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Saturation of shape instabilities in single-bubble sonoluminescence
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Excitation of shape instabilities represents one route to bubble death in single-bubble sonoluminescence. This
feature is satisfactorily explained by an expansion to first order in the amplitude of a shape distortion in the
form of a spherical harmonic. By taking the expansion to second order, it is found that regions of parameter
space exist where the exponential growth into bubble disruption is checked and a saturated stable state of shape
distortion is possible. Experimental evidence provided by Mie scattering is presented, and a possible connection
to simultaneous spatially anisotropic light emission is discussed.
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I. INTRODUCTION

In single bubble sonoluminescence (SBSL) [1] a bubble
is held in space by a resonant ultrasound pincer and brought
to oscillate at its frequency. If the field is sufficiently strong,
adiabatic heating caused by violent bubble collapse leads to
elevated temperatures resulting in light emission. The details
of the spherical vibrations of the bubble are well described
by theory (for reviews see, e.g., Refs. [2,3]). What is not well
understood is the reason behind the spatial anisotropy and
even period doubling of the emission encountered at some
parameter values, although even from the first observations
these phenomena were believed to be due to the excitation of
shape distortion [4–7]. That the excitation of shape instabilities
leads to bubble death has long been accepted since theoretical
predictions of the boundary line for excitation coincide well
with experimental observation of bubble extinction [8–10].
However, only recently has Mie scattering [11] provided
direct observations of instabilities in the SBSL regime [12].
Furthermore, exactly which type of instability is actively
engaged in bubble death in the different parameter regimes
has not yet been determined experimentally. The recent Mie
scattering measurements showed the existence in regions of
parameter space of what seems to be long-time stable shape
oscillations. In the same regions stable spatially anisotropic
period doubling of the emission is found. The two phenomena
always seem to occur together. However, according to present
first order theory the shape distortion either leads to bubble
death or disappears again when excited. In the following
an extension of the theory will be presented that shows the
existence of islands of saturation of the amplitude of the shape
distortion in accordance with the experimental findings. While
of foremost interest for SBSL, the result may also be of interest
in the field of encapsulated bubbles used for medical purposes
(see, e.g., Refs. [13–15]) as well as in inertial confinement
fusion (see, e.g., Ref. [16]).

II. BACKGROUND

So far the theory developed is a first order expansion in
the disturbance that is assumed to be described by a spherical
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harmonic with a time-dependent amplitude an(t) so that the
distorted surface is given by

rs(t) = R(t) + an(t)Ym
n (θ,φ), (1)

where R(t) is the radius of the bubble in the perfect spherical
shape, and m = 0 is chosen in accord with measurements on
large bubbles.

By assuming that the velocity field around the bubble could
be derived from a potential, Plesset [17] derived an amplitude
equation for the disturbance to first order in an(t); however,
effects of viscosity were neglected. The derivation was later
extended by Prosperetti [18], who included the influence of
viscosity, which due to the integro-differential nature is much
more difficult to treat.

Collecting terms of zero order in an(t) the derivation by
Plesset results in the well-known Rayleigh-Plesset equation
where the viscosity of the gas has been neglected since
μ1 � μ2:

R(t)R̈(t) + 3

2
Ṙ(t)2 = 1

(ρ2 − ρ1)

×
[
P1 − P2 − 2σ

R(t)
− 4μ2Ṙ(t)

R(t)

]
.

(2)

Here σ is the surface tension, and ρ, and μ the density and the
viscosity with the subscripts 1 and 2 referring, respectively, to
the gas and the liquid. P2 is the total pressure (ambient and
applied) far from the bubble and P1 the pressure inside given
by an equation of state for the gas. To first order in an(t) an
equation for the perturbation is derived which is presented here
in the extended version including the effects of viscosity [18]
with the boundary layer approximation [19,20]:

än(t) + Bn(t)ȧn(t) − An(t)an(t) = 0 (3)

with

Bn(t) = 3Ṙ(t)

R(t)
+ 2μ2

[(n + 1)ρ1 + nρ2] R(t)2

×
[
−β + n2(n + 2)2

1 + 2δ/R(t)

]
(4)
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and

An(t) = R(t)2R̈(t)[(n + 1)(n + 2)ρ1 − n(n − 1)ρ2] + βσ

[(n + 1)ρ1 + nρ2]R(t)3
+ 2μ2Ṙ(t)

[(n + 1)ρ1 + nρ2]R(t)3

[
β − n2(n − 1)(n + 2)

1 + 2δ/R(t)

]
. (5)

Here β = n(n − 1)(n + 1)(n + 2), and δ represents the effective boundary layer where viscous effects are important:

δ = min
(
δ0 [μ/(ρ2 ω)]1/2,R(t)/(2n)

)
. (6)

The precise value of δ0 to be used will be discussed later.

