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It was shown by Oberlack and Rosteck [Discr. Cont. Dyn. Sys. S, 3, 451 2010] that the infinite set of multipoint
correlation (MPC) equations of turbulence admits a considerable extended set of Lie point symmetries compared
to the Galilean group, which is implied by the original set of equations of fluid mechanics. Specifically, a new
scaling group and an infinite set of translational groups of all multipoint correlation tensors have been discovered.
These new statistical groups have important consequences for our understanding of turbulent scaling laws as
they are essential ingredients of, e.g., the logarithmic law of the wall and other scaling laws, which in turn are
exact solutions of the MPC equations. In this paper we first show that the infinite set of translational groups
of all multipoint correlation tensors corresponds to an infinite dimensional set of translations under which the
Lundgren-Monin-Novikov (LMN) hierarchy of equations for the probability density functions (PDF) are left
invariant. Second, we derive a symmetry for the LMN hierarchy which is analogous to the scaling group of
the MPC equations. Most importantly, we show that this symmetry is a measure of the intermittency of the
velocity signal and the transformed functions represent PDFs of an intermittent (i.e., turbulent or nonturbulent)
flow. Interesting enough, the positivity of the PDF puts a constraint on the group parameters of both shape and
intermittency symmetry, leading to two conclusions. First, the latter symmetries may no longer be Lie group
as under certain conditions group properties are violated, but still they are symmetries of the LMN equations.
Second, as the latter two symmetries in its MPC versions are ingredients of many scaling laws such as the log
law, the above constraints implicitly put weak conditions on the scaling parameter such as von Karman constant
κ as they are functions of the group parameters. Finally, let us note that these kind of statistical symmetries are
of much more general type, i.e., not limited to MPC or PDF equations emerging from Navier-Stokes, but instead
they are admitted by other nonlinear partial differential equations like, for example, the Burgers equation when
in conservative form and if the nonlinearity is quadratic.
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I. INTRODUCTION

The Lie group theory acts as the foremost guiding principle
to understand and mathematically model new physical laws
to be discovered (see, e.g., Refs. [1,2]). This paper refers to
its application in hydrodynamics. With respect to turbulence
research we are in the convenient position to know three
complete descriptions of turbulence, i.e., the multipoint cor-
relation (MPC) approach [3], the Lundgren-Monin-Novikov
probability density functions (PDF) approach [4], and the
Hopf functional approach [5]. All of them are in rather distinct
form, still allowing for an exhaustive description of statistical
turbulence, at least in principle. Indeed, even though the fact
that a full mathematical treatment is mostly hindered by the
infinite dimensional nature of all of them, it is still possible
to compute the underlying symmetry structure and in turn to
construct special solutions.

One of the authors and his coworkers followed this route
mainly based on the MPC approach, extracting symmetries of
the underlying equations and constructing, mostly for turbulent
wall-bounded shear flows, invariant solutions for the mean
velocity and higher-order correlations [3,6–10]. Only recently,
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in Ref. [3], was it discovered that the MPC hierarchy admits
an infinite number of statistical groups, which was further
extended in Ref. [10] using Lie algebra methods. In Ref. [3]
it was recognized that these groups play an indispensable role
in the construction of various turbulent scaling laws; most
prominently, the first of this infinite row constitutes the basis
for the logarithmic law of the wall. Moreover, in Ref. [11],
the Lie group analysis was extended towards the functional
differential equations in order to extract the symmetries of the
Hopf functional equation. It has been done so far for the case
of the Hopf formulation of the Burgers equation [12].

Most likely R. H. Kraichan should be given the credit for
discovering the first of the infinite many statistical symmetry in
Refs. [13–15], giving it the name random Galilean invariance.
In fact, he recognized this symmetry to be absolutely crucial
to be obeyed by turbulence models and reformulated his direct
interaction approximation (DIA) according to this important
constraint. Finally, it should be noted that the latter symmetry
has been employed by turbulence modelers for decades, though
rather implicitly. Even the earliest statistical turbulence models
such as the eddy-viscosity approach by Prandtl [16] are
consistent with it and one will hardly find any model not
obeying this constraint.

In this paper we present a set of transformations
for the PDFs under which the Lundgren-Monin-Novikov
(LMN) hierarchy is left invariant. However, since these
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transformations correspond to the statistical symmetries found
for the MPC equation in Ref. [3], we first reconsider in Sec. II
the infinite set of multipoint correlation equations (MPCE)
and show that there exist an infinite number of discrete Lie
point symmetries. Then it is in Sec. III that we revisit the
LMN equations for the PDFs of turbulence and, on the basis
of this and the infinite symmetries of the MPCE, we derive
two sets of transformations for the PDFs. We argue that the
derived translation symmetry, modifies the contribution of
laminar solutions in the PDF. The second statistical symmetry
transforms the PDFs into the functions describing intermittent
flow, i.e., a flow where irregular alternations between turbulent
and nonturbulent fluid are observed.

II. MULTIPOINT CORRELATION EQUATIONS

The idea of two- and multipoint correlation equations in
turbulence was presumably first established by Friedmann and
Keller [17]. In the beginning it was assumed that all correlation
equations of orders higher than two may be neglected.
Theoretical considerations led to the result that all higher
correlations have to be taken into account. Consequently, all
multipoint correlation equations have to be considered in the
symmetry analysis to follow.

In order to write the MPC equations in a very compact form,
we introduce the following notation. The multipoint velocity
correlation tensor of order n + 1 (also referred to as multipoint
moment) is defined as follows:

Hi{n+1} = Hi(1)i(2)...i(n+1) = 〈
Ui(1) (x (1),t) · · ·Ui(n+1) (x (n+1),t)

〉
, (1)

where the first index of the H tensor defines the tensor character
of the term and the second index in braces denotes the order
of the tensor. The bracket 〈·〉 refers to a statistical averaging of
Reynolds type and in Sec. III will be defined more precisely
employing the multipoint probability density function. The
connection between H and the mean velocity is simply given
according to Hi{1} = Hi(1) = 〈Ui(1) (x(1),t)〉.

