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Diffuse-interface modeling of liquid-vapor coexistence in equilibrium drops
using smoothed particle hydrodynamics
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We study numerically liquid-vapor phase separation in two-dimensional, nonisothermal, van der Waals (vdW)
liquid drops using the method of smoothed particle hydrodynamics (SPH). In contrast to previous SPH simulations
of drop formation, our approach is fully adaptive and follows the diffuse-interface model for a single-component
fluid, where a reversible, capillary (Korteweg) force is added to the equations of motion to model the rapid but
smooth transition of physical quantities through the interface separating the bulk phases. Surface tension arises
naturally from the cohesive part of the vdW equation of state and the capillary forces. The drop models all
start from a square-shaped liquid and spinodal decomposition is investigated for a range of initial densities and
temperatures. The simulations predict the formation of stable, subcritical liquid drops with a vapor atmosphere,
with the densities and temperatures of coexisting liquid and vapor in the vdW phase diagram closely matching
the binodal curve. We find that the values of surface tension, as determined from the Young-Laplace equation,
are in good agreement with the results of independent numerical simulations and experimental data. The models
also predict the increase of the vapor pressure with temperature and the fitting to the numerical data reproduces
very well the Clausius-Clapeyron relation, thus allowing for the calculation of the vaporization pressure for this
vdW fluid.
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I. INTRODUCTION

When a homogeneous solution of a given composition is
quenched to below the critical temperature into the unstable
region of the phase diagram, bounded by the coexistence
(or binodal) curve, the separation of the solution into two
different phases may occur either by nucleation or by spinodal
decomposition. In general, many of the basic features of phase
transitions can be understood in the framework of the van der
Waals (vdW) mean-field theory of capillarity [1]. For instance,
nucleation occurs when quenching takes the solution into
the metastable region enclosed by the binodal and spinodal
curves, where the system is thermodynamically unstable to
the growth of large fluctuations only. In contrast, when the
system crosses the locus defined by the spinodal curve into
the unstable region, phase separation occurs spontaneously
without the presence of a nucleation step. This process, known
as spinodal decomposition, results in phase separation even for
infinitesimally small fluctuations with a high interconnectivity
of the two phases [2].

The subject of spinodal decomposition has been reviewed
in depth by many authors [3–6] and much of the current
interest in this field is generated by the utility of several
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alloy systems whose properties are a consequence of this
mode of decomposition [7,8]. Spinodal decomposition has
also been observed in a variety of other materials such as
mineral glasses, mineral solid solutions in geology, steels,
gels, ceramics, and mixtures of polymers and liquids [9–11].
When these systems are quenched from an initial stable state
into one inside the miscibility gap of the phase diagram, they
become unstable against statistical fluctuations that restore
equilibrium, forming during the process a transient pattern of
concentration inhomogeneities. Since the introduction of the
concept of the growth of fluctuations by Cahn and Hilliard
[12,13], there has been an increasing interest in understanding
the dynamics of pattern formation by means of computer
simulation models [14–21].

In this paper, we are primarily concerned with numerical
simulations of liquid-vapor spinodal decomposition in two-
dimensional (2D), nonisothermal, van der Waals drops formed
from an initial square-shaped liquid, using the method of
smoothed particle hydrodynamics (SPH). While most previous
simulations of liquid-vapor phase separation systems has
focused on studying spinodal decomposition in an infinite
expanse of fluid with periodic boundary conditions, only
very few computer models have been reported in the liter-
ature dealing with spinodal decomposition in liquid drops
[22–24]. In particular, Nugent and Posch [22] performed SPH
simulations of a gas-liquid phase transition in subcritical drops
using a vdW equation of state. In their models, surface tension
is not an input parameter because it arises naturally from the
attractive (cohesive) part of the vdW equation of state. In
fact, near the gas-liquid interface, the attractive, long-range,
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interparticle interaction is different between the two phases,
producing a surface force perpendicular to the surface itself and
pointing toward the denser phase. Therefore, in this approach
there is no need to explicitly locate the surface, and then to
calculate the local surface curvature. In contrast, our approach
uses a vdW equation of state combined with the diffuse-
interface model for a single-component fluid [25], where
a stress (Korteweg) tensor, as derived from the Helmholtz
free energy functional, is added to the viscous stress in the
momentum equation to model the rapid but smooth transition
of physical quantities through the interface separating the bulk
phases [25]. This body force is a reversible one and is driven
by the density gradients in the fluid, resulting in spontaneous
phase separation and surface tension. Therefore, inherent in
this formulation is an interfacial width that is determined by
the length scale over which the density changes. Moreover,
at the late stages of phase separation away from the critical
point, when the liquid is separated from the vapor by a
sharp interface, the Korteweg force reduces essentially to the
Marangoni force [26,27]. In this sharp-interface limit, it can be
shown that the interfacial thickness approaches asymptotically
the free-boundary formulation, where the intervening interface
between the bulk fluids is represented by a surface of zero
thickness endowed with physical properties such as surface
tension [25].