III. HIGHER ORDER EXPANSION

The present theory only tells when a shape distortion becomes unstable and no longer dies away but instead grows exponentially
leading to bubble death. In order to look for possible saturation due to nonlinear effects at a level which might allow a stable
distorted bubble to exist, the expansion here is taken a step further to second order.

The problem, as already noted by Plesset [17], in taking the expansion to higher order is that this mixes the different order
spherical harmonics. During the derivation terms proportional to Y 0

n (θ,φ)2 and [∇Y 0
n (θ,φ)]2 appear. However, these terms can

both be expressed in terms of sums involving spherical harmonics up to order m = 2n:

2n∑
i=1

ciY
0
i (θ,φ),ci = 0 for i odd. (7)

An important feature here is that only terms of even order appear regardless of whether n is even or odd.
As a first attempt this problem will be ignored and the derivation proceed as if terms are separable, with the mixing terms

simply replaced by the relevant expansion term cnY
0
n (θ,φ) corresponding to both upwards and downwards truncation. For n = 2

this poses no problem, but for n = 3 and higher an iterative process is needed, taking as a starting point this simpler derivation
but with only upwards truncation.

A. Higher order expansion, separable

Using the aforementioned truncation the starting point for the derivation is still given by Eq. (1), although to ease keeping
track of the order in the following an(t) is replaced by ε an(t) with 0 < ε =< 1. Due to the truncation, this will still be the
relevant surface even for the second order derivation.

The corresponding surface velocity is then

v(t) = Ṙ(t) + εȧn(t)Y 0
n (θ,φ). (8)

The derivation closely follows that of Plesset [17] assuming that the velocity field can be described by a potential:


 =
{

1 = [

R(t)2Ṙ(t)/r
] − b1r

nY 0
n (θ,φ) r < R(t)


2 = [
R(t)2Ṙ(t)/r

] − b2r
−(n+1)Y 0

n (θ,φ) r > R(t)
. (9)

Equating ∇
 to −v(t) at rs , the unknown coefficients b1 and b2 are determined to second order in ε. Insertion in 
 then
determines the potential to second order


1 = R(t)2Ṙ(t)

r
− εrnR(t)−nY 0

n (θ,φ)[2an(t)Ṙ(t) + R(t)ȧn(t)]

n

+ε2rnan(t)R(t)−n−1Y 0
n (θ,φ)2[(2n + 1)an(t)Ṙ(t) + (n − 1)R(t)ȧn(t)]

n
(10)

for the potential inside the bubble, and


2 = R(t)2Ṙ(t)

r
+ εr−n−1R(t)n+1Y 0

n (θ,φ)[2an(t)Ṙ(t) + R(t)ȧn(t)]

n + 1

+ε2r−n−1an(t)R(t)nY 0
n (θ,φ)2[(2n + 1)an(t)Ṙ(t) + (n + 2)R(t)ȧn(t)]

n + 1
(11)

outside.
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From the potentials the velocity fields can now be derived to second order by taking the gradient [v(t) = −∇
]:

v1(t) =

⎛
⎜⎜⎝

R(t)2Ṙ(t)
r2

0

0

⎞
⎟⎟⎠ + ε

⎛
⎜⎜⎝

rn−1R(t)−nY 0
n (θ,φ)[2an(t)Ṙ(t) + R(t)ȧn(t)]

e−iφ r (n−1)√�(n+2)R(t)−nY 1
n (θ,φ)[2an(t)Ṙ(t)+R(t)ȧn(t)]

n
√

�(n)

0

⎞
⎟⎟⎠

−ε2

⎛
⎜⎜⎝

rn−1an(t)R(t)−n−1Y 0
n (θ,φ)2[(2n + 1)an(t)Ṙ(t) + (n − 1)R(t)ȧn(t)]

2e−iφ rn−1√�(n+2)an(t)R(t)−n−1Y 0
n (θ,φ)Y 1

n (θ,φ)[(2n+1)an(t)Ṙ(t)+(n−1)R(t)ȧn(t)]
n
√

�(n)

0

⎞
⎟⎟⎠ , (12)

v2(t) =
⎛
⎝

R(t)2Ṙ(t)
r2

0
0

⎞
⎠ − ε

⎛
⎜⎝

−r−n−2R(t)n+1Y 0
n (θ,φ)[2an(t)Ṙ(t) + R(t)ȧn(t)]

e−iφ r−n−2√�(n+2)R(t)n+1Y 1
n (θ,φ)[2an(t)Ṙ(t)+R(t)ȧn(t)]

(n+1)
√

�(n)
0

⎞
⎟⎠

+ ε2

⎛
⎜⎝

r−n−2an(t)R(t)nY 0
n (θ,φ)2[(2n + 1)an(t)Ṙ(t) + (n + 2)R(t)ȧn(t)]

− 2e−iφ r−n−1√�(n+2)an(t)R(t)nY 0
n (θ,φ)Y 1

n (θ,φ)[(2n+1)an(t)Ṙ(t)+(n+2)R(t)ȧn(t)]
(n+1)

√
�(n)

