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Dynamics of a self-diffusiophoretic particle in shear flow
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Colloidal particles can achieve autonomous motion by a number of physicochemical mechanisms. For instance,
if a spherical particle acts as a catalyst with an asymmetric surface reactivity, a molecular solute concentration
gradient will develop in the surrounding fluid that can propel the particle via self-diffusiophoresis. Theoretical
analyses of self-diffusiophoresis have mostly been considered in quiescent fluid, where the solute concentration is
usually assumed to evolve solely via diffusion. In practical applications, however, self-propelled colloidal particles
can be expected to reside in flowing fluids. Here, we examine the role of ambient flow on self-diffusiophoresis
by quantifying the dynamics of a model Janus particle in a simple shear flow. The imposed flow can distort the
self-generated solute concentration gradient. The extent of this distortion is quantified by a Peclet number, Pe,
associated with the shear flow. Utilizing matched asymptotic analysis, we determine the concentration gradient
surrounding a Janus particle in shear flow at a small, but finite, Peclet number and the resulting particle motion. For
example, when the symmetry axis of the particle is aligned with the imposed flow, the Janus particle experiences
an O(Pe) cross-streamline drift and an O(Pe3/2) reduction in translational velocity along the flow direction. We
then analyze the in-plane trajectory of the Janus particle in shear. We find that the particle performs elliptical
orbits around its initial position in the flow, which decrease in size with increasing Pe.
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I. INTRODUCTION

Colloidal particles usually move at low Reynolds number,
where viscous forces dominate fluid flow. In this regime,
particle transport can be affected by imposed fields, including
thermal gradients [1,2], concentration gradients [1–4], electric
fields [3–5], and magnetic fields [3,4]. More recently, active,
or self-propelled, particles have been explored as a method
of directed colloidal particle movement [3,4,6–19,21]. One
method of self-propulsion is self-diffusiophoresis, where a col-
loidal particle generates a local solute concentration gradient
via a surface chemical reaction [3,4,6–13]. One of the most
studied particle geometries is the Janus sphere [3,4,6–8,11,12],
although the motion of self-diffusiophoretic rods and dimers
has also been considered [3–5,9,10,13]. Janus particles can be
fabricated by coating half of a polystyrene bead with platinum
[4,6,11]. When suspended in a dilute solution of H2O2, the
difference in the decomposition rate of H2O2 between the
platinum and polystyrene faces of the particle creates a local
asymmetric concentration gradient. This gradient results in a
velocity slip around the particle [1], which causes the particle
to move in order to remain force-free.

Much of the experimental and theoretical work on self-
diffusiophoresis has considered particle motion in quiescent
fluids [3,4,6–12]. A common modeling assumption made in
these cases is that the effect of advection due to particle
translation on the self-generated solute concentration gradient
can be ignored because of the relatively large solute diffusivity
and modest phoretic particle velocity. The relative importance
of solute advection to diffusion is quantified by a Peclet
number, Pe, where Pe � 1 indicates that advection dominates
and Pe � 1 indicates that diffusion dominates. The Peclet
number associated with particle translation equals aU/D,
where a is the characteristic length of the particle, U is the
phoretic particle speed, and D is the diffusion coefficient
of the solute. Using values typical of Janus spheres, where
D ∼ 10−9 m2/s, a ∼ 10−6 m, and U ∼ 10−6 m/s [4,20], gives

Pe ∼ 10−3. Thus, it is reasonable to assume that advection
plays a minor role in the instantaneous phoretic particle motion
in this case, although cumulative effects at small Pe may be
important [21]. Michelin and Lauga [22] have discussed cases
in which Pe may not be small in their recent analysis of a
self-diffusiophoretic Janus particle at finite Pe.

Several of the purported applications for self-propelled
particles, however, do not occur in quiescent fluid. Such
particles have been suggested as drug delivery vehicles through
blood vessels [4,6,23–25]. The fluid flow through these vessels
can be locally approximated as a shear flow with shear rate on
the order of 102 s−1 [23,26,27]. Another application of self-
propelled particles is transport through microfluidic channels
for laboratory-on-a-chip devices [4,6,28]. This provides the
motivation to predict the motion of self-propelled particles
in ambient flows. Indeed, the effect of an ambient flow on
active particles, including self-diffusiophoretic particles, has
been explored [13–19,23], though to a far lesser degree than
active particles in quiescent fluid. For example, the Brownian
motion of a generic active particle in both shear flow and
Poiseuille has been considered [15,19,23]. In those works,
the phoretic velocity of the active particle was assumed to
be independent of the ambient flow. In the particular case of
self-diffusiophoresis, however, a shear flow can distort the self-
generated solute concentration gradient through advection,
consequently altering the instantaneous phoretic velocity of
the particle. That is, the phoretic velocity is not independent
of the imposed flow. For instance, Tao and Kapral analyzed
the motion of a self-diffusiophoretic dimer particle located
at the center of a Poiseuille flow in a square channel to
determine the influence of channel size and solute-particle
interaction on the phoretic velocity of the dimer [13]. They
noted that solute advection might play a role in determining
the phoretic velocity, since the time required for the solute to
cross the length of the dimer in a shear flow (with shear rate
γ̇ ) via advection (1/γ̇ ) was on the order of the time required
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to cross via diffusion (a2/D). The ratio of these two time
scales defines a Peclet number for the imposed shear flow,
γ̇ a2/D. The shear flow Peclet number can be large enough to
warrant consideration of the effect of advection on the solute
concentration. For example, in blood vessels, γ̇ ∼ O(102 s−1)
are reasonable [26], and the shear rate in microchannels can
be as high as γ̇ ∼ O(104 s−1) [29]. Assuming D and L as
before yields Pe ∼ O(10−1) to O(101), indicating advection
by ambient flow can play a role in self-diffusiophoresis.

