = ε̃�̃2
0/μ̃D̃ is a coupling coefficient between the

hydrodynamics and the electrostatics that characterizes the
physical properties of the electrolyte solution and is fixed for
a given pair of liquid and electrolyte.

This system of dimensional equations is complemented by
the proper conditions at the lower and upper boundaries, y = 0
and y = 1:

c+ = p, − c− ∂�

∂y
+ ∂c−

∂y
= 0, u = 0. (3)

The potential drop between the membranes is �V .
The first boundary condition, prescribing an interface

concentration equal to that of the fixed charges inside the
membrane, is asymptotically valid for large p and was first
introduced by Rubinstein; see, for example, Ref. [14]. The
second boundary condition means there is no flux for negative
ions, and the last condition is that the velocity vanishes at the
rigid surface. The spatial domain is assumed to be infinitely
large in the x and z directions, and the boundedness of the
solution as x,z → ±∞ is imposed as a condition.

Adding initial conditions for the cations and anions com-
pletes the formulation (1)–(3). These initial conditions arise
from the following viewpoint: when there is no potential
difference between the membranes, the distribution of ions is
homogeneous and neutral. This corresponds to the condition
c+ = c− = 1. Some kind of perturbation should be superim-
posed on this distribution, which is natural from the viewpoint
of experiment.

Small-amplitude disturbances at the initial stage of evo-
lution can be considered as a superposition of individual
harmonics that obeys the linear stability theory and will soon
filter the initial noise into a sharp frequency band near the
maximum growth rate (see [21], Fig. 3, and [27], Figs. 3
and 5). That is why the nature of the noise is not important
if the initial spectrum contains nonzero harmonics near the
frequency with the maximum growth rate. The simplest type
of initial noise is taken: the so-called “room disturbances”
determining the external low-amplitude and broadband white
noise are imposed on the concentration:

t = 0 : c± = 1 +
∫ +∞

−∞
ĉ±(k,m)e−i(kx+mz)dk dm. (4)

Here, the phase of the complex function ĉ±(k,m) is assumed
to be a random number with a uniform distribution over the
interval [0,2π ].

The characteristic electric current j at the membrane’s
surface is referred to the limiting current, jlim = 4,

j = 1

4

(
c+ ∂�

∂y
+ ∂c+

∂y

)
for y = 0. (5)

It is also convenient for our further analysis to introduce the
electric current averaged over the membrane’s surface lx × lz
and over time:

〈j (t)〉 = 1

lx lz

∫ lx

0

∫ lz

0
j (x,z,t)dx dz,

(6)

J = lim
T →∞

1

T

∫ T

0
〈j (t)〉dt.

The problem is characterized by three dimensionless pa-
rameters: �V , ν (which is a small parameter), and �. The
dependence on the concentration, p, for the overlimiting
regimes is practically absent, and thus p is not included in
the mentioned parameters: in all calculations, p = 5.

The problem is solved for � = 0.05–0.5, and the dimen-
sionless potential drop is varied within �V = 0–60. In most
of the presented calculations, ν = 10−3 is taken.

III. NUMERICAL METHOD

The numerical approach of [5] is generalized for the
solution of the system (1)–(6). A finite-difference method with
second-order accuracy is applied for the spatial discretization.
A uniform grid is used in the homogeneous tangential x and
z directions; the grid is stretched in the normal y direction
via a tanh stretching function in order to properly resolve the
thin double layers attached to the membrane surfaces. When a
fine spatial resolution is used, our system represents a stiff
problem. In order to solve this problem, implicit methods
require the inversion of rather large matrices and thus are
extremely costly, while explicit methods of time advancement
require a very small time step and, hence, are prohibitively
ineffective. A semi-implicit method is found to be a reasonable
compromise: only a part of the right-hand side of the system
is treated implicitly [28]. A special semi-implicit 3 1

3 -step
Runge-Kutta scheme is used for the eventual integration in
time. The details of the numerical scheme will be presented
elsewhere.