0

⎞
⎟⎠ , (13)

where �(n) = (n − 1)! is the gamma function.
Since the pressures at both sides of the bubble wall are to be calculated by the Bernoulli integral one needs to calculate v(t)2|rs

to second order:

v1(t)2|rs
= Ṙ(t)2 + 2εṘ(t)ȧn(t)Y 0

n (θ,φ) + ε2

{
ȧn(t)2Y 0

n (θ,φ)2 + e−2iφ�(n + 2)Y 1
n (θ,φ)2[2an(t)Ṙ(t) + R(t)ȧn(t)]2

n2�(n)R(t)2

}
, (14)

v2(t)2|rs
= Ṙ(t)2 + 2εṘ(t)ȧn(t)Y 0

n (θ,φ) + ε2

{
ȧn(t)2Y 0

n (θ,φ)2 + e−2iφ�(n + 2)Y 1
n (θ,φ)2[2an(t)Ṙ(t) + R(t)ȧn(t)]2

(n + 1)2�(n)R(t)2

}
. (15)

Furthermore the time derivatives of the potentials have to be evaluated at the bubble surface:

∂
1

∂t
= R(t)R̈(t) + 2Ṙ(t)2 + εY 0

n (θ,φ)

{−(n + 2)an(t)R̈(t) + (n − 3)Ṙ(t)ȧn(t) − R(t)än(t)

n

}

+ ε2n−1R(t)−2Y 0
n (θ,φ)2

[
(n + 1)R(t)an(t)2R̈(t) − (n + 1)an(t)2Ṙ(t)2

+ 2(n + 1)R(t)an(t)Ṙ(t)ȧn(t) + (n − 1)R(t)2ȧn(t)2 − R(t)2an(t)än(t)
]
, (16)

∂
2

∂t
= R(t)R̈(t) + 2Ṙ(t)2 + εY 0

n (θ,φ)
[−(n − 1)an(t)R̈(t) + (n + 4)Ṙ(t)ȧn(t) + R(t)än(t)]

n + 1

+ ε2(n + 1)−1R(t)−2Y 0
n (θ,φ)2

[
nR(t)an(t)2R̈(t) − nan(t)2Ṙ(t)2

+ 2nR(t)an(t)Ṙ(t)ȧn(t) + (n + 2)R(t)2ȧn(t)2 + R(t)2an(t)än(t)
]
. (17)

The Bernoulli integral gives the pressures at either sides of the bubble wall

pl = Pl + ρl

[
∂
l

∂t

∣∣∣∣
rs

− 1

2
(grad
l)

2|rs

]
(18)

with l = 1, 2 with the difference (p1 − p2) given by the surface tension term

σ
2r + εn(n + 1)an(t)Y 0

n (θ,φ)

r2
, (19)

which to second order becomes

σ
2R(t)2 + ε(n2 + n − 2)R(t)an(t)Y 0

n (θ,φ) − 2ε2(n2 + n − 1)an(t)2Y 0
n (θ,φ)2

R(t)3
. (20)

The viscosity terms are much more difficult to treat due to their integro-differential nature. We have therefore only taken these
to first order following the derivation of Prosperetti [18].

After addition of the viscous terms and subtraction of the zeroth order equation, the equation for än can be written as

än(t) = −Bn(t)ȧn(t) + An(t)an(t) + Cn(an,ȧn,t), (21)

013026-3



MOGENS T. LEVINSEN PHYSICAL REVIEW E 90, 013026 (2014)

where

Cn(an,ȧn,t) = [2R(t)2an(t)Ṙ(t)ȧn(t){n2ρ2[(−2n2 + n + 3)cn�(n) + 2dn] + (n + 1)2ρ1[n(2n + 5)cn�(n) − 2dn]}
+2an(t)2{n(n + 1)cn[(2n2 + 5n + 3)ρ1 + (1 − 2n)nρ2]�(n)R(t)2R̈(t)}
−2an(t)2{[(n + 1)2ρ1 − n2ρ2]R(t)Ṙ(t)2[n(n + 1)cn�(n) + 2dn] + n2(3n2 + 3n − 4)(n + 1)2σcn�(n)}
+R(t)3ȧn(t)2( − (n2ρ2[(n2 + 4n + 3)cn�(n) − dn] + (n + 1)2ρ1[dn − (n − 2)ncn�(n)]))]/Dn(t) (22)

with

Dn(t) = [2n(n + 1)((n + 1)ρ1 + nρ2)�(n)R(t)4]. (23)

Here cn and dn specify the coefficients coming from the second order mixing terms, i.e., Y 0
n (θ,φ)2 ∼ cnY

0
n (θ,φ) and e−2iφ�(n +

2)Y 1
n (θ,φ)2 ∼ dnY

0
n (θ,φ). Notice that no separation of terms in an(t) and ȧn(t) is possible now. Note also that the density ρ1

of the gas is a time-dependent quantity while that of the liquid ρ2 is considered constant. As expected, to first order Eq. (6) is
reproduced.