The plan of the paper is as follows. The governing
equations are described in Sec. II. In Sec. III we outline
the numerical method and derive stable SPH representations
for the components of the nonequilibrium Korteweg force.
In Sec. IV we present the results of the numerical simula-
tions for a sequence of forming drops undergoing spinodal
decomposition for a range of densities and temperatures. We
first show that the equilibrium densities and temperatures on
the vapor-liquid interface are predicted by the model in
accordance with the Maxwell construction tie-line. Second, we
calculate the surface properties of the vdW drops and compare
the dependence of the surface tension on temperature to
previous simulations and experimental measurements. Finally,
Sec. V summarizes the conclusions.

II. BASIC EQUATIONS AND FORMULATION

The diffuse-interface theory has been developed mainly
to describe the motion of a fluid near its critical point [25].
However, it has also been applied to situations away from
the critical point, where the interfacial thickness approaches
asymptotically that of a free boundary. For general, nonequi-
librium conditions, the motion of a compressible, viscous,
heat-conducting, single-component fluid near its critical point
and in the absence of external forces is described by the
solution of the local conservation laws:

dρ

dt
= −ρ∇ · v, (1)

dv
dt

= 1

ρ
∇ · (T + K), (2)

dU

dt
= 1

ρ
T : ∇v − 1

ρ
∇ · q, (3)

where ρ is the mass density, v is the velocity vector, U is the
specific internal energy, and d/dt denotes the total derivative
with respect to time t . In the above equations T and q are the
viscous stress tensor and the heat-flux vector, given by

T = −pI + η(∇v + ∇vt ) +
(

ζ − 2

d
η

)
(∇ · v)I, (4)

and

q = −κ∇T , (5)

respectively, where the superscript t in Eq. (4) denotes
transposition, p is the isotropic pressure, T is the fluid
temperature, η is the shear viscosity, ζ is the bulk viscosity, κ

is the coefficient of heat conduction, d is the spatial dimension
(d = 2 for 2D flows), and I is the identity tensor. In Eq. (2), K
represents the reversible part of the stress tensor expressed in
terms of the nonequilibrium Korteweg tensor [25,28]

K = K
(
ρ∇2ρ + 1

2 |∇ρ|2)I − K∇ρ∇ρ, (6)

where K is the gradient energy coefficient, which, for
simplicity, we assume to be constant. For a nonuniform single-
component fluid in equilibrium, the form of the Korteweg
tensor can be derived by minimizing the Helmholtz free energy
functional subject to a constraint of constant mass [25]. The
presence of this nonclassical term in the momentum equation
(2) for a two-fluid system allows to model the effects of
capillary forces associated with a diffuse interface. It replaces
the infinitely thin interface of classical models with a diffuse
one which is determined by the continuous variations of an
order parameter (such as the density) in a way that is consistent
with microscopic theories of the interface.

Constitutive equations for the pressure and specific internal
energy must be supplied to close Eqs. (1) to (3). As in Ref. [22],
we adopt the vdW equations of state

p = ρk̄BT

1 − β̄ρ
− ᾱρ2, (7)

and

U = ξ

2
k̄BT − ᾱρ, (8)

which can be used to model the behavior of the fluid under
consideration. These equations were derived from statistical
mechanics as the mean-field limit for the free energy density
of a system of hard particles of radius r0 with a superimposed
long-range, attractive pair potential. Here k̄B = kB/m, ᾱ =
α/m2, β̄ = β/m, and ξ is the number of degrees of freedom for
the particles, where kB is the Boltzmann’s constant, α controls
the strength of the attractive force, β is a constant parameter
that relates to the size of the particle, and m is the particle mass.
In two dimensions, β = 2πr2