For the natural “room disturbances,” the infinite spatial
domain is changed to a large enough finite domain that
has lengths lx = lz = l in both spatial dimensions, with the
corresponding wave number k = 2π/l. The condition that
the solution be bounded as x,z → ∞ is changed to periodic
boundary conditions. The length of the domain l has to be
taken large enough to make the solution independent of the
domain size. The wave number k is taken to be 1.

The parallel computing was carried out at the supercom-
puter “Chebyshev” of the computer cluster SKIF of the
Moscow State University, using up to 256 MPI processors.
A resolution of 256 points in the x and z directions along with
128 points in the y direction provides adequate results. In order
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to check their accuracy, the number of points in all directions
for some simulations was doubled.

IV. SIMULATION RESULTS

The system (1)–(6) has a 1D quiescent steady-state solution
which describes the underlimiting and limiting currents. For
the limiting currents, there is a thin electric double layer (EDL)
in a small vicinity of the charge-selective surface; then an
equilibrium diffusion layer forms right next to this surface, and
the voltage-current (VC) curve obeys a linear ohmic relation.
For the limiting currents, the VC curve has a typical saturation
of the electric current with respect to the potential drop. In
order to explain this behavior, Rubinstein and Shtilman [29]
came up with the idea of the nonequilibrium nature of the
EDL and of the extended space charge (ESC) region, 0 < y <

ym, which is much thicker than the EDL, but much thinner
than the distance between the membranes, ym 
 1. For the
underlimiting and limiting currents, the diffusion is balanced
by electromigration: there is no contribution of convection
to the ion flux, and the ESC layer thickness, ym, is uniform
along the membrane surface. (The boundary of the ESC region,
ym, gives a convenient value for describing the electrokinetic
patterns. This boundary is a conventional value: we define it
by taking 5% of the maximal value of the space-charge density
in the ESC region.)

The appearance of the extended space charge for the
limiting current regimes leads to a special kind of electrohy-
drodynamic instability, when �V > �V∗: the electrokinetic
instability (see [7,8,14]). A small inhomogeneity in ym(x,z)
along the membrane results in a convective motion of the fluid
in the inner ESC region with a tangential slip velocity, and
leads to the growth of the perturbations: the 1D steady-state
equilibria lose their stability and, eventually, overlimiting cur-
rents arise. For the overlimiting currents, the third mechanism,
convection, contributes significantly to the ion flux.

The key physical mechanism of the primary instability can
be understood from the following simple arguments. The ESC
region creates a thin film near the membrane, ym 
 1, much
like a free surface. When the ESC layer, ym, thins because of
some kind of localized disturbance along the membrane, the
nearly singular electric field E inside the ESC region becomes
even more intense, thus creating a high Maxwell pressure spot
near the charge-selective surface, ∼E2. This high-pressure spot
drives liquid radially away from it near the solid surface. When
the displaced liquid moves, it meets some resistance from the
nonslipping liquid layers, and this changes the direction of the
moving liquid towards the bulk. As a result, a pair of vortices
rotating in opposite directions appears, both with a diverging
stagnation point. These electroconvective vortices which arise
near the critical point �V∗ are two dimensional.

Before the systematic calculations, we validate our numer-
ical results first to assure that the predictions are correct.
The comparison of our predictions with those predicted by
Zaltzman and Rubinstein [14] using the asymptotical analysis
for small voltages is shown in Fig. 1. For a small enough Debye
number ν, ν < 10−3, the results of both approaches coincide
with graphical accuracy.

In Fig. 2 , a map of the regimes and bifurcations is presented:
the first coordinate is the potential drop �V and the other is the
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FIG. 2. (Color online) Map of regimes and bifurcations, �V , vs
� for ν = 10−3. The solid line is the neutral stability curve [5] which
separates the 1D and 2D regimes. Circles correspond to realizations
of 2D regimes; triangles correspond to realizations of 3D regimes, so
that the 2D–3D transition happens at the dash-dot line.

coupling coefficient �. Curve 1 corresponds to the threshold of
instability: for � < 0.151, the bifurcation is supercritical and
this part of 1 is pictured by the solid line; for � > 0.151,
the bifurcation is subcritical and this part of the curve is
shown by the dashed line (see [5]). The 1D regimes and the
limiting currents are located below 1. The circles and triangles
stand for the 2D and 3D regimes, respectively. The dash-dot
line 2 separates these regimes and corresponds to the 2D–3D
transition.