The most likely perturbation to encounter is the ellipsoidal corresponding to n = 2:

C2(a2,ȧ2,t) = c2{8(9ρ1 + ρ2)a2(t)R(t)2ȧ2(t)Ṙ(t) + 4a2(t)2[3(7ρ1 − 2ρ2)R(t)2R̈(t) + 2(4ρ2 − 9ρ1)R(t)Ṙ(t)2 + 84σ ]

−(9ρ1 + 16ρ2)R(t)3ȧ2(t)2}/[4(3ρ1 + 2ρ2)R(t)4], (24)

where we have used that d2 = 3 c2 and c2 = 2/7 (5/4π )1/2.
Applying this correction we have simulated the behavior of an air bubble in the regime where measurements have shown

stable shape distortion to occur.

B. Higher order expansion, interacting

The scheme laid out above works for the n = 2 case. However, for higher values of n a more intricate scheme has to be
adopted. First, it is assumed that the nth spherical harmonic is excited and described by the result given above. Considering the
surface of the kth harmonic

rsk(t) = R(t) + ak(t)Y 0
k (θ,φ), (25)

with k > n, the velocity given by the nth harmonic is then treated as a perturbation:

v(t) = Ṙ(t) + ηȧk(t)Y 0
k (θ,φ) + εȧn(t)Y 0

n (θ,φ). (26)

The velocity potentials for the kth surface are again given by Eq. (9) with k substituted for n. Treating the influence of the nth

harmonic as a perturbation has the effect of separation of terms so the coupling terms can be calculated from the extra potentials

δ
 =
{
δ
1 = −b1r

kY 0
k (θ,φ) r < R(t)

δ
2 = −b2r
−(k+1)Y 0

k (θ,φ) r > R(t)
(27)

by equating ∇δ
 to −εȧn(t)Y 0
n (θ,φ) at rsk . The unknown coefficients b1 and b2 are determined to first order in the product εη.

Insertion in δ
 then determines the addition to the potentials coming from the perturbation:

δ
 =
{
δ
1 = (−1+k)rkεηR(t)−kY 0

k (θ,φ)Y 0
n (θ,φ)ak (t)ȧn(t)

k
r < R(t)

δ
2 = (2+k)r−1−kεηR(t)1+kY 0
k (θ,φ)Y 0

n (θ,φ)ak (t)ȧn(t)
1+k

r > R(t)
. (28)

From the mixing part of the potentials, the mixing terms of the velocities can now be calculated as δv(t) = −∇(δ
). As
δv(t) already is first order in the product ε η, the only new terms in v(t)2 to appear come from the products v0 δv(t) with
v0 = R(t)2Ṙ(t)/r2 the velocity of the undisturbed spherical surface:

δv(t)2|rs
=

{
δv1(t)2|rs

= −2(−1 + k)εηY 0
k (θ,φ)Y 0

n (θ,φ)ak(t)Ṙ(t)ȧn(t)/R(t) r < R(t)

δv2(t)2|rs
= 2(2 + k)εηY 0

k (θ,φ)Y 0
n (θ,φ)ak(t)Ṙ(t)ȧn(t)/R(t) r > R(t)

. (29)

Now one needs to calculate the corrections to the time derivatives of the potentials at the surface rsk , which to first order in
the product ε η becomes

∂δ
1

∂t
= − (−1 + k)εηYkYn{−R(t)ȧk(t)ȧn(t) + ak(t)(kṘ(t)ȧn(t) − R(t)än(t))}

kR(t)
, (30)

∂δ
2

∂t
= (2 + k)εηYkYn(R(t)ȧk(t)ȧn(t) + ak(t)((1 + k)Ṙ(t)ȧn(t) + R(t)än(t)))

(1 + k)R(t)
. (31)
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The final step is to calculate the extra term coming from the surface tension. As the interaction here is mediated directly by
the distortion of the surface, one has to consider the combined distortion,

rskn(t) = R(t) + ηak(t)Y 0
k (θ,φ) + εan(t)Y 0

n (θ,φ), (32)

giving

σ
2r + ηk(k + 1)ak(t)Y 0

k (θ,φ) + εn(n + 1)an(t)Y 0
n (θ,φ)

r2
. (33)

Evaluating this at the surface rskn(t) one finds the mixing term

−σ
2(−2 + k + k2 + n + n2)εηY 0

k (θ,φ)Y 0
n (θ,φ)ak(t)an(t)

R(t)3
. (34)

Adding the above terms to the relevant Bernoulli integrals and the surface term for the kth mode, one can find the correction
δäk(t) to äk(t),

δäk(t) = [R(t)3[(−1 + k2)ρ1 − k(2 + k)ρ2]ȧk(t)ȧn(t) + ak(t)(2k(1 + k)(−2 + k + k2 + n + n2)σan(t))

+(R(t)2{(k(2 + k)ρ2((1 + k)Ṙ(t)ȧn(t) − R(t)än(t)) + (−1 + k2)ρ1(kṘ(t)ȧn(t) + R(t)än(t))})]Dnk (35)

with

Dnk = cnkε/{R(t)4[(1 + k)ρ1 + kρ2]} (36)

and cnk the coefficient of Y 0
k (θ,φ) in the expansion of the product Y 0

n (θ,φ)Y 0
k (θ,φ).