In this paper, we quantify the impact of an imposed flow
on the dynamics of a self-diffusiophoretic colloidal particle.
Specifically, we consider a model spherical Janus particle in
a simple shear flow at small Pe to examine the first effects
of advection on the dynamics of the particle. A similar
mathematical problem of an inert sphere in shear flow and an
external concentration or temperature gradient has also been
analyzed at small Pe [2,30]. In that case, the key restriction in
the analysis is that the shear flow and the imposed gradient
must be orthogonal in order to maintain a steady linear
gradient. However, for a self-diffusiophoretic particle, the
concentration gradient is self-generated and therefore local.
The solute concentration is uniform at large distances; hence,
the orthogonality condition is no longer relevant, and there is
no restriction on the direction of self-propulsion relative to the
imposed flow.

Golestanian et al. [12] considered a model self-
diffusiophoretic spherical particle in quiescent flow, where
the axisymmetric surface reactivity and solute mobility differ
over the particle surface, and the solute concentration evolves
solely due to diffusion (Pe = 0). To approximate the piecewise
nature of the surface reactivity, α, and mobility, μ, of a
Janus sphere, they define α = ∑∞

l=0 αlPl(cos θ ′) and μ =∑∞
l=0 μlPl(cos θ ′), where θ ′ is the polar angle from the

direction of propulsion in a body-fixed frame, and αl and μl

are the coefficients for the surface reactivity and mobility,
respectively, for each Legendre polynomial Pl(cos θ ′). They
found that the rectilinear velocity of the particle equals

U0 = d̂
D

∞∑
l=0

(
l + 1

2l + 3

)
αl+1

[
μl

2l + 1
− μl+2

2l + 5

]
, (1)

where d̂ is the unit vector along the symmetry axis of the
sphere.

In this paper, we will consider a simplified Janus particle,
where the surface reactivity is α = α1 cos θ ′ and the mobility
is constant, μ = μ0. For the rest of the paper, α1 and μ0 shall
be referred to as α and μ, respectively. Thus, (1) simplifies to
U0 = (αμ/3D)d̂. For hard-sphere solute particles of size b, the
repulsive excluded-volume interaction between the solute and
the colloid gives μ = −kBT b2/2η, where kB is the Boltzmann
constant, T is the temperature, and η is the viscosity [1]. Thus,
the Janus colloid moves with its consuming face forward,
down the self-generated gradient. Note, the phoretic velocity
is solely along the symmetry axis of the particle. We will
demonstrate that solute advection due to an imposed shear
flow fundamentally alters the motion of the Janus particle,
resulting in, for example, an O(Pe) cross-streamline drift.

In Sec. II, we present governing equations for a self-
diffusiophoretic Janus particle in shear flow. In Sec. III, we
solve for the concentration field surrounding the particle
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FIG. 1. (Color online) A spherical Janus particle of radius a

immersed in an imposed shear flow, u = γ̇ yex . One side of the particle
generates hard-sphere solute particles while the other side consumes
them. The symmetry axis of the particle d̂ lies in the shear plane and
is oriented at an angle ψ from the direction of the flow. The particle
coordinate system is described as (r ′,θ ′,φ′) (spherical polar) and
(x ′,y ′,z′) (Cartesian), while the laboratory fixed coordinate system is
(r,θ,φ) and (x,y,z).

using matched asymptotic expansions and then compute
the instantaneous particle velocity. In Sec. IV, we consider
the resulting trajectory of a self-diffusiophoretic particle whose
symmetry axis lies in the plane of shear. Conclusions are
offered in Sec. V.

II. PROBLEM FORMULATION

We consider a spherical Janus particle of radius a in a
Newtonian fluid at zero Reynolds number. At large distances
from the particle, the fluid moves in simple shear flow, with
velocity u = γ̇ yex , where ex is a unit vector along the flow
direction in a laboratory frame, and y is the coordinate
in the velocity gradient direction ey (Fig. 1). The particle
generates and consumes hard-sphere solute particles over
different portions of its surface. The solute concentration in
the fluid far from the particle is uniform, c∞. The particle
moves with an instantaneous rectilinear velocity U and angular
velocity �. We restrict the symmetry axis of the Janus particle
to lie in the plane of shear and also neglect Brownian motion,
although a preliminary discussion on the effects of the latter is
presented in Sec. V.

We assume that solute molecules interact with the Janus
particle via hard-sphere (excluded-volume) repulsion, on the
length scale of the solute, which is much smaller than the size
of the particle (b � a). Hence, the thin interfacial layer limit
applies [1]. Here, the tangential solute gradient at the outer
edge of the interfacial layer drives a diffusio-osmotic slip flow
around the Janus particle. This slip velocity can be defined
as [1]

vs = μ (I − nn) · ∇c|r=a, (2)
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where n is the unit vector normal to the particle surface, I
is the identity tensor, and c is the solute concentration. Note,
in (2) the location of r = a corresponds strictly to the outer
edge of the interfacial layer between the solute and the Janus
particle. This can be taken as an effective boundary condition
at the particle surface in the thin interfacial layer limit. For
hard-sphere repulsion, μ < 0, implying flow from high to low
solute concentrations.