The dependence on the potential drop �V of the average
of the electric current J over the membrane surface lx lz = l2

and the elapsed time t [see Eq. (5)] is a convenient integral
characteristic of the regimes. Such a VC dependence is shown
in Fig. 3 for a typical value of the coupling coefficient � = 0.1,
where the bifurcation is supercritical. Portions of the VC
dependence, I, II, and III, stand for the underlimiting, limiting,
and overlimiting currents, respectively. The dashed line in
Fig. 3 joining the circles corresponds to 3D simulations. We
find it instructive to plot in this figure also the results of the
2D simulations: they are shown by the dashed line joining the
triangles corresponding to the 2D simulations. Up to the point
�V = �V3D, both dependences coincide. This means that for
a small supercriticality, the electrokinetic instability is two
dimensional. This points to the fact that 3D effects increase the
ion flux in comparison with the two-dimensional regime, but
this increase is not large, about 5%–10%. Moreover, for a large
enough potential drop, �V > 55, this difference practically
disappears.

Our simulations show that four basic coherent structures
can be found during the evolution: 2D electroconvective rolls
(vortices), squares, triangles, and hexagons.

(a) The first coherent structure, spatially periodic stationary
electroconvective rolls, can be realized as an attractor, as
t → ∞, only in a narrow band near the threshold of instability,
between curves 1 and 2 of Fig. 2. This is reminiscent of the
Rayleigh-Bénard convection (see [30,31]) when hexagons and
squares are unstable to rolls, near the threshold, and there is
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FIG. 3. (Color online) VC characteristics for � = 0.1 and ν = 10−3: I, II, and III stand for underlimiting, limiting, and overlimiting currents,
respectively. The dashed line joining the circles corresponds to our 3D simulations; the dashed line joining the triangles corresponds to 2D
simulations. The inset shows three typical electrokinetic patterns: 2D electroconvective rolls, regular 3D hexagonal structures, and chaotic 3D
structures.

a closed region of their stability called the “Busse balloon.”
Note that the bifurcation picture is different for the Bénard-
Marangoni convection, where stable hexagonal patterns can
arise at the threshold (see [32]). The two-dimensional coherent
structures are of particular interest because of the relative
simplicity of their investigation in the 2D formulation. These
solutions were analyzed in detail in [5,21–25].

(b) For �V > �V3D, above line 2 of Fig. 2, the 2D
electroconvective rolls become unstable to three-dimensional
perturbations. Theoretically, there are three candidates to
inherit stability and be a new attractor: squares, triangles, and
hexagons [30]. Our simulations show that for the electrokinetic
instability, steady and regular squares and triangles do not
exist: they can be seen during the evolution only as a
transitional state.

(c) Regular steady-state hexagonal patterns are formed just
above line 2 of Fig. 2. The white-noise initial perturbations
eventually evolve towards steady hexagonal patterns.

(d) As the driving �V − �V∗ is increased, the ordered
hexagonal structures break down into complex and highly
disordered states, and the behavior becomes chaotic in time and
space. The flow becomes a combination of unsteady hexagons,
quadrangles, and triangles. In the present investigation, the
advent of spatiotemporal chaos is found by visual inspection;
in a future extension of this work, we intend to detect it by a
calculation of the maximal Lyapunov exponent, as was done
in [20].

To complete the VC dependence, three characteristic
electrokinetic patterns are shown in the inset to Fig. 3: 2D

electroconvective vortices, regular 3D hexagonal struc-
tures, and chaotic 3D structures (combinations of unsteady
hexagons, quadrangles, and triangles). The arrows show the
place of these structures along the VC curve and a typical
potential drop for their realization. A movie of the evolution
of these structures can be found in [33].