In some cases the list of indices is interrupted by one or
more other indices; this is pointed out by attaching the replaced
value in brackets to the following index:

Hi{n+1}[i(l) �→k(l)] = 〈
Ui(1) (x (1),t) · · · Ui(l−1) (x (l−1),t)Uk(l) (x (l),t)

× Ui(l+1) (x (l+1),t) · · · Ui(n+1) (x (n+1),t)
〉
; (2)

this is further extended by

Hi{n+2}[i(n+2) �→k(l)][x (n+2) �→ x (l)]

= 〈
Ui(1) (x (1),t) · · · Ui(n+1) (x (n+1),t)Uk(l) (x (l),t)

〉
, (3)

where not only the index i(n+1) is replaced by k(l), but also the
independent variable x (n+1) is replaced by x (l). Finally, if the
pressure P is involved, then we write

Ii{n}[l] = 〈
Ui(1) (x (1),t) · · · Ui(l−1) (x (l−1),t)P (x (l),t)

× Ui(l+1) (x (l+1),t) · · · Ui(n+1) (x (n+1),t)
〉
, (4)

which is, together with all the other definitions, sufficient to
derive the MPCE from the Navier-Stokes (NS) equation. The
details of this derivation may be taken from Refs. [3,7]; in the

end the result is

∂Hi{n+1}

∂t
+

n+1∑
l=1

[
∂Hi{n+2}[i(n+2) �→k(l)][x (n+2) �→ x (l)]

∂xk(l)

+ ∂Ii{n}[l]

∂xi(l)

− ν
∂2Hi{n+1}

∂xk(l)∂xk(l)

]
= 0 (5)

for n = 0, . . . ,∞. Loosely speaking, Eq. (5) implies the
statistical information of the NS equations at the expense to
deal with an infinite dimensional chain of differential equations
starting with order 1, i.e., n = 0. The rather remarkable
consequence of the derivation is that (5) is a linear equation,
which considerably simplifies the finding of Lie symmetries
to be pointed out below.

From the continuity equation we may derive related
equations for Hi{n+1} and Ii{n}[l], i.e.,

∂Hi{n+1}[i(l) �→k(l)]

∂xk(l)

= 0, for l = 1, . . . ,n + 1 (6)

and
∂Ii{n}[k][i(l) �→m(l)]

∂xm(l)

= 0, for k,l = 1, . . . ,n + 1 and k �= l.

(7)

A. Classical symmetries of the MPCE

Here we first revisit the Lie symmetries of the MPCE, which
have their roots in the Euler and NS equations. In Sec. II B we
show that the MPCE admit even more Lie symmetries, called
statistical symmetries, which are not reflected in the original
equations.

Presently, we adopt the symmetry notation most common
in the mathematical literature where the new variables are
denoted by an asterisk; as an example, the translation group is
defined as x∗ = x + a, where a ∈ R is the group parameter.
The range of validity for all group parameters to follow will
be omitted. Moreover, the full form of the symmetry will
be given, meaning that all the variables of a given system
will be presented, even if part of them undergoes the identity
transformation.

Adopting the notation given above based on the instanta-
neous quantities, symmetries of classical mechanics rewritten
for the statistical variables have the following form:

T̄1 : t∗ = t + a1, x∗
(l) = x(l), (8)

H∗
{n} = H{n}, I∗{n} = I{n};

(9)
T̄2 : t∗ = t, x∗

(l) = ea2 x(l),

H∗
{n} = ena2 H{n}, I∗{n} = e(n+2)a2 I{n};

(10)
T̄3 : t∗ = ea3 t, x∗

(l) = x(l),

H∗
{n} = e−na3 H{n}, I∗{n} = e−(n+2)a3 I{n};

(11)
T̄4−T̄6 : t∗ = t, x∗

(l) = a · x(l),

H∗
{n} = A{n} ⊗ H{n}, I∗{n} = A{n} ⊗ I{n};

(12)
T̄7−T̄9 : t∗ = t, x∗

(l) = x(l) + f (t),
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H∗
{n} = H{n} +

n∑
b=1

f ′
i(b)

(t)H{n−1}[i(b)→∅],

I∗{n}[l] = I{n}[l] − f ′′
β xβ(l) H{n−1}[l→∅]

+
n+1∑

c=1,c �=l

f ′
i(b)I{n−1}[l][c→∅];

T̄10 : t∗ = t, x∗
(l) = x(l),

H∗
{n} = H{n},

I∗{n}[l] = I{n}[l] + f4(t)H{n}[i(l)→∅], (13)

where f’s are free functions and A is a concatenation of
rotation matrices as Ai(1)j(1)i(2)j(2)...i(n)j(n) = ai(1)j(1)ai(2)j(2) · · · ai(n)j(n)

and each aiαjβ
is a rotating matrix.

B. Statistical symmetries of the MPCE

Actually finding the symmetries of the MPCE is rather
difficult since an infinite system of equations has to be
analyzed. For this task, however, the linearity of the H-I system
(5)–(7) makes the investigation considerably easier.

New symmetries have been identified in Ref. [3] and
slightly extended, using Lie algebra methods, in Ref. [10].
In its most general form it reads

T̄ ′
2{n} : t∗ = t, x∗

(l) = x(l),

H∗
{n} = H{n} + C{n}, I∗{n} = I{n} + D{n}, (14)

with n = 1, . . . ,∞, where C{n} and D{n} refer to group
parameters independent for each of the according tensor
orders. The first one in the row of infinite symmetries (14)
was in fact already identified in Refs. [13–15] and therein
named the random Galilean group,

T̄ ′
2{l} : t∗ = t, x∗

(l) = x(l), H∗
{1} = H{1} + C{1},

H∗
{n} = H{n}, I∗{m} = I{m} + D{m}, (15)

with n = 2, . . . ,∞ and m = 1, . . . ,∞, where H{1} refers to
the mean velocity 〈U(x(1),t)〉 = H{1}. Clearly the notation in
(14) implies an infinite but discrete number of groups since
each tensor has its own independent corresponding group
parameter.

The second statistical group that has been identified denotes
simple scaling of all MPC tensors as may be directly read off
from Eq. (5),

T̄ ′
s : t∗ = t, x∗

(l) = x(l), H∗
{n} = eas H{n}, I∗{n} = eas I{n}.

(16)

It should be finally added that, due to the linearity of the
MPC equation (5), another rather generic symmetry is admit-
ted. This is in fact featured by all linear differential equations
(see, e.g., Ref. [18]) and merely reflects the superposition
property of linear differential equations; therefore it will not
be further employed presently.

