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Geometrical interpretation of long-time tails of first-passage time distributions in
porous media with stagnant parts
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Using a combined experimental-numerical approach, we study the first-passage time distributions (FPTD) of
small particles in two-dimensional porous materials. The distributions in low-porosity structures show persistent
long-time tails, which are independent of the Péclet number and therefore cannot be explained by the advection-
diffusion equation. Instead, our results suggest that these tails are caused by stagnant, i.e., quiescent areas where
particles are trapped for some time. Comparison of measured FPTD with an analytical expression for the residence
time of particles, which diffuse in confined regions and are able to escape through a small pore, yields good
agreement with our data.
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I. INTRODUCTION

The transport of liquids through porous media plays
an important role, e.g., for groundwater flow in aquifers
and soils, tissue physiology, blood circulation through vein
networks, and uptake of nutrients by plants, but it is also
crucial for technical applications, such as bioremediation and
enhanced oil recovery or filtering processes (for an overview,
see Refs. [1–5]). The typically random structure of porous
materials can lead to the formation of complex pathways
along which the fluid’s molecules are transported through such
systems. The situation is even more difficult in low-porosity
materials, which often contain stagnant parts where the flow
velocity is extremely small or even zero. Once a molecule
enters such a quiescent region, it can only escape by diffusion,
independent of nearby advective currents. It is well known
that stagnant parts (or dead-end pores) largely increase the
retention times of molecules and thus have a strong effect
on the fluid transport through porous materials. In addition,
stagnant areas also lead to the efficient trapping of liquid
in such media and thus have a large influence, e.g., on the
exploitation efficiency of natural oil and gas reservoirs [6]
but also for the efficiency of chromatographic columns and
reactors [7].

Typically, the flow of tracer particles through a porous
medium is described by the advection-diffusion equation
(ADE), which reads as

∂c

∂t
+ u∇c = DL

∂2c

∂x2
+ DT∇2

Tc. (1)

Here, c(x,t) is the particle concentration, u is the average
particle velocity, and DL and DT are the longitudinal and
transverse dispersion coefficients, respectively. Despite its
simplicity, the ADE shows good agreement with experi-
mentally measured concentration profiles in high-porosity
materials with rather homogeneous flow fields [8]. However,
the ADE fails to reproduce the slow decay of the particles’
first-passage time distributions (FPTD) toward long times as
observed in experiments and simulations [9–12]. According
to Coats, Smith, and Baker, such long-time tails result from
the exchange of particles between advective and stagnant
regions [13–15]. Indeed, when Eq. (1) is expanded by an

additional exchange term, it correctly describes the long-time
tails of the FPTD observed for liquid flow through carbonate
rocks, epoxies, and glass beads [8,13,16,17]. Rather than
obtaining effective values for the stagnant volume fraction and
a characteristic residence time of solutes in stagnant regions,
however, such semiempirical models do not provide further
structural information in porous materials.

In this paper, we experimentally study the flow proper-
ties of micron-sized colloidal tracer particles through quasi
two-dimensional porous structures that contain well-defined
stagnant areas. To obtain trajectories of sufficient duration,
which are required to allow the particles to explore the interior
of stagnant areas with large residence times, we applied a
semiexperimental approach, where the experimentally deter-
mined velocity field was used as input information for a
Langevin dynamics simulation. With this approach we create
particle trajectories with maximum lengths of 107 s, which is
far beyond typical time scales accessible in experiments. For
low-porosity samples, we observed persistent long-time tails in
the FPTD, which are independent of the Péclet number and that
can be associated to temporary trapping of particles in stagnant
regions. Comparison of these long-time tails with a theoretical
prediction for the mean residence time of diffusive particles
within a confined domain through a small exit pore yields
quantitative agreement. This suggests a direct relationship
between measured FPTD and the geometry of stagnant regions.