Let us consider some important details of these character-
istic patterns: the electroconvective rolls, the hexagons, and
the spatiotemporal chaos. In order to present a full picture of
the behavior, it is instructive to jointly analyze the distribution
of ym(x,z) along the membrane surface, the charge density
ρ inside the ESC region, and the electric current j (x,z)
determined by Eq. (5). Their typical snapshots are depicted
in Figs. 4, 6, and 7.

For the rolls, the profile ym(x,z) is shown in Fig. 4: it has
long flat and short wedgelike regions with a cusp at the top.
The wedge angle or the angle between the wedge faces is rather
conservative, it practically does not depend on the parameters,
and is about 105◦–118◦.

After loss of stability and after the corresponding sec-
ondary bifurcation, the rolls turn into steady three-dimensional
structures. Since secondary instabilities occur in already
complicated states, the range of possible classes is larger
than at the primary instability threshold. Here we discuss only
one possible physical mechanism of the secondary instability
that leads to the loss of two dimensionality. The evolution of
2D rolls slightly disturbed along the third spatial dimension
is presented in Fig. 5. The flat regions of ym(x,z), I and
II, have different charge densities, namely, in the vicinity
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FIG. 4. (Color online) Electroconvective rolls for �V = 33, � = 0.1, and ν = 10−3. (a) Distribution of the electric current j (x,z). (b) Profile
of ym(x,z). (c) Cross section of charge density ρ at z = z∗. Vortex pairs of liquid flow are shown schematically by the arrows.

of point 1, the charge density of the narrow part of II is
smaller [see Fig. 5(a)] and, hence, the Coulomb force at
II is also smaller (charges of the same sign repel). As a
result, region I is nonuniformly expanding, while region II is
nonuniformly narrowing, Fig. 5(b), with eventual coarsening at
the narrowest part of II, Fig. 5(c). Another physical mechanism

of instability can be found: if the area of a flat region
is large enough, it suffers from the primary electrokinetic
instability; see Fig. 5(c). Point 1 is a nucleation point of a
future electroconvective vortex.

The final result of the secondary instability is shown
in Fig. 6: these steady structures are conventionally called
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FIG. 5. (Color online) 2D–3D transition, �V = 34, and � = 0.1. Profiles of the ESR length, ym(x,z), at (a) t = 7.4. Flat region I near
point 1 has a larger charge density than II; hence the Coulomb force of I at this point is larger than at II. This causes a further narrowing of II:
(b) t = 7.5, with eventual coarsening, (c) t = 7.6. Region III is a nucleating region of a future electroconvective vortex caused by the primary
instability.
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FIG. 6. (Color online) Hexagonal coherent structures, �V = 50, � = 0.1, and ν = 10−3. (a) Distribution of the electric current j (x,z) on
the membrane surface. (b) Profile of ESC region, ym(x,z): (c) cross section z = z∗ of the charge density ρ; (d) vicinity of the pyramid top. The
arrows schematically show the direction of the liquid flow.

“hexagons.” The ym(x,z) profile consists of six wedgelike
lateral faces and six pyramids are located at their intersection.
In the remaining area, ym(x,z) is flat and situated in the
lowlands. It is interesting that the angle of wedgelike faces
is close to that for the 2D rolls, and the dependence of this
angle on the parameters of the problem is also weak. A rough
evaluation of the pyramidal angle gives its value as about
85◦–90◦.

Snapshots of the spatiotemporal chaos are shown in Fig. 7.
Now, the ym(x,z) distribution consists of a combination of
triangles, quadrangles, and hexagons whose location and form
change chaotically. The sides of these geometrical figures are
wedges with an angle averaged over time of about 110◦. The
pyramids formed at the intersection of the sides have a time-
averaged angle at the top of about 90◦.

