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Chaotic mixing in effective compressible flows
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We study numerically joint mixing of salt and colloids by chaotic advection and how salt inhomogeneities
accelerate or delay colloid mixing by inducing a velocity drift Vdp between colloids and fluid particles as proposed
in recent experiments [J. Deseigne et al., Soft Matter 10, 4795 (2014)]. We demonstrate that because the drift
velocity is no longer divergence free, small variations to the total velocity field drastically affect the evolution
of colloid variance σ 2 = 〈C2〉 − 〈C〉2. A consequence is that mixing strongly depends on the mutual coherence
between colloid and salt concentration fields, the short time evolution of scalar variance being governed by a new
variance production term P = −〈C2∇ · Vdp〉/2 when scalar gradients are not developed yet so that dissipation is
weak. Depending on initial conditions, mixing is then delayed or enhanced, and it is possible to find examples for
which the two regimes (fast mixing followed by slow mixing) are observed consecutively when the variance source
term reverses its sign. This is indeed the case for localized patches modeled as Gaussian concentration profiles.
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I. INTRODUCTION

Mixing of a scalar field C by laminar flows with chaotic
trajectories in a bounded or periodic domain is often char-
acterized by the evolution of its variance 〈C2〉, a quantity
known to decrease with time when the flow is incompressible
and no source of scalar is present [1]. The case of mixing
in compressible flows has received less attention: Vergassola
and Avellaneda showed that a compressible flow can modify
scalar transport either in stationary cellular flows or random
delta correlated flows [2]; in the context of reactive flows,
compressibility was proved to have a strong influence on chem-
ical reactions or population growth [3,4] because it controls
the local density of fluid particles. Surprisingly, if most flows
encountered in nature are incompressible, advection diffusion
by an effective compressible flow field arises naturally when
mixing large molecules, colloids, or living cells in moderate
Reynolds number flows. Even in the case of flow tracers,
the presence of background inhomogeneities will result in
a drift velocity Vdrift between the fluid flow V(r,t) and the
transported species. This situation is encountered in a large
variety of situations: thermophoresis (Soret effect) leads to a
drift velocity proportional to the temperature gradient [5,6],
diffusiophoresis is responsible for focusing and defocusing
of colloids due to salt gradients [7,8], and chemotaxis allows
living cells to move with a drift velocity linked to the local
gradient of food [9]. In these three cases, the drift term is
generally not divergence free because the inhomogeneous field
does not satisfy the Laplace equation.

A recent experimental study showed how chaotic mixing
of colloids is tuned by diffusiophoresis [10]. In this paper we
demonstrate by means of numerical simulations that it is the
compressible nature of the drift velocity which is responsible
for this tuning and that it may produce unexpected effects such
as an increase of scalar variance at small times.
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II. EQUATION AND FLOW FIELD

We study the mixing of colloids and salt with the respective
concentrations C(r,t) and S(r,t) under the action of the
velocity V(r,t). In the presence of salt gradients, electrokinetic
effects result in a drift velocity Vdp = α∇ log S between the
colloids and the fluid motion, with α being a constant with
the dimension of a diffusion coefficient whose magnitude and
sign depend on the precise nature of the salt and colloids [7,8].
Starting from a situation with initial concentration profiles
C0(r) and S0(r), the time evolution of the concentrations is
then given by the coupled advection diffusion equations:

∂S

∂t
+ ∇ · SV = Ds∇2S, (1)

∂C

∂t
+ ∇ · C(V + Vdp) = Dc∇2C, (2)

Vdp = α∇ log S, (3)

where Ds and Dc are, respectively, the diffusion coefficients
of the salt and colloids. In this situation, salt is mixed by
the velocity field V independently of the colloids, while the
colloid concentration is also coupled to the salt concentration
through the drift velocity Vdp. In order to study the impact of
the salt gradients on colloid mixing, we restrict ourselves to
two-dimensional (2D) situations; we achieve chaotic mixing
using a time periodic velocity field, the so-called sine flow
that has been a standard tool for studies of chaos in spatially
smooth flows [1,11,12]. We recall it is T periodic with two
subcycles for which the velocity field is V(r,t) = (sin(y),0)
for nT � t < (n + 1/2)T and V(r,t) = (0, sin(x)) for (n +
1/2)T � t < (n + 1)T , which ensures the velocity field is
divergence free at any time. For given initial concentration
profiles C0(r) and S0(r), Eqs. (1) and (2) are solved with
periodic boundary conditions using a pseudospectral method
with a resolution of 5122 for a square box of length L = 2π .
We use an Adams-Bashford temporal scheme with order 2 and
dt = 0.002 to ensure the scalar gradient and Laplacian are
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FIG. 1. (Color online) (a) Colloid concentration field at t = 5T in the reference case (Dc = 10−4, Pe = 65 000) for an initial concentration
C0 = 1 + sin(x). (b) Salt concentration field at t = 5T for S0 = 1.01 + sin(x) (Ds = 10−2, Pes = 650) together with the corresponding
drift velocity field Vdp = α∇ log S with α = 0.001. (c) Corresponding time evolution of nondimensional maximum drift velocity,
max |Vdp|/ max |V|.