III. THE LUNDGREN-MONIN-NOVIKOV APPROACH

As already stated in the Introduction, the LMN approach
is one of the known methods which provide full statistical

description of turbulence. In this approach indeed one assumes
that for the velocity field there exist PDFs which describe the
joint probabilities of measuring contemporarily certain sets
of velocities at multiple points in space. When calculating
mean values thereof, these PDFs play the role of the weighting
measure.

For this, we address the same problem that was introduced
in the seminal paper by Lundgren [4]. Let us therefore take into
consideration an ensemble of incompressible fluids occupying
the entire infinite space R3 and having identical physical
properties but different initial conditions. Let the velocity
field of each member of the ensemble be denoted by U , in
agreement with the notation of the preceding section. It is
assumed that U satisfies the Navier-Stokes and the continuity
equations and that the statistical distribution of U over the
ensemble at the initial time t0 is given. The main goal is
the statistical distribution of the velocity field as it evolves
with time. In order to do so, let us define multipoint PDFs
in the usual way: the one-point PDF f1(x(1),v(1); t) is such
that f1(x(1),v(1); t)dv(1) expresses the probability to measure a
velocity in an infinitesimal interval dv(1) around v(1) at position
x(1) (or, equivalently, the fraction of systems in the esemble
such that the given condition is satisfied). The one-point PDF
can be written as follows:

f1(x(1); v(1),t) = 〈δ(U(x(1),t) − v(1))〉. (17)

Analogously to (17) the two-point PDF, which denotes the
joint probability to measure two given velocities at two defined
points in space at the same time t , can be expressed as follows:

f2(v(1),v(2); x(1),x(2),t)

= 〈δ(U(x(1),t) − v(1))δ(U(x(2),t) − v(2))〉
and so forth. Sometimes the following abbreviation will be
used in this paper [4]:

fn ≡ fn(1, . . . ,n) ≡ fn(v(1), . . . ,v(n); x(1), . . . ,x(n),t).

In the LMN language it is the moments associated to the
PDFs that correspond to the multipoint moments (1) of the
MPC approach, i.e., to the components of the tensor H,

Hi{n+1} ≡ 〈
Ui(1) (x(1),t) · · · Ui(n+1) (x(n+1),t)

〉
=

∫
dv(1) · · · dv(n+1) fn+1 v(1)i(1) · · · v(n+1)i(n+1) . (18)

A. Properties of the PDFs

In order for the previously defined PDFs to be well defined
from a physical point of view, they are required to satisfy four
conditions as follows [4]:

(1) the reduction or normalization property imposed by the
concept of probability:∫

dv(1)f1(v(1); x(1),t) = 1;∫
dv(1)f2(v(1),v(2); x(1),x(2),t) = f1(v(1); x(1),t); (19)

...
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(2) an infinite number of “continuity” conditions dictated
by the incompressibility of the fluid:

∇(i) ·
∫

dv(i) v(i) fn = 0, ∀i ∈ {1, . . . ,n}; (20)

(3) the “coincidence” property, required by the condition
for the velocity field to be well defined:

lim
|x(1)−x(2)|→0

f2(1,2) = f1(1) δ(v(2) − v(1)),

lim
|x(1)−x(3)|→0

f3(1,2,3) = f2(1,2) δ(v(3) − v(1)); (21)

...

(4) the “separation” property (here shown only for the two-
point PDF) which expresses the fact that the velocities of two
fluid elements tends to become independent if the two points
are set far apart from each other:

lim
|x(1)−x(2)|→∞

f2(1,2) = f1(1)f1(2). (22)

B. The LMN hierarchy

From the NS equations [∂t + U (x,t) · ∇] U (x,t) =
−∇P (x,t) + ν�U (x,t), where the density has been absorbed
into the definition of the pressure P , the LMN equations follow
[4,19,20]. The first equation of the infinite hierarchy reads

[∂t + v(1) · ∇(1)]f1

= ∇v(1) ·
[ ∫

dx(2)

(
∇1

1

4π |x(1) − x(2)|
)

×
∫

dv(2)(v(2) · ∇(2))
2f2

]

−∇v(1) ·
[

lim
|x(2)−x(1)|→0

ν�2

∫
dv(2)v(2)f2

]
, (23)

and the n-th equation of this hierarchy is given by the
following:[

∂t +
n∑

i=1

v(i) · ∇(i)

]
fn

=
n∑

j=1

∇v(j ) ·
[ ∫

dx(n+1)

(
∇j

1

4π |x(j ) − x(n+1)|
)

×
∫

dv(n+1)(v(n+1) · ∇(n+1))
2fn+1

]

−
n∑

j=1

∇v(j ) ·
[

lim
|x(n+1)−x(j )|→0

ν�n+1

∫
dv(n+1)v(n+1)fn+1

]
,

(24)

where ∇v(j ) denotes the differential operator with respect to
v(j ), while ∇j and �j , operators with respect to x(j ). Hence,
the LMN hierarchy constitutes an infinite chain of equations
where, on the n-th level, the unknown n + 1-point PDF is
present. As it was pointed in [21] the chain can be formally
truncated at the n-th level by replacing the terms with fn+1

by conditional averages. For the one-point PDF equations
and in the case of homogeneous, isotropic turbulence these

conditionally averaged quantities were estimated based on the
DNS data in Refs. [22,23] in order to study the deviations of
the PDF from Gaussianity.

C. Classical symmetries of LMN hierarchy

In this subsection we discuss the invariance of the LMN
hierarchy (24) under time and space translations, scaling,
Galilean transformations, and extended Galilean transforma-
tions [24].

The invariance under time cf. (8) and space translations can
be very easily inspected. Equation (24) for ν = 0 is invariant
under two scaling groups,

T̄2 : t∗ = t, x∗
(l) = ea2 x(l), v∗

(l) = ea2v(l) (25)

f ∗
n = e−3na2fn, f ∗

n+1 = e−3(n+1)a2fn+1,

T̄3 : t∗ = ea3 t, x(l) = x(l), v∗
(l) = e−a3v(l) (26)

f ∗
n = e3na3fn, f ∗

n+1 = e3(n+1)a3fn+1,

which can be compared to the analogous symmetry of the
MPCE, cf. (9) and (10). The scaling of the PDFs fn and fn+1

assures that the normalization property (19) is satisfied for
both transformed functions f ∗

n and f ∗
n+1. In the viscous case

the two above symmetries reduce to one scaling group with
a3 = 2a2.