As mentioned previously, Golestanian et al. [12] utilized
a sum of Legendre polynomials to describe the piecewise
nature of the surface reactivity of a spherical Janus particle,
α = ∑∞

l=0 αlPl(cos θ ′) [12]. We simplify this by using the first
Legendre polynomial in the sequence, such that the surface
reactivity equals α cos(θ ′). This provides a continuously vary-
ing reactivity with generation of solute for 0 < θ ′ < π/2 and
consumption for π/2 < θ ′ < π , which yields a concentration
disturbance that varies as 1/r2 at Pe = 0, characteristic of a
diffusive dipole, where r is the distance from the center of
the colloid. Note that this is also the long-range concentration
decay of a true Janus particle with consuming and generating
hemispheres. If the symmetry axis of the particle lies in the
plane of shear, the reaction-diffusion boundary condition at
the particle surface (r = a) in the laboratory fixed frame reads

−Dn · ∇c = α sin(θ ) cos(φ − ψ), (3)

where ψ is the angle of the symmetry axis, or director, to the
flow direction (Fig. 1). Equation (3) specifies that the diffusive
concentration flux at the surface of the particle is equal to
the flux due to reaction, as defined by the surface reactivity.
The application of (2) and (3) as effective boundary conditions
at the outer edge of the interfacial layer is valid provided
Pe is not large [22]. At Pe = 0 (no advection), the particle
translates at a velocity U0 = (αμ/3D)d̂, where the director
d̂ = cos ψex + sin ψey .

The solute concentration around the particle obeys the
advection-diffusion equation

∂c

∂t
+ u · ∇c = D∇2c. (4)

At large distances, c tends to the uniform background
concentration c∞. The value of c∞ plays no dynamical role in
what follows, hence we define a concentration disturbance
C = c − c∞. The disturbance is normalized to αa/D, the
characteristic concentration scale due to the balance between
surface reaction and bulk diffusion. The flow velocity u
is nondimensionalized by the speed of imposed shear, γ̇ a.
Distance is nondimensionalized by the colloid radius, a. The
characteristic time for the evolution of the solute concentration
due to the phoretic motion of the Janus particle is the time
taken for the Janus particle to travel a full body length, since
at that point it will be clear of its self-imposed concentration
gradient. Hence time t is nondimensionalized by a/U0, where
U0 = αμ/D. This yields the nondimensionalized advection-
diffusion equation,

Petr
∂C̄

∂t̄
+ Peshū · ∇̄C̄ = ∇̄2C̄, (5)

where for any dimensional variable χ , χ̄ is its dimensionless
counterpart. In (5), Petr is the Peclet number associated with
the translation of the sphere, Petr = U0a/D, and Pesh is the

Peclet number associated with the shear flow, Pesh = γ̇ a2/D.
Given that Petr is typically small, transient changes in the
concentration gradient due to the translation of the Janus
particle can be neglected, and the velocity field is due solely
to the imposed shear flow, yielding the steady-state advection-
diffusion equation:

Peshū · ∇̄C̄ = ∇̄2C̄, (6)

where the fluid velocity vector

ū = ūrer + ūθeθ + ūφeφ, (7)

where er , eθ , and eφ are the radial, polar, and azimuthal unit
vectors, respectively, in the laboratory frame, and the velocity
components are [2]

ūr =
(

− 1

2r̄2
+ r̄

2

)
sin 2φ sin2 θ,

ūθ =
(

− 1

2r̄4
+ r̄

2

)
sin 2φ cos θ sin θ, (8)

ūφ = − r̄

2
sin θ +

(
− 1

2r̄4
+ r̄

2

)
cos 2φ sin θ.

Henceforth, Pesh shall be referred to as Pe.
From the solution of (6), our aim is to determine the

rectilinear velocity of the particle, U, as well as the angular
velocity of the particle, �, induced by the self-generated solute
concentration gradient. We define the dimensionless velocities
Ū = U/U0 and �̄ = �a/U0. These quantities can be found as
quadratures of the surface slip velocity [31],

Ū = − 1

4π

∫
S

v̄sdS and �̄ = − 3

8π

∫
S

v̄s × n dS, (9)

where v̄s = (I − nn) · ∇C̄|r̄=1.
In this paper, we focus on excluded-volume interactions

to provide a concrete physical interpretation for the effect of
ambient shear on self-diffusiophoresis. However, it should be
noted that the thin-interfacial-layer formalism utilized here is
valid for an arbitrary short-range interaction potential (�) be-
tween the solute and Janus particle, with the (dimensional) mo-
bility given by μ = (kBT /η)

∫ ∞
0 l[1 − e−�(l)/kBT ]dl, where

the integral is across the interfacial layer, and l is a local
coordinate normal to the particle surface [1,22].

III. MATCHED ASYMPTOTIC EXPANSIONS

The steady advection-diffusion equation in linear flows
is singular at small Pe [2,32]. The solution domain can be
divided into two regions: an inner region, r̄ ∼ O(1), where
diffusion dominates advection, and an outer region, r̄ � 1,
where diffusion and advection are balanced. More precisely,
the balance occurs at r̄ ∼ O(Pe−1/2), hence we define an outer
radial coordinate ρ̄ = r̄ Pe1/2, where ρ̄ ∼ O(1) as Pe → 0. We
define the inner region solute concentration as C̄ and the outer
region solute concentration as C̄∗. The solute concentrations
in the two regions are then matched in a domain of overlap.
We pose expansions of the solute concentration in the inner
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and outer regions as

C̄ = f0(Pe)C̄0 + f1(Pe)C̄1 + f2(Pe)C̄2 + · · · , (10)

C̄∗ = F0(Pe)C̄∗
0 + F1(Pe)C̄∗

1 + F2(Pe)C̄∗
2 + · · · , (11)

respectively, where fn+1/fn → 0 as Pe → 0 and Fn+1/Fn →
0 as Pe → 0.

For the first term of the inner expansion, f0(Pe) = 1, since
the leading contribution to C̄ is O(Pe0) from the reaction-
diffusion boundary condition (3). Thus, inserting (10) into (6)
yields ∇̄2C̄0 = 0, demonstrating that the solute concentration
evolves solely via diffusion at Pe = 0. The solution is

C̄0 =
∞∑
l=0

l∑
m=0

(Alr̄
l + Blr̄

−(l+1))(Cm cos mφ + Dm sin mφ)

×P m
l (cos θ ), (12)

where P m
l (cos θ ) is an associated Legendre polynomial of

degree l and order m. The solution must decay as r̄ → ∞
and obeys the reaction-diffusion condition (3) at r̄ = 1. This

yields

C̄0 = 1

2r̄2
(cos ψ cos φ + sin ψ sin φ) sin θ. (13)

The 1/r̄2 decay shows that the disturbance of the inner solute
concentration is that of a diffusive dipole at Pe = 0. Note that
the same long-range concentration decay would be found for a
particle with distinct consuming and generating hemispheres.
Hence, our simplified model captures, albeit crudely, the
essential features of a true Janus particle.