II. EXPERIMENT

To create porous samples with a well-defined morphology,
we used a Boolean model where the structure is composed
of randomly positioned, overlapping monodisperse circles
(ROMC) with diameter l = 50 μm. Such structures were trans-
ferred to a transparent polydimethylsiloxane (PDMS) layer by
soft lithography [18] and resulted in quasi two-dimensional
porous samples with dimensions 6.5 μm × 3 mm × 9 mm
(height × width × length). A flow through such samples
was induced by a hydrostatic pressure in the range of �P =
2 − 40 Pa, which was created by two reservoirs with different
water levels, which are connected to the sample’s in- and outlet.
The diameter of the reservoirs is about 2 cm, therefore pressure
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FIG. 1. (Color online) (a) Microscope image of a transparent
porous structure made from PDMS, which is filled with dyed (blue)
water. Afterwards, pure water is injected from the left with a flow
velocity of about 6 μm/s and displaces the dyed water. Snapshots are
shown after (b) 5 min, (c) 10 min, and (d) 33 min. Even after more
than 1 h, dyed water remains trapped in the stagnant regions of the
structure.

variations during experiments are negligible. For details of
the sample preparation we refer to Refs. [19,20]. The flow
field within the structure was determined by injection of a
diluted (volume fraction <10−3) suspension of fluorescent
polystyrene particles with 1 μm diameter. For this particle
size, clogging within the structure and steric exclusion effects
become negligible [21]. Particle trajectories were recorded by
video microscopy with a frame rate of 5 fps with 2240 ×
1724 pixel resolution at sub-μm precision using standard
particle tracking algorithms [22].

For a first qualitative understanding of how stagnant areas
affect the retention time of molecules, in Fig. 1 we show
pictures of a sample with open porosity of φo = 0.400 [23],
which has been first saturated with dyed water (methylene
blue) and then flushed by pure water from one side. At regions
with high-flow velocity, this leads to the displacement of the

dyed water within the first 10 min. In contrast, the colored
water remains trapped for much longer times in stagnant parts,
where it remains even after 33 min. This illustrates that time
scales for reliable FPTD measurements in the presence of
stagnant zones can be rather long.

For the quantitative determination of FPTD, we first
measured the particle trajectories obtained at constant flow
conditions (Péclet number Pe ≈ 130) and then calculated the
local velocity field [19]. In Fig. 2 we show the results in a
grayscale (color) map obtained from samples with porosities
φo = 0.900, 0.582, and 0.232, respectively. The stagnant parts
are identified by application of a velocity threshold, whose
value is set to be about three orders of magnitude lower than
the maximum velocity. We have confirmed that a variation of
the threshold by a factor of 2 results only in minute changes
of stagnant regions. With decreasing porosity, the velocity
fields become increasingly inhomogeneous until only few
principal pathways with high velocities (bright) are left (note
the logarithmic grayscale). At the same time, an increasing
area fraction appears where the velocity is extremely small,
as typical for stagnant areas where the dynamics is dominated
by diffusion. This spread in velocities is also reflected by the
shape of particle trajectories, which are shown for φo = 0.232
in Fig. 3(a). While the particle motion is rather directed in
regions dominated by advective flow, a random walk behavior
is found in stagnant areas. Although particles enter stagnant
areas in our experiments, which were conducted over 30 min,
clearly these regions were only incompletely sampled (inset
Fig. 3). Accordingly, FPTD obtained from such data are not
meaningful and largely vary between measurements.