This has the advantage of being independent of whether modes are even or odd. For k = 3 a term is added due to the interaction
with the lower n = 2 distortion. For k = 4 interaction with both n = 2 and n = 3 is possible. As the interactions are treated as
perturbations, the corrections are calculated independently using the result derived above. However, for modes n = 2, 3, and 4 in
the interval so far investigated (c = 0.0005–0.00385) the n = 2 mode becomes unstable before the other modes are even excited!

IV. SIMULATIONS

In this section the model used for the simulation of the
undisturbed spherical oscillation will be discussed before the
results of the actual simulation will be presented.

A. Model for spherical oscillation

As a starting point for the simulations is chosen the form
of the Rayleigh-Plesset (RP) equation introduced by Löfstedt
et al. [21], where the dynamics of the bubble wall R(t) is
described by

RR̈ + 3

2
Ṙ2 = 1

ρ
{Pg[R(t)] − Pf (t) − P0}

+ R

ρc

d

dt
{Pg[R(t)] − Pf (t)} − 4ν

Ṙ

R
− 2σ

ρR
. (37)

Here Pg is the uniform gas pressure inside the bubble, Pf =
−Pa sin(ωt) is the forcing pressure with angular frequency
ω, P0 is the ambient pressure during the measurements, and
the remaining parameters are material constants of the host
liquid, e.g., c is the speed of sound, ρ its density, and ν is the
kinematic viscosity. In the following some more details are
presented even though all can be found in, e.g., Ref. [2].

The gas pressure Pg is related to R(t) through an equation
of state. A polytropic van der Waals equation of state is used,
modified to include the effects of surface tension σ [22]:

Pg[R(t)] =
(

P0 + 2σ

R0

) (
R3

0 − a3
)γ

[R(t)3 − a3]γ
. (38)

Here a is the hard core van der Waals radius of the gas
(for argon a = R0/8.86). The polytropic exponent γ is set
to change between 1 for most of the cycle increasing toward a

weighted average for argon and water vapor, according to the
instantaneous Péclet number [23], Pe = R2

0 |Ṙ(t)|/R(t)κ , with
κ being the thermal diffusivity of the gas.

The connection between γ and the Péclet number has been
tabulated by Prosperetti [23] although we use the simple fit
given by Hilgenfeldt et al. [24]. Since γ now depends on
Ṙ(t), the situation reverts to isothermal around the immediate
time of the collapse. Various methods have been devised to
circumvent the problem, but here this aspect has simply been
ignored following Ref. [24].

The effect of water vapor (evaporation and condensation) is
included by assuming a simple Hertz-Knudsen model for the
change of moles during a cycle [25]:

ṄH2O = Ṅ
evap
H2O − Ṅ cond

H2O

= 4πR2α

MH2O

c̄(Ts)

4

[
ρsat

g,H2O − ρg,H2O(t)
]
, (39)

where α is the accommodation coefficient. The commonly
accepted value is 0.4; see, however, Refs. [26,27].

MH2O is the molar mass of water, and c̄(Ts) =√
8RgasTs/(πMH2O) the average velocity of water molecules

at the inside wall of the bubble with the temperature Ts locally
assumed to be given by the ambient temperature T0. ρsat

g,H2O and
ρg,H2O(t) are, respectively, the saturated vapor density and the
time-dependent average vapor density in the bubble. Finally
the stable bubble size is determined using diffusive stability.

B. The (Pa,R0) parameter space

In the following some representative examples of the
simulations performed on the models described above are
presented. The simplified model used for the basic spherical
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FIG. 1. (Color online) Result of simulation showing locations of
stable period 1 and period 2 shape distortion in the rest radius R0,
drive pressure Pa parameter space. Also shown are data for the highest
possible stable sonoluminescing state taken from Simon et al. [28].

oscillation that drives the instabilities was chosen in order to
limit the computing time. This has some repercussions that
will be commented on where the simulations are compared to
actual measurements. Unless otherwise noted, the simulations
are done for a temperature of 6 ◦C using for the surface tension
and viscosity the values of clean water. The frequency of the
drive is 22 kHz, and the accommodation constant is 0.4. In
these runs the prefactor δ0 in the effective boundary layer is
set to 0.3. First, the simulation is run without invoking the
shape instability. After a stable undisturbed bubble cycle has
been established, the calculation proceeds for 160 cycles or
more in order to determine whether a possible excited shape
distortion is stable and ensure that enough cycles are present
to establish the period. In this phase the n = 2, 3, and 4 shape
distortions are investigated. However, the n = 3 and 4 modes
have never been seen to be excited before the n = 2 shape
distortion becomes unstable!