Writing C̄0 in terms of the outer coordinate, ρ̄, we find
C̄0 ∼ Pe/ρ̄2. Thus, the first term of the outer expansion is
O(Pe), F0(Pe) = Pe. Hence, we assert that the second-order
term of the inner expansion is O(Pe), f1(Pe) = Pe. From (6)
and (10), the O(Pe) inner concentration, C̄1, satisfies

∇2C̄1 = ū · ∇̄C̄0. (14)

The right-hand side represents the advection of the O(1) inner
concentration, C̄0, by the shear flow. Substituting (13) and (7)
into (14) yields

∇2C̄1 =
{

sin φ cos ψ

[
sin θ

(
− 1

8r̄2
− 5

8r̄5
+ 1

2r̄7

)
+ sin θ cos2 θ

(
− 3

8r̄2
+ 5

8r̄5
− 1

4r̄7

)]

+ sin 3φ cos ψ

[
sin θ

(
3

8r̄2
− 5

8r̄5
+ 1

4r̄7

)
+ sin θ cos2 θ

(
− 3

8r̄2
+ 5

8r̄5
− 1

4r̄7

)]

+ cos φ sin ψ

[
sin θ

(
− 1

8r̄2
− 5

8r̄5
+ 1

2r̄7

)
+ sin θ cos2 θ

(
− 3

8r̄2
+ 5

8r̄5
− 1

4r̄7

)]

+ cos 3φ sin ψ

[
sin θ

(
− 3

8r̄2
+ 5

8r̄5
− 1

4r̄7

)
+ sin θ cos2 θ

(
3

8r̄2
− 5

8r̄5
+ 1

4r̄7

)]}
. (15)

The particular solution to (15) is

C̄1,p =
(

cos ψ

{
sin φ

[
P 1

1 (cos θ )

(
− 1

10
+ 1

8r̄3
− 1

40r̄5

)
+ P 1

3 (cos θ )

(
− 1

240
+ 1

72r̄3
+ 1

240r̄5

)]

+ sin 3φ P 3
3 (cos θ )

(
1

480
+ 1

144r̄3
+ 1

480r̄5

)}

+ sin ψ

{
cos φ

[
P 1

1 (cos θ )

(
− 1

10
+ 1

8r̄3
− 1

40r̄5

)
+ P 1

3 (cos θ )

(
− 1

240
+ 1

72r̄3
+ 1

240r̄5

)]

+ sin 3φ P 3
3 (cos θ )

(
− 1

480
+ 1

144r̄3
+ 1

480r̄5

) })
. (16)

The complementary solution to (15) is

C̄1,c =
∞∑
l=0

l∑
m=0

(Alr̄
l + Blr̄

−(l+1)) (Cm cos mφ + Dm sin mφ) P m
l (cos θ ). (17)

To determine the constants Al , Bl , Cm, and Dm, the inner and matching boundary conditions must be applied. The latter requires
that Al = 0 for l > 0 so that terms greater than O(Pe) are not generated in the outer region. By considering the inner boundary
condition at O(Pe), which from (3) reads n · ∇C̄1 = 0, the overall O(Pe) inner solution can be determined as

C̄1 =
(

cos ψ

{
sin φ

[
P 1

1 (cos θ )

(
− 1

10
− 1

8r̄2
+ 1

8r̄3
− 1

40r̄5

)
+ P 1

3 (cos θ )

(
− 1

240
+ 1

72r̄3
− 1

64r̄4
+ 1

240r̄5

)]

+ sin 3φ P 3
3 (cos θ )

(
1

480
+ 1

144r̄3
+ 1

128r̄4
+ 1

480r̄5

) }
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+ sin ψ

{
cos φ

[
P 1

1 (cos θ )

(
− 1

10
− 1

8r̄2
+ 1

8r̄3
− 1

40r̄5

)
+ P 1

3 (cos θ )

(
− 1

240
+ 1

72r̄3
− 1

64r̄4
+ 1

240r̄5

)]

+ sin 3φ P 3
3 (cos θ )

(
− 1

480
+ 1

144r̄3
− 1

128r̄4
+ 1

480r̄5

) })
. (18)

The inner limit (ρ̄ → 0) of the first outer concentration term, C̄∗
0 , matches the outer limit (r̄ → ∞) of C̄0 + PeC̄1, where

C̄0 + PeC̄1 = Pe

(
cos ψ

{
− sin φ

[(
1

2ρ̄2
+ 1

10

)
P 1

1 (cos θ ) + 1

240
P 1

3 (cos θ )

]
+ 1

480
sin 3φ P 3

3 (cos θ )

}

+ sin ψ

{
− sin φ

[(
1

2ρ̄2
+ 1

10

)
P 1

1 (cos θ ) + 1

240
P 1

3 (cos θ )

]
− 1

480
sin 3φ P 3

3 (cos θ )

})
(19)

to O(Pe) in terms of the outer coordinate ρ̄. Inserting (11) into
(6), and using (7) and (8), the governing equation for C̄∗

0 is

∇̄2
ρ̄ C̄

∗
0 = ŷ

∂C̄∗
0

∂x̂
, (20)

where x̂ = Pe1/2x̄ and ŷ = Pe1/2ȳ, respectively, and ∇̄ρ̄ is the
gradient operator in terms of the outer radial coordinate ρ̄. The
above equation represents the balance of solute diffusion and
advection by ambient shear. The disturbance to the ambient
shear flow due to the presence of the particle appears at higher
orders in the outer region. To leading order, the Janus particle
acts as a concentration dipole at the scale of the outer region.