well resolved for diffusivities in the range Dc ∈ [10−4,10−2],
which corresponds to Péclet numbers in the range Pe =
max |V|L/Dc ∈ [0.065,6.5]104. For all simulations shown
here we set T = 0.8L/ max |V|; in this regime of nonglobal
chaos (see Poincaré sections in Figs. 3–10 of Ref. [13]),
as in many natural situations, one can distinguish between
thin structures developing due to stretching and folding and
poor mixing in regular regions which govern the long time
decay of scalar variance [1]. Figure 1(a) displays the colloid
concentration field obtained in the reference case Vdp = 0,
with Péclet number Pe = 65 000 and an initial profile C0(r) =
1 + sin(x), after five cycles of mixing.

When diffusiophoresis comes into play, the drift term Vdp =
α∇ log S depends on the instantaneous salt gradients. In order
to be consistent with experiments [8,10], we set α = 0.001
and Ds = 0.01 for all simulations, which corresponds to a
Péclet number Pes = 650 for the salt. We define the initial
salt concentration profile S0 = 1 + sin(x) + s, with s = 0.01
being an offset accounting for the unavoidable homogeneous
background concentration of ionic species (buffer solution).
As observed in experiments [10], one expects the drift term to
modify colloid mixing depending on whether the initial colloid
concentration field C0(x) is correlated, or anticorrelated, with
the initial salt concentration profile S0(x). For all Péclet
numbers we study the evolution of colloid concentration
variance 〈(C − 〈C〉)2〉 for two different initial profiles C0 =
1 ± sin(x) and compare the results to the reference case
α = 0. The drift velocity, which does not depend on C(r,t),
is displayed in Fig. 1(b) together with the corresponding salt
concentration field computed at t/T = 5. With the chosen
parameters, the modification of the total velocity field acting
on the colloids, V + Vdp, is never larger than 1%, as shown
in Fig. 1(c). However, we will demonstrate that this small
variation leads to a strong alteration of mixing because Vdp is
not divergence free [Fig. 1(b)].

III. MIXING TIME

In Fig. 2, we display the evolution of the mixing time
Tmix needed to decrease the initial colloid concentration
variance by a factor of 2, as a function of the Péclet number
Pe = max |V|L/Dc. As already observed in experiments [10],

when salt and the colloid are initially injected together
[salt-in configuration, C0(r) = 1 + sin x ∼ S0(r)], mixing is
approximately 15% slower than in the reference case α = 0.
On the contrary, when salt and colloids are injected separately
[salt-out configuration, C0(r) = 1 − sin x and S0(r) = 1.01 +
sin x], the mixing is nearly 20% faster. This result supports the
idea that the action of diffusiophoresis can be seen as a mod-
ification of colloid transport properties through an effective
diffusivity Deff corresponding to an effective Péclet number
Pe = max |V|L/Deff . Using the curves Tmix(Pe), well fitted by
a power law for the reference case (as usual for nonglobal
chaos), one would then find Peeff ∼ 1.5Pe and Peeff ∼ 0.5Pe
for the salt-in and salt-out configurations, respectively. This
means that a correction to the velocity field smaller than 1%
leads to a 50% change in the colloid effective diffusivity. This
result proved to be quite robust when performing the same
simulations with T = 1.6L/ max |V| (not shown here). In this

FIG. 2. (Color online) Mixing time Tmix/T as a function of the
Péclet number Pe = max |V|L/Dc as measured from time evolution
of the variance σ 2 = 〈C2〉 − 〈C〉2 with and without diffusiophore-
sis. For all cases S0 = 1.01 + sin x with Ds = 10−2 and Dc = ∈
[10−4,10−2]. Circles: reference case with no diffusiophoresis C0 =
1 + sin(x) and α = 0. Dashed line: power law fit with exponent
γ = 0.26. Squares: salt-in case C0 = 1 + sin x, α = 0.001. Dia-
monds: salt-out case C0 = 1 − sin(x), α = 0.001.
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FIG. 3. (Color online) Time evolution of nondimensional colloid
concentration variance σ 2(t)/σ 2(0) with σ 2(t) = 〈C2〉 − 〈C〉2 and
S0 = 1.01 + sin(x), Ds = 10−2, Dc = 10−4. Circles: reference case
with no diffusiophoresis C0 = 1 + sin x, α = 0. Squares: salt-in case
C0 = 1 + sin x, α = 0.001. Diamonds: salt-out case C0 = 1 − sin x,
α = 0.001.

regime of global chaos we did not observe any significant
difference concerning diffusiophoresis: if mixing is indeed
enhanced with Tmix varying linearly with log(Pe), we found for
all configurations (salt-in, salt-out) that T has a weak impact
on the measured effective Péclet numbers.