0 and ξ = 2. The vdW equations
of state are realistic to display a liquid-to-gas phase transition
similar to that of a real fluid, while the attractive, interparticle
interaction force implicit in the cohesive term results in
a surface tension. In fact, the equilibrium density profile
obtained using Eqs. (6) and (7) represents a smooth transition
from one bulk density to the other over a length scale associated
with the gradient energy coefficient K . Identifying the surface
energy of the liquid-vapor interface at local equilibrium with
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the surface tension coefficient σ , we have that [20,29]

σ = K

∫ ∞

0
(∇ρ)2dl, (9)

where dl is a line element. Hence, σδ is an estimate of the
interfacial energy, where δ is the characteristic thickness of
the interface.

III. SPH EQUATIONS

We use standard SPH, modified with an adaptive density
kernel estimation procedure [30], to solve Eqs. (1) to (3).
Details of the method can be found in Refs. [31–33], where it
has been applied to model finite-amplitude drop oscillations,
drop condensation for a vdW fluid, and compressible flows
with strong shocks.

SPH is a fully Lagrangian, mesh-free method in which the
fluid is represented by a distribution of particles. A particle is
defined to represent a finite volume in continuum scale and
the field variables (and their derivatives) are evaluated at the
position of particles in continuous form by means of a kernel
approximation, which in SPH form is replaced by a summation
over all neighboring particles [34]. With this provision, the
density at particle i can be written as

ρi =
N∑

j=1

mjWij , (10)

where mj is the mass of the neighbor particle j , Wij =
W (|xi − xj |,h) is the kernel (or smoothing) function, and h

is the smoothing length. The summation is taken over all
N particles in the support domain of particle i, including
it. Equation (10) conserves mass exactly and in most SPH
applications it replaces the continuity equation (1).

To preserve variational consistency of the full SPH scheme,
the use of Eq. (10) requires the use of symmetrized SPH rep-
resentations for the momentum and thermal energy equations
[35]

dvi

dt
=

N∑
j=1

mj

(
T′

i

ρ2
i

+ T′
j

ρ2
j

)
· ∇iWij + 2ᾱ

N∑
j=1

mj∇iW
H
ij

+
N∑

j=1

mj

(
KH

i

ρ2
i

+ KH
j

ρ2
j

)
· ∇iW

H
ij , (11)

dUi

dt
= 1

2

N∑
j=1

mj

(
T′

i

ρ2
i

+ T′
j

ρ2
j

)
: (vj − vi)∇iWij

+ ᾱ

N∑
j=1

mj (vj − vi) · ∇iW
H
ij

−
N∑

j=1

mj

(
qi

ρ2
i

+ qj

ρ2
j

)
· ∇iWij , (12)

where T′ = T − ᾱρ2I and WH
ij = W (|xi − xj |,H ) with H �

2h. Equations (10) to (12) must be integrated simultaneously

with the equation

dxi

dt
= vi , (13)

for the instantaneous positions of particles. As was first noticed
by Nugent and Posch [22], we must distinguish between
the short-range and the long-range components of the vdW
equation of state to obtain stable circular drops and handle
surface tension effects properly. Since the cohesive term
−ᾱρ2 in Eq. (7) is responsible for an attractive, long-range,
central force acting between the SPH particles, and since
these forces largely cancel in the bulk phases except in the
neighborhood of the phase boundary, improved interfacial
stability with SPH would demand increasing their interaction
range to H compared to h for all other forces entering the
SPH equations of motion. A similar provision is taken for
the cohesive contribution to heating in the thermal energy
equation. The same is also true for the Korteweg force in
Eq. (11), where KH means that the density and its gradients in
the smoothed representation ofKmust also be calculated using
a longer smoothing length to obtain well-behaved liquid-vapor
coexistence with SPH and avoid the appearance of unstable
attractive forces between particles for some densities and
temperatures [36].

The gradient and divergence of the velocity field involved
in the definition of the viscous stress tensor (4) are evaluated
using the SPH summations

(∇v)i =
N∑

j=1

mj

ρij

(vj − vi)∇iWij , (14)

and

(∇ · v)i =
N∑

j=1

mj

ρij

(vj − vi) · ∇iWij , (15)

respectively, where ρij = (ρi + ρj )/2. A form similar to
Eq. (14) is used to evaluate the temperature gradient for the
heat flux in Eq. (5).