As regards the Galilean transformations t∗ = t , x∗
i = xi +

v0 t , and v∗
i = vi + v0, where v0 is a constant vector, the right-

hand side of (24) is easily shown to be invariant. Let us start
with the last term, the viscous one. The extra term that we get
reads as follows:

lim
|x(n+1)−x(i)|→0

�n+1

∫
dv(n+1)v0 fn+1

= v0 lim
|x(n+1)−x(i)|→0

�n+1fn = 0, (27)

where we have used the “reduction” condition (19).
As regards the pressure-gradient term, the extra terms that

we obtain are two, namely

2
n∑

i=1

∂

∂vi

·
∫

dxn+1

(
∇i

1

|xi − xn+1|
)

×
∫

dv(n+1)[(v0 · ∇n+1)(v(n+1) · ∇n+1)]fn+1 (28)

and
n∑

i=1

∂

∂vi

·
∫

dxn+1

(
∇i

1

|xi − xn+1|
)

×
∫

dv(n+1) (v0 · ∇n+1)2 fn+1. (29)

In both cases, performing the integration over the sample space
velocity variable v(n+1), we end up with a null contribution: in
(28) by exploiting the continuity property (20), while in (29)
the reduction one (19).

At the left-hand side of (24) the translation of the velocities
yields the following extra term:

v0 ·
n∑

i=1

∇ifn. (30)
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However, the transformation of the time and the spatial
coordinates imply ∂t∗ = ∂t − v0 · ∑n

i=1 ∇i , where we have
considered summations up to the index n because all further
terms give null contributions. Therefore this extra term
eliminates (30) and the Galilean invariance is restored.

The extended Galilean transformations [24] read t∗ = t ,
x∗ = x + y(t) and u∗ = u + y′(t), where the vector y is time
dependent, but again always along the same direction. Substi-
tuting the transformed variables back into the NS equation, we
find that the pressure must undergo the transformation

p∗ = p − x · y′′(t), (31)

in order for the NS equation to be invariant. However, the trans-
formation (31), being not bounded in R3, is not compatible
with the integral representation of the pressure-gradient term
that is present in the LMN hierarchy; the extended Galilean
invariance is therefore broken.

D. Statistical symmetries of the LMN hierarchy

The content of this section represents the key contribution
of this paper, namely we discuss a set of transformations for
the PDFs under which the LMN equations (24) turn out to
be invariant and which corresponds to the set of statistical
symmetries (14) and (16) found for the MPCE, where the
moments H are, respectively, shifted by a constant and scaled.
For simplicity we will consider the first equation in the LMN
hierarchy, i.e., Eq. (23) where only the one- and two-point
PDFs are present. The generalization to the n-point PDF will
be given in the Appendix.

1. Shape symmetry

In order to introduce these transformations, let us recall
the relation (18) between the MPC tensors and the moments
associated to the PDFs. The statistical symmetry (14) for the
one-point moments can be written down in terms of the one-
point PDF f1 as follows:[∫

dv(1)f1 v(1)i(1) · · · v(1)i(n)

]∗

=
∫

dv(1) f1 v(1)i(1) · · · v(1)i(n) + Ci(1)...i(n)

= 〈
Ui(1) (x(1),t) · · ·Ui(n) (x(1),t)

〉 + Ci(1)...i(n) . (32)

As it will be shown further below such transformation of
statistics follows from the transformation (translation) of the
PDF. As the following considerations concern the one-point
PDF function as an example we will skip the index (1) and
write, e.g., x instead of x(1) The PDF can be represented as a
Fourier transform of the characteristic function 	1 [24],

f1(v; x,t) = 1

(2π )3

∫
dse−iv·s	1(s; x,t) (33)

or, in other words,

	1(s; x,t) =
∫

f1(v; x,t)eiv·sdv = 〈eiU(x,t)·s〉. (34)

The Taylor-series expansion of this function is

	1(s; x,t) = 1 + ∂	1

∂si(1)

∣∣∣∣
s=0

si(1) + 1

2!

∂2	1

∂si(1)∂si(2)

∣∣∣∣
s=0

si(1)si(2)

+ 1

3!

∂3	1

∂si(1)∂si(2)∂si(3)

∣∣∣∣
s=0

si(1)si(2)si(3) + · · · (35)

with summation over repeating indices i(1),i(2),i(3), . . . , =
1, . . . ,3. On the other hand, the one-point velocity statistics
can be calculated as the n-th order derivative of 	1 at the
origin

∂	1

∂si(1)

∣∣∣∣
s=0

= i
〈
Ui(1) (x,t)

〉
,

(36)
∂2	1

∂si(1)∂si(2)

∣∣∣∣
s=0

= (i2)
〈
Ui(1) (x,t)Ui(2) (x,t)

〉
,

∂3	1

∂si(1)∂si(2)∂si(3)

∣∣∣∣
s=0

= (i3)
〈
Ui(1) (x,t)Ui(2) (x,t)Ui(3) (x,t)

〉
, . . . .

(37)

Hence,

	1 = 1 + i
〈
Ui(1) (x,t)

〉
si(1)

− 1

2!

〈
Ui(1) (x,t)Ui(2) (x,t)

〉
si(1)si(2) + · · · . (38)

which is also the Taylor series expansion of the exponent
〈exp (is · U(x,t))〉 from Eq. (34). If we write this Taylor series
for the transformed characteristic function 	∗

1 and substitute
the translation symmetry of moments (14) we obtain

	∗
1(s; x,t) = 	1(s; x,t) + iCi(1)si(1) − 1

2!
Ci(1)i(2)si(1)si(2) − 1

3!
iCi(1)i(2)i(3)si(1)si(2)si(3) · · · .︸ ︷︷ ︸

φ(s)

(39)

The underbraced sum is the Taylor series expansion of a
function φ(s) which equals 0 at the origin and its derivatives at
the origin equals, respectively, iCi(1) , −Ci(1)i(2) , −iCi(1)i(2)i(3) , and
so on. If Eq. (39) is substituted into Eq. (33), the transformed
PDF reads

f ∗
1 (v; x,t) = f (v; x,t) + 1

(2π )3

∫
dse−iv·sφ(s)

= f1(v; x,t) + ψ(v), (40)

where ψ(v) is an inverse Fourier transform of φ(s) and∫
dvψ(v) = 0, (41)

which follows from the fact that φ(0) = 0. Note that neither
φ(s) nor ψ(v) depend on x or time t .