III. SIMULATION OF PARTICLE TRAJECTORIES

To solve the problem of poor statistics, we used the
previously determined velocity field as input for an over-
damped Langevin simulation. This allowed us to create particle
trajectories with durations of up to 107 s (in comparison to
typical experimental time scales on the order of 5 × 103 s).
The particle displacement during the time interval �t is given
by

r(t + �t) = r(t) + u(r)�t + ξ (�t), (2)

1 mm

(a) (b) (c)

FIG. 2. (Color online) (a) Grayscale (color) maps of experimentally obtained velocity fields in porous ROMC structures with porosities
(a) φo = 0.900, (b) φo = 0.582, and (c) φo = 0.232. The plots show the local average velocity magnitude on a logarithmic scale in units of
μm/s. With decreasing porosity, the velocity fields become more heterogeneous until only a few principal pathways for liquid flow remain,
which are surrounded by large stagnant areas (dark).
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(a) (b)

FIG. 3. (Color online) (a) Experimental particle trajectories ob-
tained during 30 min inside a porous ROMC structure with φo =
0.232. The flow is from left to right. The inset shows a magnification
of a diffusing particle in a stagnant region. (b) Corresponding particle
trajectories obtained by simulations with observation time of 20 h.
Obviously, during this time the particles are able to explore much
larger regions of the structure and in particular deeper parts of the
stagnant areas.

with u(r) the experimentally determined particle velocity
field and ξ a random particle displacement due to thermal
fluctuations being described by Gaussian distributed noise with
zero mean and variance 4D0�t . The diffusion constant D0

was set to the corresponding experimental value D0 = 4.3 ×
10−13 m2/s. As time intervals we have chosen �t = 40 ms. At
these values the largest particle displacements (corresponding
to regions with the highest flow rates) do not exceed two
particle diameters.

As an example, in Fig. 3(b) we plotted trajectories obtained
from our Langevin simulations for the identical structure as in
Fig. 3(a). Compared to the experimental data, the simulations
cover a time interval that is about 40 times larger. In particular,
the simulated trajectories are able to explore stagnant regions
more thoroughly and thus provide realistic information about
the structure of the sample. Typically more than 10 000 particle
trajectories with durations corresponding to more than 107 s
each were used for the FPTD as discussed below.

IV. RESULTS AND DISCUSSION

A. First-passage time distributions

Figure 4 shows the FPTD obtained for samples with
decreasing porosity φo and for Péclet numbers Pe =
128, 64, 32, 16 [24]. For the structure with the highest porosity,
φo = 0.900, the corresponding FPTD are shifted toward larger
first-passage times T and also become considerably broadened
with decreasing Péclet number [Fig. 4(a)]. The broadening is
simply caused by the fact that at smaller Pe the particles’
retention times inside the structure increase, and thus the
overall dispersion during the passage of particles through
the structure is enhanced. Since the velocity field of such
high-porosity samples is rather homogeneous [see Fig. 2(a)],
the ADE [Eq. (1)] should be applicable to describe the
particle dynamics. Indeed the analytical expression of the
FPTD as derived from the ADE is in perfect agreement
with our measurements, as seen by the symbols in Fig. 4(a).
Consequently, when the FPTD for different Péclet numbers
are plotted on a logarithmic scale, they should only differ by
a horizontal shift but otherwise should remain unchanged [3].
This is in agreement with our results [inset of Fig. 4(a)].

(c)

(b)

(a)

FIG. 4. (Color online) Measured FPTD for different Pe for three
different structures (solid lines). The insets show the same data but
on a logarithmic time scale. (a) Corresponds to φo = 0.900, (b) to
φo = 0.582, and (c) to φo = 0.232. The open symbols correspond
to fits to the ADE. The highest Pe (black line) was 128 and each
consecutive Pe decreases by a factor of two.

In contrast, the corresponding FPTD for samples with
lower porosities φo = 0.582 and 0.232 are not correctly
described by Eq. (1). In particular, the ADE is unable to
reproduce the clearly visible long-time tails in Figs. 4(b)
and 4(c). The occurrence of long-time tails is often explained
by the inhomogeneities in the velocity field, which indeed
increase with decreasing porosity [25]. This, however, is not
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in agreement with our experiments [see insets of Figs. 4(b)
and 4(c)], which clearly show that the observed long-time
tails are rather independent of the Péclet number. Instead, our
observations suggest that these tails are caused by particles
that were temporarily trapped in stagnant areas. Once a particle
enters such a quiescent region, its dynamics is decoupled from
the liquid flow through the sample until it escapes from such
areas. During this time, its dynamics should be independent
of the Péclet number, which indeed is in accordance with the
long-time tails in Figs. 4(b) and 4(c).