IV. COMPRESSIBLE EFFECTS

However, this mean field approach based on Tmix, if
interesting for interpreting the long time behavior, may not
catch the short time evolution of colloid variance when
concentration gradients are not generated yet, so that diffusion
is negligible. As displayed in Fig. 3, if one always observes
a decrease of scalar variance at small times in the salt-out
and reference cases, the salt-in case is more appealing: the
variance first increases for t/T � 2 before decreasing for
t/T � 2. This short-time increase is incompatible with an
effective diffusivity which would predict a variance decreasing
with rate d〈C2〉/dt = −2Deff〈(∇C)2〉, where 〈·〉 stands for
spatial averaging over one period of the flow. For a better
understanding of the colloid variance evolution, one may then
come back to Eq. (2) and derive an equation for the scalar
energy C2 valid for compressible flows. One obtains

1

2

∂C2

∂t
+ ∇ ·

[
(V + Vdp)

C2

2
− DcC∇C

]

= −Dc(∇C)2 − C2

2
∇ · Vdp.

This equation, although similar to the classical scalar energy
budget, contains an additional term proportional to the drift
velocity field compressibility ∇ · Vdp that does not vanish in
the present case. When averaging over one flow period, all
terms written as a divergence disappear, and one obtains a new
global scalar energy budget valid for compressible flows:

1

2

d〈C2〉
dt

= −Dc〈(∇C)2〉 −
〈
C2

2
∇ · Vdp

〉
. (4)

(a)

(b)

FIG. 4. (Color online) (a) Time evolution of colloid concen-
tration dissipation |εc| = Dc〈(∇C)2〉. Circles: reference case with
no diffusiophoresis. Squares: salt-in case. Diamonds: salt-out case.
(b) Corresponding time evolution of production term
P = −〈C2∇ · Vdp〉/2.

Because mean scalar concentration remains conserved
even in the case of compressible flows, this equation also
gives the evolution of scalar variance σ 2 = 〈C2〉 − 〈C〉2.
Therefore scalar variance in compressible flows results in the
competition between scalar dissipation εc = −Dc〈(∇C)2〉 and
production P = −〈C2∇ · Vdp〉/2, the latter being proportional
to the mutual coherence between C2 and the total flow field
compressibility ∇ · Vdp. This equation, well verified in our
case at any time step, helps us understand the evolution of
scalar variance in the presence of diffusiophoresis. As seen
in Fig. 4(a), dissipation alone cannot explain the observed
differences in scalar variance at short times; indeed, for
large-scale initial concentration profiles, εc remains weak until
small-scale fluctuations have been created by stretching and
folding. For the two first mixing cycles t/T � 2, the evolution
of the variance is then governed by the production term
P = −α〈C2∇2 log S〉/2, positive for the salt-in configuration
and negative for the salt-out configuration, as demonstrated
in Fig. 4(b). This effect disappears when the salt has been
mixed. Considering the Péclet number of the salt (Pes = 650),
Fig. 2 shows the mixing time is of the order of two mixing
cycles, which means salt is totally mixed at t = 2Tmix ∼ 4T .
For t � 4T both the drift velocity field and the production
term have become very weak [Figs. 1(c) and 4], so that the
decay of variance is mainly governed by scalar dissipation
thereafter. We may then conclude that diffusiophoresis is
globally impacting mixing because compressibility modifies
the colloid concentration field at small times while regular
mixing of this modified initial condition follows, shifted
in time.

Up to now we have dealt with modal (sin x) and therefore
“nonlocalized” initial conditions for C0 and S0. However, since
mixing in the presence of diffusiophoresis is governed by the
coherence between salt and colloid concentration, it strongly
depends on initial conditions. Therefore it is interesting to look
at more realistic situations where the initial condition is a patch
of fluid. For instance, one can compare situations of a patch of
salt plus colloids introduced in pure water (salt-in situation) to
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(a)

(b)
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FIG. 5. (Color online) (a) Time evolution of colloid concentra-
tion variance for a patch of salt S0 = 0.01 + exp[−4(x2 + y2)]
with Ds = 10−2, Dc = 10−4. Circles: reference case with no dif-
fusiophoresis C0 = exp[−4(x2 + y2)], α = 0. Squares: salt-in case
C0 = exp[−4(x2 + y2)] and α = 0.001. Diamonds: salt-out case
C0 = 1 − exp[−4(x2 + y2)] and α = 0.001. (b) Time evolution
of production term P = −〈C2∇ · Vdp〉/2. (c) Corresponding time
evolution of dissipation term |εc| = Dc〈(∇C)2〉.