In the appendix the above considerations are generalized to
the case of the n-point PDF leading to the following form of
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the transformed function:

f ∗
n = fn + ψ(v(1))δ(v(1) − v(2)) · · · δ(v(1) − v(n)). (42)

It can be readily verified that the transformations (42) correspond to the statistical symmetry (14) where the MPC H tensors are
translated. Indeed, under the transformations (42), the moments of the PDFs are mapped to the following:〈

Ui(1) (x(1),t) · · ·Ui(n) (x(n),t)
〉∗ ≡

(∫
dv(1) · · · dv(n)fnv(1)i(1) · · · v(n)i(n)

)∗
= 〈

Ui(1) (x(1),t) · · ·Ui(n) (x(n),t)
〉

+
∫

dv(1) · · · dv(n)ψ(v(1)) δ(v(1) − v(2)) · · · δ(v(n) − v(n−1)) v(1)i(1) · · · v(n)i(n)

= 〈
Ui(1) (x(1),t) · · ·Ui(n) (x(n),t)

〉 + ∫
dv(1) ψ(v(1)) v(1)i(1) · · · v(1)i(n) = H{n} + C{n}. (43)

Let us first examine as follows which conditions the
above transformed functions have to satisfy in order to be
an acceptable PDF:

(1) The coincidence property (21) is satisfied by the
transformed PDFs (42).

(2) Because of the probabilistic interpretation of the PDFs,
it is locally required that

fn + ψ(v(1))δ(v(1) − v(2)) · · · δ(v(1) − v(n)) � 0,

∀v ∈ R3,∀x ∈ R3, (44)

while the normalization condition globally imposes∫
dv [f1(v; x,t) + ψ(v)] = 1, ∀x ∈ R3, (45)

from which, recalling the normalization condition (19) for f1,
we get ∫

dv ψ(v) = 0, (46)

which agrees with Eq. (41).
(3) The divergence or continuity condition (20) is satisfied,

since ψ does not depend on the space variable.
(4) The separation property (22) is not satisfied, as the

transformation of the PDF is independent of the spatial variable
and thus cannot satisfy this limiting behavior. On the other
hand, let us note that, while it is reasonable to require this
property, this is never used in the derivation of the equations
of the LMN hierarchy. Moreover, this property is not satisfied
by the corresponding symmetries of the MPC equations, either.

Finally, let us show that the LMN equations (24) are
invariant under the transformations (42). Let us begin with the
left-hand side: since ψ is independent of the space variables
and of t , we get no extra term. On the right-hand side, we have
to take into account two terms, the pressure-gradient one and
the viscous one.

As regards the pressure-gradient term, again exploiting the
fact that we add a function to the transformed PDF fn+1, which
does not depend on the space variable, namely ψ(v(1))δ(v(1) −
v(2)) · · · δ(v(n) − v(n+1)), we get a null contribution when the
differential operator ∇n+1 is applied to it.

As regards the viscous term, using the function δ(v(n+1) −
v(n)) the integral over v(n+1) can be carried out, leaving
us with something which does not depend on xn+1; the

application therefore of the derivatives with respect to xn+1

yields a null contribution. The equations of the hierarchy
are therefore invariant with respect to the transformations
(42).

Hence it follows from (42) and (43) that the function ψ

which satisfies the conditions (44) and (46) uniquely deter-
mines the set of constants C{1},C{2}, . . . , for the translation
of the H tensors as in (14). The function ψ , constant in
space and time modifies the shape of the PDF and for
this reason we will further call it the “shape” symmetry.
We also note in passing that the analog of the statistical
symmetries (14) for the MPC equations and symmetries (42)
for the LMN hierarchy exists also in the Hopf functional
formulation [12]. This creates a remarkable symmetry between
the three different approaches to the full description of
turbulence.

An important question to be asked here is if the trans-
formation (42) together with the conditions (44) and (46)
is a Lie group (see, e.g., Ref. [18]), i.e., if it satisfies the
four group axioms, namely closure, associativity, identity, and
invertibility. The function f ∗

n transformed according to (42) is
always a solution of Eq. (24) also for, e.g., a transformation
with the inverse element of ψ(v(1)). However, such f ∗

n may
not be a PDF any longer, as it may have negative values.
For the same reason the associativity axiom may not be
satisfied. Hence, the transformation (42) is a Lie group if
arbitrary solutions of Eq. (24) are considered. However, if
we take into account only such solutions which are PDFs,
the group properties are not satisfied due to the condition
(44) for the transformed PDF. Then (42) may not necessary
be a Lie group but still is a symmetry of the LMN equation
Eq. (24).

With this, we also note that the constants C{1},C{2} . . .

obtained in Eq. (43) are not arbitrary but due to the condition
(44) on the functions f ∗

n and ψ we expect that they might be
contained within a certain range. We conclude that considering
the symmetries of the LMN hierarchy provides additional
restrictions on the group parameters which were not observed
in the MPC approach.

In order to derive these restrictions we attempt to find
a physical interpretation of the shape symmetry. We start
with the observation that the n-point PDF of a laminar field
constant in space and time U {ω}

0 where ω is an element from
the probability space (i.e., U {ω}

0 can differ in different flow
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realizations) reads

fL(v(1), . . . ,v(n); x(1), . . . ,x(n),t)

= 〈
δ
(
v(1) − U {ω}

0

) · · · δ(v(n) − U {ω}
0

)〉
= 〈

δ
(
v(1) − U {ω}

0

)〉
δ(v(2) − v(1)) · · · δ(v(n) − v(1))

= f (v(1))δ(v(2) − v(1)) · · · δ(v(n) − v(1)). (47)

If both laminar and turbulent solutions are elements of the
ensemble, then the PDF can be written as a sum of a turbulent
and laminar part f = gT + gL, where

gL = g(v(1))δ(v(2) − v(1)) · · · δ(v(n) − v(1)), (48)∫
dv(1)gL = a � 1. Let us compare Eq. (48) with the shape

symmetry (42). Due to the condition (41) the translation
function in (42) has, at a certain range of v(1), negative and
infinite values at the diagonal v(2) = v(1), v(3) = v(1), and so
on. Hence, we come to the conclusion that for a nonzero
function ψ the transformed PDF f ∗

n could be non-negative
only if the function fn would contain a laminar part (48)
which is also infinite at v(2) = v(1), v(3) = v(1) for arbitrary
separations x(2) − x(1), x(3) − x(1), and so on. Equation (42)
would then transform the laminar part of the PDF such that we
would obtain f ∗ = gT + g∗

L = gT + gL + ψ , where g∗
L � 0.