First, a illustrative scan over some of the Pa,R0 parameter
space is presented showing areas of stable period 1 and period
2 shape oscillations compared with measurements showing the
experimental limit for stable SBSL determined by Simon et al.
[28] (see Fig. 1). A reasonable agreement is seen, although one
should bear in mind that the experimental determination of R0

and Pa is based on fits to a specific model of SBSL using the
relative timing of the sonoluminescent emission.

The same data are plotted in Fig. 2 but now in the parameter
space of argon concentration versus Pa . Also shown are regions
of higher period modes and seemingly aperiodic modes. We
have observed period 3, 4, 5, 6, and 8 modes, but only the
period 4 mode is plotted individually in the figure; the rest are
lumped together in higher order modes as their occurrences
are rare. Some of the modes labeled aperiodic may actually
be higher order modes but without enough cycles calculated
for positive identification. Finally, bursting or intermittent
modes have been observed so probably chaotic modes are also
present in the system. One should bear in mind, though, that
other mechanisms might limit the experimentally accessible
parameter space both at the high and the low end of the
concentration range.
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FIG. 2. (Color online) Locations of stable period shape distortion
in the argon concentration, drive pressure Pa parameter space from
Fig. 1 but also with regions of higher order and seemingly aperiodic
modes filled in.

Next, the diffusive stability curve in the Pa,R0 parameter
space is plotted for an argon concentration of 0.00255 showing
regions of period 1 and period 2 stable shape distortion (see
Fig. 3). Notice the gap in the period 2 section where no stable
solutions are found to exist. This agrees with experimental
observations [7] and with the studies of Holzfuss [29] on shape
instabilities. The arrows show the operating points of the next
figures where stable periods 1 and 2 are displayed.

The middle panel of Fig. 4 demonstrates the growth and
saturation of a period 2 cycle at a drive pressure corresponding
to the arrow to the right pointing to the blue (x) section in
Fig. 3 for an otherwise stable bubble oscillation as shown in
the upper panel, with an amplified view in the lower panel.
An expanded view is shown in the two upper panels of Fig. 5,
with an amplified view also showing the period doubling of
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R 0
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Period 1
Period 2

FIG. 3. (Color online) Simulated rest radius R0 versus drive
pressure Pa for an air bubble with relative argon concentration
0.00255. In the green section (+) stable period 1 shape distortion
is present. Stable period 2 shape distortion is present in the blue (x)
sections. No stable solutions are found in between. The arrows show
the operating points for the next figures.
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FIG. 4. Upper panel: The undisturbed bubble oscillation. Middle panel (scale μm): Growth and saturation of the excited period 2 shape
distortion a2 computed at the arrow pointing to the blue section in Fig. 3. The vertical lines show the timing of the main collapse. Lower panel
(scale nm): Magnified view of a2.

the stabilized Rayleigh-Taylor instability at the main collapse,
which could be related to the observations of period doubling
in the emitted light [5–7]. The shape oscillation saturates at a

level just before the bubble would probably break as a ratio of
one is normally taken as the criterion for bubble death. This is
demonstrated in the lowest panel where the ratio between the
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FIG. 5. Expanded view of the saturation part of the excited period 2 shape distortion shown in Fig. 4. Both Rayleigh-Taylor (the first sharp
peaks) and later after-bounce shape oscillations are present.
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FIG. 6. Saturation of the excited period 1 shape distortion computed at the arrow pointing to the green section in Fig. 3.

shape oscillation a2 and the instantaneous bubble radius R(t)
is displayed, thus explaining why the period doubled states are
found just below or even in stable islands beyond the critical
line for bubble death. Again it might mean that not all states
found are necessarily experimentally accessible.

Finally in Fig. 6 a saturated period 1 cycle corresponding
to the arrow pointing at the green (+) section in Fig. 3 is
displayed. From top to bottom the panels show the undis-
turbed bubble oscillation R(t), the saturated shape oscillation
a2, a magnified view of a2 displaying the Rayleigh-Taylor
excitation, and the ratio a2/R(t), which again is close to unity
where bubble death is expected.

C. Influence of δ0

Over the years various authors have suggested different
values of the constant δ0 in the boundary layer approximation
to be used in order to explain experimental observations of the
extinction boundary. Values ranging from the original value of
unity [19,20], over, e.g., 1/3 [30], 1/4 [30], to zero [29,31]
have thus been proposed. In the overview of the (Pa,R0)
parameter space given above the value 0.3 was used for δ0.
Keeping all other parameters as before the influence of δ0

will now be investigated. In Fig. 7 the result is presented.
This figure should be compared to Fig. 3 as the positions
of the period 1 (denoted P1) and period 2 (denoted P2)
shape distortions follow the same (Pa,R0) curve of diffusional
stability.