the one of a patch of salty solution surrounded by well-mixed,
salt-free colloids (salt-out situation). These situations can be
reproduced with Gaussian profiles S0 = exp[−4(x2 + y2)] for
which the salt-in and salt-out configurations would correspond
to C0 = exp[−4(x2 + y2)] and C0 = 1 − exp[−4(x2 + y2)],
respectively. For these Gaussian initial concentration profiles,
if the no-salt and salt-in configurations lead to similar variance
evolutions as the ones in Fig. 3, one observes an unexpected
evolution with two time scales for the salt-out configuration
[Fig. 5(a)]. After very fast mixing at short times t � 2T ,
colloids start to mix at a reduced speed so that, finally, the
salt-out configuration is less efficient for mixing on long time
scales. This again can be understood by looking at the evolution
of the production term displayed in Fig. 5(b), a quantity much
larger than dissipation at small times for these still large-scale
initial configurations [Fig. 5(c)]. Indeed, if P remains always
positive for the salt-in case as shown in Fig. 5(b), it is negative
at short times for the salt-out case before becoming positive
for t � 1.8.

This is because the salt-out case (with C0 = 1 −
exp[−4(x2 + y2)]) corresponds to a situation where colloids
are present almost everywhere compared to the salt-in case
C0 = exp[−4(x2 + y2)]. Because salt mixes much more ef-
ficiently than colloids, the patch of salt spreads rapidly as
time increases, until the front of salt concentration (with
high gradients of salt responsible for diffusiophoresis) enters
regions with initially homogeneous colloid concentration and

(a)

(b)

FIG. 6. (Color online) (a) Circles, squares, and diamonds are the
same as in Fig. 5(a), plotted in semilogarithmic coordinates. Tri-
angles: corresponding demixing configuration with an homogeneous
initial colloid concentration C0 = 1. (b) Time evolution of production
term P = −〈C2∇ · Vdp〉/2 for the same salt-out configuration as in
Fig. 5(b) (diamonds) and the demixing configuration (triangles).

starts to unmix. To better understand the salt-out configuration
we simulated a pure demixing configuration with an initial ho-
mogeneous concentration C0 = 1, for which initial variance,
production, and dissipation vanish. These results, presented
in log scale in Fig. 6(a), show that if the long time behavior
of the salt-in and reference cases are identical, the variance
decrease of the salt-out case is much slower, similar to the
one of pure demixing. In this latter case, variance production
increases at short time because the concentration increases in
regions where ∇ · Vdp is negative and decreases in regions
where ∇ · Vdp > 0. As a consequence the concentration
pattern created has a strong correlation with ∇ · Vdp, and the
production term reaches a very high value after two cycles of
mixing [Fig. 6(b)], leading to a very slow variance decrease,
as already observed for the salt-out case.

V. CONCLUSION

We have studied 2D chaotic mixing of colloids under the
action of diffusiophoresis, which produces a velocity drift and
makes colloids no longer be tracers of the flow motion. We
have demonstrated that this very small drift, which leads to a
correction to the velocity field smaller than 1%, is responsible
for an important change in mixing because it strongly modifies
the topology of the total flow, which is no longer divergence
free. This compressibility is at the origin of the scalar
variance production term P = −〈C2∇ · Vdp〉/2, necessary to
understand (i) the evolution of scalar variance at small times,
not explained in the framework of effective diffusion for the
salt-in case, and (ii) acceleration or delay of mixing depending
on the coherence between salt and colloid concentration
fields. One remarkable property of this compressible effects
is the capacity to unmix an initially homogeneous colloidal
solution by simply adding salt gradients. If the present results
were obtained on the physical case of colloid mixing in the
presence of chemical gradients, they are more general and
may play an important role in cell dynamics because the
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total flow is compressible [9]. Effective flow compressibility
should also apply to temperature gradients (Soret effect) and
may help us understand older experiments of DNA trapping
and amplification in laminar thermally driven flows [6], the
Laplacian of the temperature field being an image of the local
DNA concentration. Finally, we note these compressibility
effects are not a manifestation of only laminar mixing. They
are also observed in particle laden turbulent flows providing
the particles do not follow the fluid motions because they have
inertia [14,15] or because they are sensitive to gravitational
field [16]. Bridging between the different results, this suggests

the possibility of a common frame of description for turbulent
clustering and diffusiophoretic mechanisms via compressible
effects.
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