This also explains why the separation property (22) is not
satisfied by the shape symmetry, namely, this property refers to
the turbulent part of the PDF only. We argue that the restrictions
on the constants C{1},C{2}, . . . , will follow from the range
of laminar solutions for velocity realizable in the given flow
configuration. We address here the particular case of the fully
developed plane Poiseuille channel flow. Due to the presence
of the nonmoving boundaries the laminar part of the PDF takes
the form

fL(v(1), . . . ,v(n); x(1), . . . ,x(n),t)

=
〈
δ

[
v(1) − U {ω}

0

(
1 − y2

(1)

H 2

)]

· · · δ
[
v(n) − U {ω}

0

(
1 − y2

(n)

H 2

)]〉
, (49)

where U {ω}
0 = [U {ω}

0 ,0,0] is the streamwise velocity in the
centerline and y(k) = x(k)2 is the wall-normal coordinate.
Using properties of the δ function the above equation can be
rewritten as

fL(v(1), . . . ,v(n); x(1), . . . ,x(n),t) (50)

= F (y(1), . . . ,y(n))
〈
δ
(
v′

(1)−U {ω}
0

)〉
δ(v′

(2)−v′
(1)) · · · δ(v′

(n)−v′
(1))

= F (y(1), . . . ,y(n))f (v′
(1))δ(v′

(2) − v′
(1)) · · · δ(v′

(n) − v′
(1)),

(51)

where

F (y(1), . . . ,y(n)) =
(

1 − y2
(1)

H 2

)−1

· · ·
(

1 − y2
(n)

H 2

)−1

(52)

and for each k

v′
(k)1 = v(k)1

(
1 − y2

(k)

H 2

)−1

, v′
(k)2 = v(k)2, v′

(k)3 = v(k)3.

(53)

If we compare Eq. (50) with Eqs. (47) and (42) it follows that
the shape symmetry in the channel flow has the following form:

f ∗
n = fn + F (y(1), . . . ,y(n))ψ(v′

(1))δ(v′
(1) − v′

(2))

· · · δ(v′
(1) − v′

(n)). (54)

Such a function gives rise to the following translations of the
moments:

〈U1(x(1),t) · · ·U1(x(n),t)〉∗
= 〈U1(x(1),t) · · · U1(x(n),t)〉

+ C1...1

(
1 − y2

(1)

H 2

)
· · ·

(
1 − y2

(n)

H 2

)
. (55)

In this case only the C1...1 component of the translation tensor
C{n} is nonzero. Moreover, the translation tensor depends now
on wall-normal coordinates y(1), . . . ,y(n). In order to assess
the limits for the translation coefficients we assume that
laminar solutions in the channel are realizable up to a certain
critical Reynolds number Recr and hence up to a certain
maximal centerline velocity U0cr. In such a case the support
of the function ψ(v′

(1)) from Eq. (54) is restricted to −U0cr �
v′

1(1) � U0cr, hence −U0cr(1 − y2
(1)

H 2 ) � v1(1) � U0cr(1 − y2
(1)

H 2 ).
Such a transformation of the PDF is sketched in a schematic
in Fig. 1. We note here that in order to satisfy the property
(46) the ψ function must have a null integral.

The ranges of possible values of coefficients C1...1 from
(55) can be found by considering the extremum case where
the one-point PDF f1 = fL = F (y(1))δ(v′

(1) ± U0cr) before the
transformation and f ∗

1 = f ∗
L = F (y(1))δ(v′

(1) ∓ U0cr), after the
transformation. Such a case corresponds to the extremum
velocity at the centerline ∓U0cr before and ±U0cr after the
transformation. Hence, we find that the coefficients C1...1 are
contained within the following ranges:

− 2U0cr � C1 � 2U0cr, (56)

− U 2
0cr � C11 � U 2

0cr, (57)

− 2U 3
0cr � C111 � 2U 3

0cr, (58)

. . . (59)

Moreover, additional restrictions on the parameters will follow
from the fact that both f1 and f ∗

1 must be realizable and satisfy
the properties of the PDF, in particular being non-negative.
If we knew explicitly the PDF describing the plane channel
flow or, equivalently, all velocity statistics as, e.g. invariant
solutions of the LMN or MPC hierarchy, then the restrictions
on the translation function F (y)ψ(v′) could be derived.

2. Intermittency symmetry

Next, we derive an analog of the scaling symmetry of the
MPC (16) in the PDF approach. We also make use of the
Taylor series representation of the characteristic function (38).
The characteristic function 	1, transformed according to (16),
reads

	∗
1 = 1 + ieas

〈
Ui(1) (x,t)

〉
si(1)

− 1

2!
eas

〈
Ui(1) (x,t)Ui(2) (x,t)

〉
si(1)si(2) + · · · . (60)
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FIG. 1. (a) Initially symmetric PDF f (v; x,t) (solid line), function ψ(v) (dashed line). (b) Transformed, nonsymmetric PDF f ∗(v; x,t) =
f (v; x,t) + ψ(v).

We note that the symmetry (16) transforms moments of the
velocity, starting from the first-order moment, whereas the first
term in the above Taylor series expansion is in fact the normal-
ization of the PDF [	n(0) = 1, hence

∫
dv(1) . . . dv(n)fn = 1].

This term cannot be scaled in order not to violate the properties
of the PDF. Substituting (60) into Eq. (33) we obtain the
transformed PDF, which can be written in the following form:

f ∗
1 (v; x,t) = δ(v) + 1

(2π )3
eas

∫
dse−iv·s

[
i
〈
Ui(1) (x,t)

〉
si(1)

− 1

2!