As seen, the positions of the distortions move toward higher
values of R0 (and Pa), and the order of P1 and P2 is even
exchanged as the value of the parameter δ0 decreases. At the
same time the size of the R-T peak at the main collapse grows

from about 2% at δ0 = 1 to about 10% at δ0 = 0, suggesting
that excitation and saturation of the R-T instability could be
behind the observation of period doubling in the emission.
Furthermore, that a value of δ0 close to zero is in fact most
likely.

Following this lead a comparison is now made with the
period doubled emission reported by Ref. [7]. Here stable
period doubled emission was found in a rather large interval
of forcing pressure Pa for an air bubble (T = 9 ◦C) at a
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FIG. 7. (Color online) Position along the diffusional stability
curve of Fig. 3 of the period 1 (denoted P1) and period 2 (denoted
P2) shape distortions as function of the parameter δ0. Notice that as
δ0 goes to zero the position proceed to higher values of R0 (and Pa)
and the order of P1 and P2 is exchanged.
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FIG. 8. (Color online) Experimental data showing the position
of period doubled emission in Pa,R0 parameter space from a
sonoluminescing bubble (data from Ref. [7]), compared to simulation
with input values δ0 = 0.25 and δ0 = 0.1.

corresponding argon concentration of 0.00135. A simulation
with these parameters has been performed for δ0 = 0.25
and 0.1 and compared with the experimental data in Fig. 8.
δ0 = 0.25 seems to be in best accordance with the experiment
with a2/R = ± 2% at the time of the major collapse, while
that of δ0 = 0.1 is about ±4%. In order to compare to the
experiment some details about the models involved need to be
discussed.

The experimental (Pa,R0) data are obtained from fits to a
model that is somewhat different from the present one; for
instance, the boundary for extinction is computed with the
thickness of the boundary layer is set to zero, and the amount
of water vapor is kept constant, so one would not expect
a perfect overall agreement. In the experiment R0 and the
corresponding value of the driving pressure Pa was estimated
from the relative timing of the collapse (see Refs. [28,33])
since the set up did not allow for a simultaneous Mie scattering
experiment. The pressure axis was scaled linearly such that
the onset of light emission in the experiment, which of course
has some inherent uncertainty associated, corresponded to the
onset of the diffusional stability curve of the simulation. As
the value of the onset pressure will be model dependent, in the
present comparison the experimental value of the pressure has
simply been rescaled to fit the present model. Due to the rather
large uncertainty in the values of R0 it has not been deemed
necessary to recalibrate this quantity.

Overall the agreement is satisfying with the most striking
difference being that the simulation gives a smaller interval
where period doubling of the emission could be expected.
This could be caused by some of the experimental data being
from increasingly less stable islands beyond the border of
extinction that was missed in the simulation. Such an island
is actually seen in the simulation for δ0 = 0.25 together
with high order and aperiodic solutions. These latter are not
shown in the figure for clarity but due to noise a period 4
realization may accidentally be mistaken for a period 2 in
the experiment. Another possibility, more likely perhaps, is
that the model for the radial oscillation that is giving the

input to the computation of the distortion is not treating the
behavior correctly close to the main collapse [2]. Apart from
the model dependence already discussed, the estimate solely
relies on the determination of the argon concentration, which
may be underestimated since the experiment was performed
in a semiopen cell. Also, due to the absence of a direct
measurement of the bubble oscillation it is not known whether
any shape distortion was present.

Finally, whether the computed deviation from the spher-
ical shape is large enough to give rise to the observed
period doubling is naturally of interest. Unfortunately very
little information is available touching on this question. In
Ref. [34] the far field emitted light intensity is calculated for
a ellipsoidal bubble with major axis a = 1 μm and minor
axes b = 0.750 μm compared to approximately a = 850 nm
and b = 800 nm in the simulation above. The emission is
approximated as coming from a point source at the center
of the bubble. The calculation is based on diffraction of the
electric field vector in the bubble surface and the refractive
index of the water is 1.33, while that of the gas in the bubble
is assumed to be 1. For a center wavelength between 250
and 450 nm the peak to peak (pk-pk) value of the intensity
variation is about 40–50%. To find the period doubling the
intensity difference between the emission from a prolate and
an oblate spheroid of identical volumes is needed. To first order
this is, however, expected to be of the order of the angular
variation for the prolate spheroid. Assuming for simplicity a
linear dependence for the intensity on the distortion a pk-pk
period doubling of approximately 10% should be expected
compared to the actually 16% observed in Ref. [7]. Dam [35]
considered a model based on Kirchhoff’s diffraction formula
[36] together with the assumption of volume emission from a
central spherical region. Using a bubble size of a = 1.1 and
b = 1 μm together with the same refractive index of water as
Madrazo et al. but with that of the gas set to 1.125, the author
found a pk-pk angular intensity variation of 10% for a Gaussian
wavelength distribution around 350 nm with a FWHM of
70 nm. The radius of the central region was changed from
0.1 to 0.7 μm without any appreciable change in the intensity
distribution. Scaling the wavelength with the bubble size again
suggests a pk-pk period doubling of 6–8% from the distortion
calculated in the simulation above at a center wavelength of
270 nm. Taking the somewhat shaky assumptions used in the
models into account, while not conclusive, this analysis does
show that excitation of the Rayleigh-Taylor mode is indeed a
strong candidate to be the cause of the experimentally observed
period doubling.