The SPH representation of the Korteweg tensor (6) involves
the approximation of second-order derivatives of the density. A
similar problem arises when trying to solve the heat conduction
equation in cosmological applications [37]. In particular, the
presence of second derivatives makes the standard SPH kernel
interpolation to be noisy and quite sensitive to particle disorder,
which, in turn, can lead to an unstable time integration if large
local gradients arise due to noise [38]. Here we use a method
where the SPH representation of the Laplace operator involves
only first-order derivatives of the smoothing kernel via a Taylor
series expansion of the density field [37,38], which has been
generalized for the approximation of mixed derivatives by
Yildiz et al. [39]. We start by rewriting Eq. (6) in the form

K = K

2

(
ρ∇2ρ + 1

2
∇2ρ2

)
I − K∇ρ∇ρ, (16)

which in Cartesian coordinates involves operator terms
like ∂2/∂x2, ∂2/∂y2, and ∂2/∂x∂y. Following the three-
dimensional procedure outlined in Ref. [39], we can derive a
stable kernel approximation in two dimensions for the second
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spatial derivative as follows:

∂2ρi

∂xk
i ∂xl

i

=
∫

(ρj − ρi)

|xij |
(

4xk
ij x

l
ij

|xij |2 − δkl

)
xl

ij

|xij |
∂Wij

∂xl
i

d2xj ,

(17)

where the integration is taken over the whole plane, xij =
xi − xj , δkl is the delta Kronecker, and k and l are coordinate
indices equal to 1 or 2 such that x1 = x and x2 = y in Cartesian
coordinates. Contracting on indices k and l (with k = l), the
above expression produces the SPH Laplacian approximation

(∇2ρ)i = 2
N∑

j=1

mj

ρj

(ρj − ρi)

|xij |2 xij · ∇iWij , (18)

while for k �= l we obtain the SPH approximation of the mixed
derivative

(
∂2ρ

∂x∂y

)
i

= 4
N∑

j=1

mj

ρj

(ρj − ρi)

|xij |2
xij yij

|xij |2 xij · ∇iWij . (19)

The SPH representations (18) and (19) are much less sensitive
to particle disorder than the corresponding direct ones, which
use the second derivative of the kernel [40]. Alternative
representations for the second derivatives which improve the
accuracy of standard SPH were reported by Zhou et al. [41].

We write Eqs. (11) and (12) in Cartesian coordinates so that
v = (vx,vy), q = (qx,qy), only the xx, xy, and yy components
of the stress tensorsT andK are retained, and all field variables
are functions of the (x,y) coordinates and time t . Using the
SPH approximations (18) and (19), and expressing the product
∇ρ∇ρ in Eq. (16) in terms of only second derivatives of
ρ, the components of the Korteweg tensor entering the SPH
momentum Eq. (11) can be written as follows

Kxx
i = K

2

N∑
j=1

mj

(
ρj + 2ρi − 3ρ2

i /ρj

)
|xij |2 xij · ∇iWij

−K

N∑
j=1

mj

ρj

(ρj − ρi)2

|xij |2 xij

∂Wij

∂xi

, (20)

Kyy

i = K

2

N∑
j=1

mj

(
ρj + 2ρi − 3ρ2

i /ρj

)
|xij |2 xij · ∇iWij

−K

N∑
j=1

mj

ρj

(ρj − ρi)2

|xij |2 yij

∂Wij

∂yi

, (21)

Kxy

i = −2K

N∑
j=1

mj

ρj

(ρj − ρi)2

|xij |2
xij yij

|xij |2 xij · ∇iWij , (22)

where Kxy = Kyx and the superscript H has been omitted for
simplicity.