B. Comparison with theory

Since the diffusive motion and escape probability of small
particles in confined domains is important in many disciplines
(e.g., in cell biology where the mean escape time is related to
the time a molecule needs to hit a target binding site [26]). This
problem has been theoretically studied in some detail [27,28].
In general, the mean residence time τ of a particle, which
diffuses within a confined domain and can escape through an
exit pore, depends on the starting position. It has been shown
that the dependence on the distance r between starting position
and exit pore is rather weak, i.e., ln(r/a). where a is the size
of the exit pore [28]. For exit pores that are small compared to
the total boundary of the domain, however, τ does not depend
on the initial position except for a small boundary layer near
the exit pore [29]. If the particle does not diffuse across the
boundary layer, τ becomes rather small and therefore has only
a very weak effect on the FPTD. Once a particle diffuses
across this boundary layer, the escape time thus becomes a
well-defined quantity that is given by

τ = A

πD0

[
ln

(
P

d

)
+ 1

]
. (3)

Here, A and P describe the area and perimeter of the
domain and d is the length of the exit pore. To obtain these
quantities for our low-porosity samples, we first identified
stagnant regions by application of a velocity threshold, as
shown by the bright regions in Figs. 5(a) and 5(b). The contours
of stagnant regions were obtained from the microscope images.
To minimize discretization errors, we applied a marching
squares algorithm [30] to determine A, P , and d. From the
experimentally determined distribution of A, P , and d, Eq. (3)
yields a distribution N (τ ) of mean residence times [inset
Fig. 5(c)] of the colloidal particles in the stagnant areas of our
samples. We have validated Eq. (3) by numerical simulations,
where we released diffusing particles at random positions
within a stagnant part and calculated their escape times. Except
for very small stagnant areas, where Eq. (3) might not be
applicable, only small deviations have been found. In order to
calculate first-passage times T from such data, without taking
into account all the intricacies of the transport process, one has
to add the mean advection time τA, i.e., the time a particle needs
to flow through the sample without being trapped in stagnant
areas. The advection time corresponds approximately to the
position of the maxima in the corresponding FPTD [31] as
confirmed by comparison of first-passage times of particles,
which never entered a stagnant region.

Figure 5(c) shows the first-passage times obtained from
Eq. (3) for φo = 0.582 and φo = 0.232 for Pe = 128 as solid

(a) (b)

(c)

FIG. 5. (Color online) Flowing parts (dark blue) and stagnant
parts (white) of (a) the structure with φo = 0.582 and (b) φo = 0.232.
(c) Calculated FPTD due to stagnant parts for φo = 0.582 (gray) filled
bars and φo = 0.232 (red) open bars. Solid (black) and dashed lines
(red) show the measured FPTD for Pe = 128 for the structure with
φo = 0.582 and φo = 0.232, respectively. (Inset c) Distribution of
calculated mean residence times in stagnant parts.

(gray) and open (red) bars, respectively. For comparison we
added the measured FPTD for these samples, taken from
Figs. 4(b) and 4(c), as solid (black) and dashed (red) lines.
Although the calculated and measured FPTD do only seem to
moderately agree, it should be realized that in particular the
largest values of the measured and calculated FPTD are almost
identical. Given the simplicity of our assumptions and the fact
that the retention times vary over more than four orders of
magnitude, an accordance within a factor of two is remarkable.
This good agreement suggests that the complex motion of
particles through random porous media can be understood
by superposition of a deterministic, flow-dependent advective
contribution and a part which is independent of the Péclet
number, the latter being caused by diffusion within stagnant
regions. To appreciate how well our model compares to our
experimental data, one also has to recall that our calculations
assume that each particle becomes trapped only once within a
stagnant zone. As will be shown, multiple trapping frequently
occurs but only has a small effect on the long-time tails. In
addition, the calculations are based on the mean residence
time for a given stagnant area. Accordingly, such mean values
cannot be expected to agree better with experimental data than
the standard deviation of the escape time distribution, which
equals its mean value.