The solution for a sustained concentration monopole in shear
flow was found by Elrick as [33]

CE = 1

2
√

π

∫ ∞

0

dS

S3/2
(
1 + 1

12S2
)1/2

× exp

[
−

( (
x̂ − 1

2 ŷS
)2

4S
(
1 + 1

12S2
) + ŷ2 + ẑ2

4S

)]
, (21)

where ẑ = Pe1/2z̄. Following Leal [2], the dipole solution can
be constructed as C̄∗

0 = 2Ad̂ · ∇CE , where 2A is the dipole
strength, which will be found via matching. Hence, using d̂ =
cos ψex + sin ψey , we find

C̄∗
0 = 2A

∫ ∞

0

[
cos ψ

∂

∂x̂
+ sin ψ

∂

∂ŷ

] ⎧⎨
⎩ 1(

1 + 1
12S2

) 1
2 S

3
2

exp

[
−

( (
x̂ − 1

2 ŷS
)2

4S
(
1 + 1

12S2
) + ŷ2 + ẑ2

4S

)]
dS

⎫⎬
⎭ . (22)

To match (6) to (19), we need the limit of (22) as ρ̄ → 0. It can be shown that (see the Appendix)

C̄∗
0 = A

{
4π

ρ̄2
P 1

1 (cos θ ) (sin ψ sin φ + cos ψ cos φ) − 4
√

π

5
P 1

1 (cos θ ) (sin ψ cos φ + cos ψ sin φ)

+
√

π

30
P 1

3 (cos θ ) (sin ψ cos φ + cos ψ sin φ) +
√

π

60
P 3

3 (cos θ ) (sin ψ cos 3φ + cos ψ sin 3φ)

+ ρ̄P 1
1 (cos θ ) (−0.671 sin ψ sin φ + 0.683 sin ψ cos φ + 0.683 cos ψ sin φ + 0.479 cos ψ cos φ )

}
+ O(ρ̄2) (23)

as ρ̄ → 0, where the numerical coefficients are quoted to three decimal places.
Matching (23) to (19) yields A = 1/(8

√
π ). The terms of O(ρ̄) in (23) match to the next (third) term in the inner region, which

is therefore O(Pe3/2) since Peρ̄ = Pe3/2r̄ . Thus f2 = Pe3/2. The third term in the inner region, C̄2, satisfies ∇̄2C̄2 = 0. At this
order, the inner solute concentration evolves solely due to diffusion as there is no term of the inner region solute concentration
of O(Pe1/2) to balance diffusion with advection. The solution for C̄2 is simply

C̄2 = 1

8
√

π

(
r̄ + 1

2r̄2

)
(0.683 sin ψ cos φ + 0.479 cos ψ cos φ − 0.671 sin ψ sin φ + 0.683 cos ψ sin φ), (24)

where the numerical coefficients in (24) are again quoted to three decimal places. Thus, the inner concentration through O(Pe3/2)
equals

C̄ = 1

2r2
(cos ψ cos φ + sin ψ sin φ) P 1

1 (cos θ )

+ Pe

(
cos ψ

{
sin φ

[
P 1

1 (cos θ )

(
− 1

10
− 1

8r̄2
+ 1

8r̄3
− 1

40r̄5

)
+ P 1

3 (cos θ )

(
− 1

240
+ 1

72r̄3
− 1

64r̄4
+ 1

240r̄5

)]

+ sin 3φ P 3
3 (cos θ )

(
1

480
+ 1

144r̄3
+ 1

128r̄4
+ 1

480r̄5

)}
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FIG. 2. (Color online) Solute concentration around a self-diffusiophoretic particle aligned along the flow direction of the imposed shear,
ψ = 0. (a) The solute concentration at Pe = 0 is dependent solely on solute diffusion and is axially symmetric. This is sketched in the top
image of (a), and the bottom image of (a) plots the solute concentration in the shear plane for Pe = 0 from (13). The color scheme indicates
increasing concentration in green (light gray) and decreasing concentration in blue (dark gray). As a result of the axial symmetry, the particle
moves solely along its symmetry axis. (b) In a shear flow (Pe �= 0), the axial symmetry is broken as the shear flow aids and restricts solute
flux on the bottom and top halves of the particle, respectively. The resulting top-bottom asymmetry results in particle migration across fluid
streamlines, as depicted in the top image of (b). The bottom image of (b) plots the solute concentration at Pe = 0.5 from (25): the broken
symmetry is clearly evident.

+ sin ψ

{
cos φ

[
P 1

1 (cos θ )

(
− 1

10
− 1

8r̄2
+ 1

8r̄3
− 1

40r̄5

)
+ P 1

3 (cos θ )

(
− 1

240
+ 1

72r̄3
− 1

64r̄4
+ 1

240r̄5

)]

+ cos 3φ P 3
3 (cos θ )

(
− 1

480
− 1

144r̄3
− 1

128r̄4
− 1

480r̄5

)})

+ Pe3/2

8
√

π
P 1

1 (cos θ )

(
r̄ + 1

2r̄2

)
(cos φ (0.683 sin ψ + 0.479 cos ψ) + sin φ (−0.671 sin ψ + 0.683 cos ψ)) + O(Pe2). (25)

The inner concentration (25) will now be used to compute the
phoretic particle velocity through O(Pe3/2).