V. DISCUSSION

In the previous sections the theory of shape distorted bubble
oscillations have been extended to show that saturation of
these modes are indeed possible. This explains nicely the
recent observation using Mie scattering [11] of stable period
doubled structures in the after-bounce region of the radial
bubble oscillation of a sonoluminescing bubble [12]. Also
earlier experiments showing period doubling of the emitted
light [5–7] seem explainable by this mechanism as suggested
by Holzfuss [29]. However, there are still some unresolved
issues. The structures seen in the simulations come too late
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FIG. 9. (Color online) Mie scattering [12] from a sonoluminesc-
ing bubble (c ∼ 0.25, T = 9◦) that simultaneously exhibits period
double emission compared to simulation with input values μeff = 4μ,
α = 0.25 used for the simulation of R(t) while μ is used in the
simulation of a2 together with δ = 0.3. Experimental data are time
averaged over 20 consecutive sets, each lasting four periods to
accentuate the period doubling of the structures in the after-bounce
regions.

in the after-bounce region and the size of the Rayleigh-Taylor
instability at the main collapse is somewhat small to be able
to explain the period doubling of the light. Both of these
problems may, however, be connected to the specific version
of the Rayleigh-Plesset equation used to simulate the radial
bubble oscillation, which has the after bounces fall off too

slowly. The present version was chosen in order to cut down
on computer time. Since the radial oscillation serves as input
to the computation of the shape distortion, one way around
this problem, which does not involve spending more computer
time, is to change the value of some of the constants used
for either the surface tension, viscosity (see Ref. [32]), or
accommodation constant (see Refs. [26,27]) in order to mimic
the radial oscillation while keeping the correct values in the
computation of the shape instability.

In the following simulations of R(t) the accommodation
constant has been changed to α = 0.25 as suggested by
Ref. [26] and the viscosity has been multiplied by four
[32]. In the simulation of a2 the value of the prefactor δ0

is set to 0.3, in order to find a period-doubled disturbance
close to the value of 0.250 suggested above. As seen from
Fig. 9 (upper panel), this has the sought for effect of making
the after bounces fall off faster. Also it can be seen from
comparing the upper and the middle panel that the structures
in a2 now agree reasonably well with the structures actually
observed for a sonoluminescing bubble [12]. The measurement
was performed on an air bubble at 9◦C with a relative
argon concentration of approximately 0.0025. The fit from
the upper panel gives R0 = 7.33 μm. Concomitant with the
measurement of the structures were observed period doubling
in the emission. The lower panel gives a magnified view
of a2/R showing that the distortion of the Rayleigh-Taylor
instability at the time of the main collapse is still only
a few percent though. To ease the comparison, the upper
panel displays the experimental R(t) trace compared to the
simulated. There is of course no reason to believe that this
gives a truly realistic picture of the Mie scattering signal since
that is a result of interference of monochromatic light scattered
from different points on the surface of the bubble. Also the
direction in space of the symmetry axis of the bubble distortion
is unknown. However, it is reasonable to expect any structures
to be at least situated correctly in time.

While the above of course can be considered proof of
concept, simulations on a model that better capture the basic
features of the undistorted radial oscillation of the bubble are
needed before the question of the connection between bubble
distortion and the spatially anisotropic emission can finally be
considered settled.

VI. CONCLUSION

Extending the theory for shape oscillations to second
order shows that saturation is possible in the regime where
stable shape oscillations are seen experimentally. Due to
the integro-diffential nature of the viscous terms, these are,
however, still included only to first order. One feature that
does fit the experimental observations is that the rise of the
shape distortion to its maximal value seems to be rather
abrupt. The size of the R-T shape distortion at the time
of the emission is of order 20–100 nm (corresponding to
±2–10% of the minimum bubble radius) depending especially
on the thickness of the viscous boundary layer. According to
calculations by Dam [35] this is just enough to produce visible
period doubling as seen in the emission. The result of that
analysis is, however, very dependent on parameters such as
the size of the effectively emitting volume and the refractive
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index inside the bubble close to the surface, about which
there is precious little information [4,37]. So it seems that
the R-T shape distortion could be the cause for the spatially
anisotropic period doubling seen in the emission, while the
after-bounce-driven shape distortion shows up in the Mie
scattering. Both are then stabilized by the parametric shape
distortion driven by the drive signal.

The possible application of the present analysis to encapsu-
lated bubbles used for medical purposes such as contrast agents
and for precise localized medication could be of practical
interest (see, e.g., Refs. [13–15]). Finally, saturation may also

be of interest in the field of inertial confinement fusion (see,
e.g., Ref. [16]).
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