It has been shown that the stability and accuracy of SPH is
significantly improved when the smoothing length is allowed
to vary adaptively using a density kernel estimation [32]. Here
we adopt a variant of the method where the density is first
estimated using Eq. (10) with h = hi,0 (the value of h at t = 0)
and the particle distribution at the beginning of each time

step (t = tn). These values are then used to calculate local
bandwidth factors λi for each particle according to

λi = k

(
ρi

ḡ

)−ε

, (23)

where k is a constant of order unity, ε is the sensitivity
parameter with 0 � ε � 1, and ḡ is the geometric mean of
the density estimates given by

log ḡ = 1

Ntot

Ntot∑
i=1

log ρi, (24)

where the sum is taken over all particles in the computational
domain. Adaptive values of the smoothing lengths are then
defined as hn+1

i = λihi,0. The adaptive estimator step then
consists of recalculating the density field using Eq. (10)
with hi = hn+1

i . This approach involves two free parameters,
namely k and ε. While k is of order unity, the optimal choice
of ε is problem dependent and is determined from stability
considerations [32,33]. The application of the method to the
formation of equilibrium vdW drops confirmed the predictions
of a linear stability analysis with optimum values of ε lying
in the range between 0.5 and 0.8 [32]. When ε was allowed to
vary within this range no symptoms of the tensile instability
were apparent in the form of ringlike clustering or binary
pairs of particles. To improve the conservation of the angular
momentum and total energy, the actual calculations were
carried out by enforcing the symmetrization of the kernel
estimate with respect to particle pairs by replacing hi in
the kernel function by the mean hij = (hi + hj )/2. In this
work, the quartic spline kernel of Lucy [42] is employed as
the smoothing interpolant Wij so that only particles within
a radius equal to the local smoothing length will contribute
to the SPH summations. A velocity Verlet time integration
method coupled to a predictor-corrector scheme is employed
to advance the field variables from t = tn to t = tn+1 with a
constant time step �t = 0.005.

IV. NUMERICAL RESULTS

Circular drops floating in a vapor atmosphere are obtained
by starting the calculations from a square-shaped liquid,
consisting of 900 SPH particles of equal mass (mi = m)
regularly distributed in a square-cell array. The particles are
initially at rest and separated by a dimensionless distance
�x = �y = 0.78. As in Refs. [22,31] we use reduced units
and set k̄B = 1, ᾱ = 2, and β̄ = 0.5. In these units the critical
point is specified by ρc = 2/3, pc = 8/27, and Tc = 32/27 ≈
1.19. For this vdW fluid the sound speed is given by

cs =
(

k̄BT

(1 − β̄ρ)2
− 2ᾱρ

)1/2

, (25)

so that the initial density and temperature must satisfy the
constraints ρ0 < 1/β̄ and k̄BT0 > 2ᾱρ(1 − β̄ρ)2 for ther-
modynamic stability. In reduced units the shear and bulk
viscosities are taken to be η = 1 and ζ = 0.1, while the thermal
conductivity is set to κ = 5. A value of κ this large produces a
fast temperature adjustment and reduces density fluctuations in
the drop. For most calculations, the gradient energy coefficient
is chosen to be K = 0.1. A separate set of calculations was
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carried out with K = 1 to quantify the effects of increasing
the strength of the Korteweg force. Following Sigalotti and
López [32], we set k = 0.9 and ε = 0.6 for the adaptive kernel
estimation parameters in Eq. (23).

The square-shaped liquid is confined within a box of sides
L = 60, where periodic boundary conditions are applied so
that vapor particles exiting the box on one side are allowed
to enter the opposite side. Initially the smoothing lengths are
hi,0 = 4�x and Hi,0 = 2hi,0. Owing to the adaptive kernel
estimation, smaller values of hi,0 and Hi,0 were seen to produce
essentially the same results. Figure 1(a) shows the temperature-
density (T -ρ) phase diagram for a vdW fluid. The symbols on
the plot mark the position on the phase diagram of the initial
density and temperature for all models. For a given initial
density, five separate sequences of model calculations are
presented for varying initial temperatures. The initial density
for each sequence is varied by varying the mass of the particles
in the range 0.4 � m � 1, while keeping all other parameters
the same. The area below the spinodal line (dashed line)
is the (mechanically) unstable region, where (∂p/∂ρ)T < 0
and the fluid separates spontaneously into two phases due
to spinodal decomposition. Outside this there is a region of
metastable (i.e., mechanically stable but thermodynamically
unstable) states bounded by the binodal line (solid line), which
is determined by the condition that the Gibbs free energy
is the same in both phases. Below this line where T < Tc,
the isotherms of the vdW equation wiggle with the pressure
achieving a minimum and then a maximum with increasing
volume (vdW loop). While these two extrema lie on the