〈
Ui(1) (x,t)Ui(2) (x,t)

〉
si(1)si(2) + · · ·

]
,

f ∗
1 (v; x,t) = δ(v) + 1

(2π )3
eas

∫
dse−iv·s(	1 − 1), (61)

f ∗
1 (v; x,t) = δ(v) + eas (fn − δ(v)). (62)

As it is shown in the Appendix, the symmetry (62) may be
extended to the n-point PDF according to

f ∗
n = δ(v(1)) · · · δ(v(n)) + eas [fn − δ(v(1)) · · · δ(v(n))]. (63)

The function f ∗
n must satisfy all the properties of the PDFs.

Hence, we note that
(1)

δ(v(1)) · · · δ(v(n)) + eas [fn − δ(v(1)) · · · δ(v(n))] � 0,

∀v ∈ R3,∀x ∈ R3, (64)

which, for a continuous function fn implies that eas � 1,
hence, as � 0. However, if the initial PDF fn has the form
fn = gn + cδ(v(1)) · · · δ(v(n))), where 0 < c < 1 is a constant
and gn is a continuous function such that

∫
dv(1) . . . dv(n)gn =

1 − c, then the condition (64) for such a function implies that
eas � 1/(1 − c). Apparently, such restrictions for the scaling
parameter as means that the group axioms are not satisfied by
the transformation (63).

(2) The normalization condition (19) is satisfied.
(3) The coincidence property (21) is satisfied as

δ(v(1)) · · · δ(v(n)) = δ(v(1))δ(v(1) − v(2)) · · · δ(v(n−1) − v(n)).
(4) The divergence or continuity condition (20) is satisfied,

since δ(v(1)) · · · δ(v(n)) does not depend on the space variable.

(5) As far as the separation property (22) is concerned,
we note that if the PDF is itself a δ function, then, according
to Eq. (63), f ∗

n (1, . . . ,n) = fn(1, . . . ,n) = δ(v(1)) · · · δ(v(n)).
Hence, if in the far field |x(1) − x(2)| → ∞ the one-point PDF
is a δ function f1(2) = f ∗

1 (2) = δ(v(2)), then the separation
property is satisfied for the scaling invariance,

lim
|x(1)−x(2)|→∞

f ∗
2 (1,2) = eas f1(1)δ(v(2))+(1 − eas )δ(v(1))δ(v(2))

= f ∗
1 (1)δ(v(2)) = f ∗

1 (1)f ∗
1 (2). (65)

If we note that δ(v(1)) · · · δ(v(n)) does not depend on the time
and space variables, we see that the LMN equations (24) are
in fact invariant under the transformation (63). The moments
calculated from the transformed PDFs read〈

Ui(1) (x(1),t) · · · Ui(n) (x(n),t)
〉∗

(66)

=
∫

dvi(1) · · · dvi(n) [fne
as + (1 − eas )δ(v(1)) · · · δ(v(n))]

× v(1)i(1) · · · v(n)i(n)

= eas
〈
Ui(1) (x(1),t) · · · Ui(n) (x(n),t)

〉 = eas H{n}, (67)

which is identical to Eq. (16). In an attempt to find a
physical interpretation of the symmetry transformation (63)
we consider an example of a continuous one-point distribution
f1, cf. Fig. 2. The function f1 − δ(v) is scaled by eas <

1. The transformed PDF f ∗
1 = eas f1 + (1 − eas )δ(v) is a

noncontinuous function with δ at v = 0. Such PDF functions
characterize the intermittent flows (where by “intermittency”
we understand a flow with subsequently changing turbulent
and nonturbulent regimes). With this at hand, we can justify
that the presence of the same scaling exponent eas for velocity
statistics of any order in the MPC equations, cf. Eq. (16),
follows from the averaging of an intermittent signal.

3. Invariant solution for the mean velocity in a plane channel flow

We derive here an invariant solution for the first-order
statistics in the plane channel flow and discuss possible
restrictions of parameters in this solution. With the physical
interpretation of the statistical symmetries presented in this
paper the derivation slightly differs from those presented in
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FIG. 2. (a) δ function subtracted from a PDF. (b) Transformed PDF f ∗(v) = eas f1 + (1 − eas )δ(v).

Refs. [3] and [25], as, finally, a solution of an intermittent
flow, having both laminar and turbulent parts is derived.

We take into account two particular symmetries: classical
scaling of the Navier-Stokes equations y∗ = ek2y and 〈U 〉∗ =
e−k2〈U 〉, where k2 is an arbitrary constant; new scaling
symmetry 〈U 〉∗ = eas 〈U 〉; and translation of the mean velocity
〈U 〉∗ = 〈U 〉 + C1(1 − y2/H 2), cf. Eq. (55), where C1 is
restricted by condition (56). The invariant solution can be
found from the solution of the characteristic equation [25]

d〈U 〉
(as − k2)〈U 〉 + C1(1 − y2/H 2)

= dy

k2y
, (68)

which for as = k2 gives

〈U 〉 = C1

k2
ln(y) + C1

2k2

(
1 − y2

H 2

)
+ C, (69)

where C is a constant. The formula above is, apparently, a sum
of the turbulent and laminar velocity in the plane channel flow.
As the laminar velocity in the centerline is contained within
〈−U0cr,U0cr〉,

− U0cr � C1

2k2
� U0cr. (70)

The coefficients k2, C1 as well as C11, C111, etc., from
Eqs. (56)–(58) will be ingredients of scaling laws for higher-
order velocity moments. We expect that more restrictions on
these coefficients could be derived when considering higher-
order moments and, mutually, the restrictions on coefficients
would provide restrictions on parameters contained in the
scaling laws. Here we only addressed a possible route of
determining the ranges of realizable values of the coefficients;
a complete derivation is, however, left for further work.

IV. SUMMARY AND CONCLUSIONS

In this paper we investigated the LMN hierarchy for the
multipoint PDFs and derived the symmetries for this infinite
set of equations, cf. (42) and (63). They correspond to
the statistical symmetries of the hierarchy of the multipoint
correlation equations, previously derived in Ref. [3], namely
(42) correspond to shifting of the MPC tensors H by constants
and (63) is an analog of the scaling of H. Such correspondences

were expected, with the MPC and the LMN being equivalent
pictures of the same subject, turbulence. However, as already
pointed out in Sec. III D, the properties of the PDFs provide
additional constraints on the transformations, in particular, the
translation coefficients in (42) cannot take arbitrary values
and the exponent eas in (63) should also satisfy certain
condition depending on the shape of the function fn to be
transformed.