C. Influence of multiple trapping

We also calculated from the trajectories the average number
of stagnant zones n̄ visited by a particle while flowing through
the structure. In Fig. 6(a) we show this distribution for
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FIG. 6. (Color online) (a) Distribution of number of visited stag-
nant parts n, (b) fraction ε of time spent in largest stagnant part for
φo = 0.232 and Pe = 128. (Inset) Average number of visited stagnant
zones n̄ vs. Pe for φo = 0.232.

φo = 0.232 and Pe = 128. From this it becomes obvious that
multiple trapping events frequently occur. In addition, we also
investigated the Pe-dependence of n̄, which is shown as the
inset of Fig. 6(a). With increasing Pe, n̄ rapidly decreases
from 10.6 to 4.4.

To understand why multiple trapping in stagnant areas is
still negligible in our samples for the long-time tails in the
FPTD, it should be realized that the mean residence times
of stagnant regions are not uniformly distributed [inset of
Fig. 5(c)]. Therefore, long first-passage times require the
trapping in the very few, but largest stagnant areas. This can
be quantified by the parameter ε, which is defined by the
time spent in the stagnant part with the longest residence
time relative to the total duration spent in all visited stagnant
areas. Figure 6(b) shows the probability distribution of ε for
Pe = 128 for first-passage times T � 105s, corresponding to
the long-time tail in the FPTD. It can be clearly seen that at such
large times trapping in a single, large stagnant area dominates

the overall residence time. The dominance of a single stagnant
area is also valid over the whole range of first-passage times
(the mean value of ε amounts to about 80%). This provides
a posteriori a solid justification for the applicability of our
simple model.

V. CONCLUSIONS AND SUMMARY

Since a corresponding expression for the residence time
is also available for three-dimensional domains [29], our
approach should apply to realistic porous media. Apart from in-
organic materials this also includes biological systems, e.g., the
brain tissue which can be modeled as a porous medium where
the physiological response time of dissolved drugs depends on
the morphological structure [26,32]. When the results of FPTD
are combined with other morphological information obtained,
e.g., by capillary pressure measurements [33] or adsorption-
desorption experiments [34], microscopic information about
the structure of porous media and, in particular, the size and
distribution of stagnant parts can be obtained.

In summary, we have measured FPTD of colloidal tracer
particles in quasi two-dimensional porous model structures.
At low porosities, we find long-time tails that are independent
of the Péclet number and agree well with a simple expression
for the mean residence time of particles, which diffuse within
confined domains and escape through a small exit pore. This
suggests a direct relationship between measured FPTD and the
geometry of stagnant regions, which is crucial to understand
the transport of fluids through porous media.
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K. Mecke, and C. Bechinger, Phys. Rev. Lett. 109, 264504
(2012).

[21] M. Auset and A. A. Keller, Water Resour. Res. 40, W03503
(2004).

[22] J. C. Crocker and D. G. Grier, J. Colloid Interface Sci. 179, 298
(1996).

[23] The open porosity φo corresponds to the volume fraction in
which fluid is present; i.e., it neglects closed cavities.

[24] Péclet numbers were determined by Pe = Ul/D0, where u is
the particle velocity taken at the peak of the FPTD.