IV. PARTICLE MOTION AND TRAJECTORY ANALYSIS

Substituting (25) into (9) and performing the required
angular integration, we find that the particle velocity Ū =
Ūxex + Ūyey + Ūzez, where

Ūx = 1

3
cos ψ − Pe

12
sin ψ+Pe

3
2 (0.034 cos ψ + 0.048 sin ψ),

Ūy = 1

3
sin ψ − Pe

12
cos ψ+Pe

3
2 (0.048 cos ψ − 0.046 sin ψ),

Ūz = 0. (26)

Equation (26) shows that solute advection due to ambient shear
(Pe �= 0) fundamentally alters the motion of the self-propelled
particle from its motion in quiescent flow (Pe = 0). Note that
Ūz = 0; since the particle symmetry axis lies in the plane of
shear, there is no component of particle velocity along the
vorticity axis of the ambient shear. Consider, for example,
the case ψ = 0 in which the symmetry axis is aligned with the
flow. From (26),

Ūx(ψ = 0) = 1

3
+ 0.034 Pe

3
2 ,

(27)

Ūy(ψ = 0) = −Pe

12
+ 0.048 Pe

3
2 .
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FIG. 3. (Color online) Solute concentration around a self-diffusiophoretic particle aligned along the gradient direction of the imposed shear,
ψ = π/2. (a) The solute concentration at Pe = 0 is dependent solely on diffusion and is therefore axially symmetric, leading to particle motion
solely in the velocity gradient y direction. This is sketched in the top image of (a), and the bottom image of (a) plots the solute concentration
in the shear plane for Pe = 0 (color scheme is the same as Fig. 2). (b) In a shear flow (Pe �= 0), the left-right symmetry of the concentration
field is broken, inducing an O(Pe) phoretic velocity contribution along the flow x direction, as depicted in the top figure of (b). The asymmetric
concentration is plotted in the bottom figure of (b) for Pe = 0.5 from (25).

The velocity of the particle is entirely along its symmetry axis
in the absence of advection (Pe = 0): Ūx = 1/3 and Ūy = 0.
Recall that the particle velocity has been normalized by αμ/D,
which is negative for hard-sphere solute-particle interactions.
Hence, Ūx = 1/3 corresponds to particle translation in the
negative ex direction: the particle propels down the concentra-
tion gradient with the consuming face forward. With advection
(Pe �= 0) there is an O(Pe) velocity contribution perpendicular
to the symmetry axis, resulting in cross-streamline migration
in the y direction. Physically, the shear flow breaks the axial
symmetry of the solute concentration around the colloid. With
the Janus particle oriented at ψ = 0 (Fig. 2), the diffusive flux
of the solute on the top hemisphere is resisted by the shear
flow, effectively increasing the concentration gradient and slip
flow from consuming to generating sections. On the bottom
hemisphere, the diffusive flux of the solute is aided by the shear
flow, resulting in a weaker concentration gradient and hence
slip flow. The resulting top-bottom asymmetry (y direction)
in the concentration gradient induces a net O(Pe) downward
diffusio-osmotic thrust; as the colloid is force-free it drifts
to increasing y. At O(Pe3/2), there is an enhancement in the
velocity in the flow direction and reduction in cross-streamline
drift.

One might suspect that the predicted cross-streamline
migration invalidates the assumption of a steady-state solute

concentration distribution (6). Indeed, as the particle traverses
streamlines of the imposed shear, it encounters a spatially
varying flow, which would entail a transient readjustment of
solute concentration. However, the time scale to establish
a steady concentration profile is set by the diffusion time
a2/D, whereas the time scale for cross-streamline migration
is a/(U0Pesh) (where Pesh = γ̇ a2/D is the shear flow Peclet
number): their ratio (a2/D)/[a/(U0Pesh)] = PetrPesh, where
Petr = U0a/D is the Peclet number due to particle translation.
Hence, the assumption of a steady solute concentration dur-
ing cross-streamline migration requires PetrPesh � 1, which,
since Petr � 1 under typical conditions, is a less stringent
requirement than the assumed limit Pesh � 1. Thus, it is valid
to assume a steady solute concentration profile.

Another important case is ψ = π/2, where the particle
symmetry axis is perpendicular to the flow. Here, the velocity
of the particle is

Ūx(ψ = π/2) = −Pe

12
+ 0.048 Pe

3
2 ,

(28)

Ūy(ψ = π/2) = 1

3
− 0.046 Pe

3
2 .

At Pe = 0, the particle moves solely in the flow gradient
direction, Ūy = 1/3. However, the left-right symmetry of the
concentration gradient is broken at Pe �= 0, resulting in an
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FIG. 4. Planar trajectory of a self-diffusiophoretic particle in a shear flow: (a) the particle is initially aligned with the shear flow (ψ0 = 0);
and (b) the particle is aligned with the flow gradient (ψ0 = π/2). Trajectories are plotted for Pe = 0 and 0.5; in both cases, the trajectories are
elliptical; however, the area of the orbit decreases at finite Pe. The arrows depict the initial translation direction of the particle.

O(Pe) motion in the flow direction (ex), as seen in Fig. 3.
At O(Pe3/2), there is a reduction in the velocity in the flow
direction as well as a reduction in the velocity in the flow
gradient direction.