The numerical resolution of the charge density ρ in the thin
ESC layer is shown for our three basic patterns in the left part
of Figs. 4, 6, and 7. The darker regions correspond to large
charge densities ρ with a rather sharp boundary between the
ESC region, 0 < y < ym, and the diffusion region, y > ym.
The portions with a small charge in the spikes are joined by
the flat regions of large charge. For all three regimes, the

minimum of ym corresponds to the maximum of the charge
density. At the top of the pyramids, where ym(x,y) reaches
its maximum maximorum, the ρ distribution always has its
minimum minimorum.

The electric current at the membrane surface, j (x,z),
is another important characteristic value whose description
complements our understanding of the system’s behavior; see
the top of Figs. 4, 6, and 7. For all three basic coherent
structures, j (x,z) qualitatively replicates the ym(x,z) profile
and ρ distribution in the ESC layer, but smooths their sharp
details: for 2D rolls, the localized wedgelike profile of ym(x,z)
turns into the nearly sinusoidal profile of j (x,z); for the
3D regular patterns, the hexagon turns into a circle; the
triangles, quadrangles, and hexagons of the spatiotemporal
chaos transform into a system of circles and ellipses. Moreover,
the electric current j (x,z) has minimal values in the vicinity
of the cusps and is maximal in the flat regions of the ym and
ρ distributions. We attribute this behavior to the fact that the
electrical conductivity is smaller in the cusp regions and larger
in the lowlands.

Our simulations show that the liquid always flows upwards
from the cusp points of the ym and ρ distributions and
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FIG. 7. (Color online) (a) Distribution of the electric current j (x,z) on the membrane surface. (b) Snapshot of ym for the spatiotemporal
chaos: (c) cross section z = z∗ of the charge density ρ; (d) vicinity of the pyramid top. �V = 60, � = 0.1, and ν = 10−3.

returns to the membrane surface, moving towards the flat
regions of the ρ distribution. An array of vortex pairs is
formed: it is schematically shown in the figures by the arrows.
The characteristic size of the electroconvective rolls varies
within the range 1.3–2.0, the size of the regular hexagonal
structures is about 1.5, and, for the spatiotemporal chaos,
about 1.2.

An interesting phenomenon found is the generation of
two-dimensional running solitary waves (pulses). Such waves
form spontaneously either inside the hexagonal structure or at
one of its lateral sides, with a subsequent propagation towards
the opposite side of the hexagon; see Fig. 7. For relatively
small drives �V − �V∗, the generation of a pulse is a rare
event; moreover, the pulse decays during its propagation and
eventually disappears completely. As �V − �V∗ increases,
this generation occurs more frequently, the pulse amplitude
increases, and the pulse can propagate without decaying and
reach the opposite side of the hexagon. If at the neighboring
side or somewhere else another solitary wave forms and then
departs, a complex pulse-pulse interaction occurs: depending
on the spatial location of the waves, it can be a head-on or
an oblique interaction. For large �V − �V∗, the pulse-pulse
interaction becomes strong enough to destroy the hexagonal

structure and a transition to spatiotemporal chaos results from
the interaction. Our systematic calculations were done for
ν = 10−3, but in the region of spatiotemporal chaos we also
performed several runs for ν = 10−4 and ν = 5 × 10−4: the
generation of solitary pulses and the pulse dynamics are
found to be qualitatively the same as for ν = 10−3. Note that
a similar phenomena of pulse generation and pulse-pulse
interactions have been observed for other kinds of instability,
Marangoni-Bénard convection [34,35], and falling liquid films
[36].

V. CONCLUSIONS

A direct numerical simulation of the elektrokinetic insta-
bility in its three-dimensional formulation was carried out. A
special numerical algorithm was developed. The calculations
employed parallel computing. Three characteristic patterns,
which correspond to the overlimiting currents, were observed:
two-dimensional electroconvective rolls, three-dimensional
regular hexagonal structures, and three-dimensional structures
of spatiotemporal chaos that are combinations of unsteady
hexagons, quadrangles, and triangles. The distinguishing
features of the regular and chaotic three-dimensional regimes
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were found. The transition from the steady regular three-
dimensional patterns to the spatiotemporal chaos was found
to be accompanied by the generation of interacting two-
dimensional solitary pulses.
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