Two important conclusions follow from this observation.
First, it is noted that the transformations (42) and (63), and,
consequently, also the transformations of the MPC hierarchy
(14) and (16), do not constitute Lie groups, as some of
the group axioms are not satisfied, e.g., (63) has no inverse
element and forms, instead, a semigroup. Second, with the
above-mentioned constraints on the group parameters of the
shape and intermittency symmetries obtain first-principles
hints which may restrain the values of the scaling-law
parameters such as κ in the classical lag law. Such parameters
are simple functions of the group parameters, in particular
depending on the above-mentioned statistical groups.

Moreover, consider that the LMN hierarchy gives us more
insight into the meaning of the statistical symmetries and on
how it is represented in the sample space of instantaneous
velocity. We considered a PDF with laminar and turbulent parts
for a one-point PDF f = gL + gT such that

∫
dvgL = a and∫

dvgT = 1 − a. It was argued that the symmetry (42) applied
to such a PDF transforms its laminar part, f ∗ = g∗

L + gT , leav-
ing the coefficient a unchanged. The second transformation
of the PDFs (63) distorts them into noncontinuous functions
describing the intermittent flow with changing turbulent and
nonturbulent regimes. It changes in fact the coefficient a, i.e.,
increases or decreases the contribution of laminar velocities in
the PDF. Hence, only by considering the LMN hierarchy did
it become clear that both statistical symmetries are connected
with intermittent turbulent or laminar flows.

Symmetry analysis provides a valuable link between the
mathematics and engineering applications. It has been found
that the prediction ability of engineering models depends on
how many symmetries of the Navier-Stokes and equations
derived thereoff are recovered, and each additional unphysical
symmetry that does not exist in the Navier-Stokes equation
deteriorated the model predictions. The set of statistical
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symmetries which should also be included in turbulence
models allows for further investigation of existing turbulence
closures. In particular, the influence of these symmetries on the
prediction of laminar or turbulent flows, flows with laminar-
turbulent transition, and relaminarization will be investigated.

Finally, we mention that, due to the fact that the LMN
hierarchy is infinite, we cannot prove that our set of symmetries
is complete. Hence, finding new statistical symmetries and/or
proving the completeness of the set of symmetries is a next
task a further study.
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APPENDIX

The n-point characteristic function 	n can be represented as a Fourier transform of the n-point PDF as follows [24]:

fn = 1

(2π )3n

∫
ds(1) · · · ds(n)e

−iv(1)·s(1) · · · e−iv(n)·s(n)	n(s(1), . . . ,s(n); x(1), . . . ,x(n),t) (A1)

and the n-th order moments are calculated as n-th order derivative of 	n at the origin

∂	n

∂si(1) · · · ∂si(n)

∣∣∣∣
s=0

= (i)n
〈
Ui(1) (x(1),t) · · ·Ui(n) (x(n),t)

〉
.

(A2)

Hence, the function 	n can be expanded in a Taylor series yielding

	n = 1 − i

n∑
k=1

3∑
i(1)=1

〈
Ui(1) (x(k),t)

〉
s(k)i(1) (A3)

− 1

2!

n∑
k,l=1

3∑
i(1),i(2)=1

〈
Ui(1) (x(k),t)Ui(2) (x(l),t)

〉
s(k)i(1)s(l)i(2)+ · · · . (A4)

If the above formula is substituted into Eq. (A1), the translation symmetry of the moments (A4) is represented as the following
translation of the PDF with the elements of the tensors C{n} as group parameters,

f ∗
n = fn + 1

(2π )3n

∫
ds(1) · · · ds(n)e

−iv(1)·s(1) · · · e−iv(n)·s(n) ·

×
⎛
⎝−i

n∑
k=1

3∑
i(1)=1

Ci(l){1}s(k)i(1) − 1

2!

n∑
k,l=1

3∑
i(1),i(2)=1

Ci(1)i(2){2}s(k)i(1)s(l)i(2) + · · ·
⎞
⎠ , (A5)

which can be rewritten as

f ∗
n = fn + 1

(2π )3n

∫
ds(1) · · · ds(n)e

−iv(1)·s(1) · · · e−iv(n)·s(n) ·

×
⎛
⎝−i

3∑
i(1)=1

Ci(l){1}
n∑

k=1

s(l)i(1) − 1

2!

3∑
i(1),i(2)=1

Ci(1)i(2){2}
n∑

k,l=1

s(k)i(1)s(l)i(2) + · · ·
⎞
⎠ . (A6)

The term in brackets is a Taylor-series expansion of a function (let us call it φ) of a sum
∑n

k=1 s(k) which equals zero at the origin
[φ(0) = 0] and is uniform in space and time

f ∗
n = fn + 1

(2π )3n

∫
ds(1) · · · ds(n)e

−iv(1)·s(1) · · · e−iv(n)·s(n)φ(s(1) + s(2) + · · · + s(n)), (A7)

which, after the change of the integration variables s = s(1) + s(2) + · · · + s(n) gives

f ∗
n = fn + 1

(2π )3n

∫
dsds(2) · · · ds(n)e

−iv(1)·se−is(2)·(v(2)−v(1)) · · · e−is(n)·(v(n)−v(1))φ(s), (A8)

f ∗
n = fn + ψ(v(1))δ(v(1) − v(2)) · · · δ(v(1) − v(n)). (A9)
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where ψ(v(1)) is an inverse Fourier transform of φ(s) and∫
dv(1)ψ = 0. (A10)

The scaling symmetry of the MPC (16) can be calculated by substituting the transformed moments to Eq. (A3)

	∗
n = 1 + ieas

n∑
k=1

3∑
i(1)=1

〈
Ui(1) (x(k),t)

〉
s(k)i(1) (A11)

− 1

2!
eas

n∑
k,l=1

3∑
i(1),i(2)=1

〈
Ui(1) (x(k),t)Ui(2) (x(l),t)

〉
s(k)i(1)s(l)i(2) + · · · . (A12)

	∗
n = 1 + eas (	 − 1). (A13)

Substituting the above result to (A1) we obtain the transformed, n-point PDF,

f ∗
n = δ(v(1)) · · · δ(v(n)) + eas [fn − δ(v(1)) · · · δ(v(n))]. (A14)
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