Substituting (25) into (9), we also find that �̄ = 0, which
means that the sphere experiences no rotation due to the
diffusio-osmotic slip flow. Thus, the torque-free colloid will
simply rotate with the ambient shear, at angular velocity

(γ̇ /2)ez. Thus, the director remains in the shear plane, and its
angle to the flow direction evolves as ψ(t) = ψ0 − γ̇ t

2 , where
ψ0 is the initial orientation. The total velocity of the particle,
Utot say, is thus the sum of phoretic particle velocity (26) and
the ambient flow at the particle center, γ̇ yex . Normalizing Utot

by the characteristic shear speed γ̇ a yields the dimensionless
total time-dependent particle velocity, Ūtot(t̃) = Ūtot,x(t̃)ex +
Ūtot,y(t̄)ey , where

Ūx,tot(t̃) = ȳ + U0

γ̇ a

{
1

3
cos

(
φ0 − t̃

2

)
− Pe

12
sin

(
φ0 − t̃

2

)
+ Pe3/2

[
0.034 cos

(
φ0 − t̃

2

)
+ 0.048 sin

(
φ0 − t̃

2

)]}
,

Ūy,tot(t̃) = U0

γ̇ a

{
1

3
sin

(
φ0 − t̃

2

)
− Pe

12
cos

(
φ0 − t̃

2

)
+ Pe3/2

[
0.048 cos

(
φ0 − t̃

2

)
− 0.046 sin

(
φ0 − t̃

2

)]}
, (29)

where t̃ = γ̇ t . From integration of (29), the particle trajectory in the x-y plane is given by r̄(t̃) = x̄(t̃)ex + ȳ(t̃)ey , where

x̄(t̃) = U0

γ a

{
−2 sin

(
ψ0 − t̃

2

)
+ Pe

6
cos

(
ψ0 − t̃

2

)
− Pe3/2

[
−0.122 sin

(
ψ0 − t̃

2

)
+ 0.096 cos

(
ψ0 − t̃

2

)]}
, (30)

ȳ(t̃) = U0

γ a

{
2

3
cos

(
ψ0 − t̃

2

)
+ Pe

6
sin

(
ψ0 − t̃

2

)
− Pe3/2

[
0.096 sin

(
ψ0 − t̃

2

)
+ 0.095 cos

(
ψ0 − t̃

2

)]}
, (31)

where we have assumed the particle starts at the center of
flow, (x̄,ȳ) = (0,0) at t̃ = 0. The particle trajectory is elliptical
(Fig. 4), with a major axis along ex of a = U0/γ̇ a(2 −
0.012 Pe1/2 + 0.003 Pe − 0.008 Pe3/2) + O(Pe2) and a minor
axis along ey of b = U0/γ̇ a(2/3 − 0.095 Pe3/2) + O(Pe2).
It is clear that Pe influences the trajectory of the particle
by decreasing its range of motion (that is, the area of
the ellipse), particularly in the flow-gradient y direction.
This is because of the O(Pe) concentration distribution,
which decreases the particle phoretic velocity, thereby re-
stricting the particle to travel a shorter distance before
it rotates in the shear flow. Additionally, the trajectory
is dependent on the initial orientation of the particle in
shear flow. Specifically, the initial orientation determines in
which region of the orbit the effect of advection is most
prominently felt. For a particle initially aligned with the
flow direction, ψ0 = 0, the top of its orbit is displaced at
finite Pe. For an initial alignment along the flow-gradient

direction, ψ0 = π/2, the bottom of the orbit is displaced at
finite Pe.

V. CONCLUSIONS

We have investigated the role of ambient fluid flows
on the dynamics of an active self-diffusiophoretic colloid.
Specifically, our calculations focused on a model spherical
Janus particle with a continuous variation in surface activity
for solute generation or consumption, placed in a steady
simple shear flow. The flow can distort the self-generated
solute concentration gradient through advection: the extent
of distortion is characterized by a Peclet number, Pe. We
computed the distorted concentration and the resulting impact
on the particle motion at small Pe using matched asymptotic
expansions. Advection of the solute fundamentally alters the
particle dynamics: for example, there is an O(Pe) cross-
streamline migration and an O(Pe3/2) reduction in the velocity
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of the particle along its symmetry axis. While our calculations
have employed a simple model for surface activity, it is
expected that the general conclusions, e.g., O(Pe) cross-
streamline migration, hold for more complicated, or realistic,
surface reaction distributions and kinetics. The predicted cross-
streamline migration is relevant to the purported application
of self-propelled particles in blood vessels or microfluidic
channels, as it suggests that a suspension of such particles
would attain a nonuniform concentration distribution along the
cross section of a channel. We have also shown that the planar
trajectory of a self-diffusiophoretic particle in shear flow is
of elliptical shape, and that the area of the ellipse contracts
with increasing Pe. The observation of such an elliptical orbit,
whose area decreases with increasing Pe, would provide an
experimental test of our calculations. In this regard, recall that
an inert particle would simply rotate with angular velocity
of the ambient shear without traversing fluid streamlines.
Verification of our findings could also come from comparison
to molecular simulations: for example, Sharifi-Mood et al.
[34] recently performed molecular-dynamics simulations of
diffusiophoresis in an external solute gradient that showed
good agreement with continuum-level calculations.

We have considered only two-dimensional dynamics,
wherein the direction of self-propulsion is in the plane of
shear. It would be interesting to quantify the particle motion
in three dimensions: for example, it is expected on symmetry
grounds that a particle translating in a direction orthogonal to
the shear flow would experience an O(Pe3/2) modification in its
velocity of self-propulsion due to solute advection. One could
also consider particle motion in two-dimensional mixed linear
flows, ranging from pure rotation to planar extension. A further
extension of our work is to consider self-diffusiophoresis
in Poiseuille flow; here, the varying velocity gradient of
the ambient flow would lead to a particle trajectory that is
more complicated than the elliptical orbit found in simple
shear. A complete analysis of this problem (and also that
of self-diffusiophoresis in a Couette flow) must also account
for interactions between the Janus particle and the confining
boundaries: both solvent-mediated hydrodynamic interactions
between the particle and the boundaries, and the effect of
the boundaries on the solute concentration distribution. An
important question is whether the particle is driven to the center
of the flow, to the walls, or attains an intermediate equilibrium
position.