013025-5

http://dx.doi.org/10.1103/PhysRevE.72.041909
http://dx.doi.org/10.1103/PhysRevE.72.041909
http://dx.doi.org/10.1103/PhysRevE.72.041909
http://dx.doi.org/10.1103/PhysRevE.72.041909
http://dx.doi.org/10.1103/PhysRevE.67.056314
http://dx.doi.org/10.1103/PhysRevE.67.056314
http://dx.doi.org/10.1103/PhysRevE.67.056314
http://dx.doi.org/10.1103/PhysRevE.67.056314
http://dx.doi.org/10.1103/PhysRevLett.88.234501
http://dx.doi.org/10.1103/PhysRevLett.88.234501
http://dx.doi.org/10.1103/PhysRevLett.88.234501
http://dx.doi.org/10.1103/PhysRevLett.88.234501
http://dx.doi.org/10.1063/1.866234
http://dx.doi.org/10.1063/1.866234
http://dx.doi.org/10.1063/1.866234
http://dx.doi.org/10.1063/1.866234
http://dx.doi.org/10.1029/WR023i008p01667
http://dx.doi.org/10.1029/WR023i008p01667
http://dx.doi.org/10.1029/WR023i008p01667
http://dx.doi.org/10.1029/WR023i008p01667
http://dx.doi.org/10.1016/S0169-7722(02)00204-8
http://dx.doi.org/10.1016/S0169-7722(02)00204-8
http://dx.doi.org/10.1016/S0169-7722(02)00204-8
http://dx.doi.org/10.1016/S0169-7722(02)00204-8
http://dx.doi.org/10.2118/14364-PA
http://dx.doi.org/10.2118/14364-PA
http://dx.doi.org/10.2118/14364-PA
http://dx.doi.org/10.2118/14364-PA
http://dx.doi.org/10.1103/PhysRevE.57.5858
http://dx.doi.org/10.1103/PhysRevE.57.5858
http://dx.doi.org/10.1103/PhysRevE.57.5858
http://dx.doi.org/10.1103/PhysRevE.57.5858
http://dx.doi.org/10.1063/1.857602
http://dx.doi.org/10.1063/1.857602
http://dx.doi.org/10.1063/1.857602
http://dx.doi.org/10.1063/1.857602
http://dx.doi.org/10.1063/1.857720
http://dx.doi.org/10.1063/1.857720
http://dx.doi.org/10.1063/1.857720
http://dx.doi.org/10.1063/1.857720
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
http://dx.doi.org/10.1146/annurev.matsci.28.1.153
http://dx.doi.org/10.1007/s00348-012-1362-9
http://dx.doi.org/10.1007/s00348-012-1362-9
http://dx.doi.org/10.1007/s00348-012-1362-9
http://dx.doi.org/10.1007/s00348-012-1362-9
http://dx.doi.org/10.1103/PhysRevLett.109.264504
http://dx.doi.org/10.1103/PhysRevLett.109.264504
http://dx.doi.org/10.1103/PhysRevLett.109.264504
http://dx.doi.org/10.1103/PhysRevLett.109.264504
http://dx.doi.org/10.1029/2003WR002800
http://dx.doi.org/10.1029/2003WR002800
http://dx.doi.org/10.1029/2003WR002800
http://dx.doi.org/10.1029/2003WR002800
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1006/jcis.1996.0217
http://dx.doi.org/10.1006/jcis.1996.0217


FRANK WIRNER, CHRISTIAN SCHOLZ, AND CLEMENS BECHINGER PHYSICAL REVIEW E 90, 013025 (2014)

[25] J. D. Hyman, P. K. Smolarkiewicz, and C. L. Winter, Phys. Rev.
E 86, 056701 (2012).

[26] D. Holcman and Z. Schuss, Rep. Prog. Phys. 76, 074601 (2013).
[27] D. Holcman and Z. Schuss, J. Stat. Phys. 117, 975 (2004).
[28] O. Bénichou and R. Voituriez, Phys. Rev. Lett. 100, 168105

(2008).
[29] Z. Schuss, A. Singer, and D. Holcman, Proc. Natl. Acad. Sci.

USA 104, 16098 (2007).
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