Finally, we have neglected the influence of Brownian
motion on the particle dynamics, which is a reasonable
assumption for relatively large colloids (typically greater than
a few microns in diameter). Nonetheless, consideration of
the impact of Brownian motion is an interesting question.
Recently, Sandoval et al. [23] derived (integral) expressions
for the mean-square displacement (MSD) tensor of an active
particle undergoing time-dependent self-propulsion in a steady
two-dimensional linear flow. (They explicitly evaluated the
MSD tensor for an active colloid undergoing steady self-
propulsion, demonstrating that the MSD thereof can be much
greater than an inert particle.) A three-dimensional extension
of our calculations would provide the necessary expressions
for the time-dependent phoretic particle velocity at small
Pe, which could be used in the formalism of Sandoval
et al. [23] to quantify the impact of Brownian motion on

self-diffusiophoresis in a linear flow. We leave this task to
future work.

APPENDIX

We write Eq. (22) as C̄∗
0 = 2A(C̄∗

0,x + C̄∗
0,y), where [2]

C̄∗
0,x = 2A cos ψ

∫ ∞

0

∂

∂x̂

{
1

S3/2
(
1 + 1

12S2
)1/2

× exp

[
−

( (
x̂ − 1

2 ŷS
)2

4S
(
1 + 1

12S2
) + ŷ2 + ẑ2

4S

)]}
dS,

(A1)

which can be written in spherical coordinates as

C̄∗
0,x = −A cos ψ

∫ ∞

0

ρ̄ sin θ
(
cos φ − 1

2 sin φS
)

S5/2
(
1 + 1

12S2
)3/2

× exp

[
−ρ̄2

(
1 + aS + bS2

4S
(
1 + 1

12S2
))]

dS, (A2)

where

a = − 1
2 sin2 θ sin φ cos φ, (A3)

b = 1
3 sin2 θ sin2 φ + 1

12 cos2 θ. (A4)

We seek the limit of (A2) as ρ̄ → 0. The integral can be split
into two regions: an inner region S ∼ O(ρ̄2) and an outer
region S ∼ O(1). In the inner region, we let S = ρ̄2u, with
u ∼ O(1) as ρ̄ → 0. We mark the boundary between the two
regions as δ, where ρ̄2 � δ � 1; thus,

C̄∗
0,x = −A cos ψ

{∫ δ/ρ̄2

0

du ρ̄ sin θ
(

cos φ − 1
2 sin φρ̄2u

)
ρ̄5u5/2

(
1 + ρ̄4

12 u2
)3/2

× exp

[
−

(
1 + au + bu2

4u
(
1 + ρ̄4

12 u2
)
)]

+
∫ ∞

δ

dS ρ̄ sin θ
(

cos φ − 1
2 sin φS

)
S5/2

(
1 + 1

12S2
)3/2

× exp

[
−ρ̄2

(
1 + aS + bS2

4S
(
1 + 1

12S2
))]}

. (A5)

In the limit ρ̄ → 0, the first (inner) integral in (A5) equals

−A cos ψ sin θ

(
−√

π
(aρ̄2 − 4)

ρ̄2
cos φ − √

π sin φ

+ ρ̄ sin φ

δ1/2
− ρ̄ cos φ

δ3/2

)
+ · · · , (A6)
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which can be rewritten as

−A cos ψ sin θ

(
−√

π sin φ − aρ̄2 − 4

ρ̄2

√
π cos φ +

∫ ∞

δ

ρ̄
(− cos φ + 1

2S sin φ
)

2S5/2
dS

)
+ · · · . (A7)

The leading contribution of the second (outer) integral in (A5) is found by setting ρ̄ = 0 in the exponential term of the integrand.
Applying this simplification and substituting (A7) into (A5) yields

C̄∗
0,x = −A cos ψ sin θ

{
−√

π sin φ − aρ̄2 − 4

ρ̄2

√
π cos φ +

∫ ∞

δ

dS

(
ρ̄
( − cos φ + 1

2S sin φ
)

2S5/2
+ ρ̄

(
cos φ − 1

2 sin φS
)

S5/2
(
1 + 1

12S2
)3/2

)}
.

(A8)

At the present order of approximation, the lower limit of the integral in the above can be taken as zero, yielding

C̄∗
0,x = −A cos ψ sin θ

{
−√

π sin φ − aρ̄2 − 4

ρ̄2

√
π cos φ + ρ̄

∫ ∞

0

((
cos φ − 1

2S sin φ
)[

1 − (
1 + 1

12S2
)3/2]

S5/2
(
1 + 1

12S2
)3/2

)
dS

}
. (A9)

Upon numerical evaluation of the integral, we find

C̄∗
0,x = −A cos ψ

(
4
√

π

ρ̄2
sin θ cos φ +

√
π

2
sin3 θ sin φ cos2 φ − √

π sin θ sin φ − 0.479ρ̄ sin θ cos φ + 0.683ρ̄ sin θ sin φ

)
,

(A10)

with numerical coefficients reported to three decimal places. This can be written in Cartesian coordinates as

C̄∗
0,x = −A cos ψ

(
4
√

π

ρ̄3
x̂ +

√
π

2ρ̄3
x̂2ŷ −

√
π

ρ̄
ŷ − 0.479x̂ + 0.683ŷ

)
. (A11)

Following a similar method, C̄∗
0,y is found to be

C̄∗
0,y = A

2
sin ψ

{
2
√

π
x̂

ρ̄
− √

π
x̂ŷ2

ρ̄3
+ 4

√
π

x̂

ρ̄3
− 1.342ŷ − 1.366x̂

}
. (A12)

Combining (A11) and (A12) yields

C̄∗
0 = A

[
cos ψ

(
0.479x̂ − 0.683ŷ − 4

√
π

ρ̄2
x̂ −

√
π

2ρ̄3
x̂2ŷ +

√
π

ρ̄
ŷ

)

+ sin ψ

(
−0.683x̂ − 0.671ŷ + 2

√
π

ρ̄3
x̂ −

√
π

2ρ̄3
x̂ŷ2 +

√
π

ρ̄
x̂

)]
. (A13)

Returning to spherical coordinates delivers Eq. (23) in the main text.
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