 0
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FIG. 1. (a) Phase diagram showing the theoretically calculated
binodal and spinodal curves for a van der Waals fluid. The overlayed
symbols denote the initial state of the models. The initial density
is varied by varying the mass of the particles: m = 0.4 (dots),
0.5 (squares), 0.7 (triangles), 0.8 (diamonds), and 1 (asterisks).
(b) Densities and temperatures of the coexisting phases as obtained
from the numerical simulations (dots) compared to the binodal curve
for a vdW fluid (solid line).

spinodal curve, the intersections of a given isotherm with the
binodal curve through the loop define a horizontal line such
that the areas enclosed by this line and the spinodal pressures
are equal (Maxwell’s construction). The horizontal line fixes
the coexistence pressure. Its intersections with the binodal
correspond to states of minimum free energy and define the
equilibrium volumes of liquid-vapor coexistence at different
temperatures.

A. Liquid-vapor decomposition of vdW drops

To validate the numerical model, Fig. 1(b) compares the
equilibrium densities and temperatures of the liquid and gas
phases as obtained from the numerical simulations with the
binodal curve as calculated using the Maxwell’s equal-area
construction. The filled dots are the SPH results, which refer
to average particle densities and temperatures within a small
circle about the drop center for the liquid phase and over a
thin ring far away from the drop for the vapor phase. The
SPH results are seen to match the theoretical predictions very
well. Dots deviating slightly from the binodal correspond to
a few models starting with temperatures inside the miscibility
gap close to the critical point. In these cases, equilibrium is
not being fully reached within the simulation time. Drops
with T0 < 0.6 and 0.661 � ρ0 � 1.322 (corresponding to
particle masses in the range 0.4 � m � 0.8) undergo spinodal
decomposition and achieve equilibrium states with temper-
atures higher than the initial values, while for T0 > 0.6 the
converse occurs and equilibrium is reached at temperatures
lower than the initial ones. As expected, models with initial
conditions close to the liquid zone of the phase diagram, i.e.,
with T0 � 0.3 and ρ0 ≈ 1.652 (for m = 1) [see Fig. 1(a)],
condensed into equilibrium liquid drops with no vapor phase,
while for T0 > 0.3 stable liquid drops with a very sparse vapor
atmosphere are formed.

Final drop configurations are shown in Fig. 2 for different
equilibrium temperatures below Tc. The panels display the
particle positions (middle column) and a smoothed represen-
tation of the density using the visualization tool SPLASH for
SPH simulations [43] (right column). The plots on the left
column are the corresponding rendered mass density field
overlayed on the phase diagram, showing the normalized
distribution of particle densities. From top to bottom a
sequence of four equilibrated drops is displayed for increasing
equilibrium temperatures and decreasing equilibrium liquid
densities. The first row of panels depicts an equilibrium drop
with ρl ≈ 1.75 and T ≈ 0.46 surrounded by a very sparse
vapor. For this model m = 1 and since α = ᾱm2 = 2m2, the
molecular attraction in the liquid is stronger and so only a
few molecules escape the intermolecular forces and enter the
vapor phase. As the particle mass is lowered, the strength of
the intermolecular forces is also reduced. Therefore during
spinodal decomposition a greater number of molecules is
allowed to enter the vapor region and the evolution ends
up with progressively smaller liquid drops and denser vapor
atmospheres as shown in the remaining panels of Fig. 2.

The radial variations of the density, pressure, and temper-
ature across the system are shown in Figs. 3 and 4 for two of
the equilibrium drops depicted in Fig. 2, i.e., at coexistence
temperatures T ≈ 0.64 (m = 0.8) and ≈ 0.66 (m = 0.5),
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FIG. 2. (Color) Stable liquid drops in a vapor atmosphere. The liquid and the vapor phases are in thermal equilibrium with coexistence
temperatures from top to bottom of ≈ 0.46, 0.64, 0.66, and 0.75. The plots show the normalized distribution of SPH particle densities overlayed
on the phase diagram (left), the particle positions showing the liquid drop and ambient vapor (middle), and the spatially rendered mass density
field using the visualization tool SPLASH (right). The color-scale bar and numbers on the right border indicate the density contrast in terms of
our reduced units.

respectively. The spherically symmetric profiles are obtained
by dividing the entire system into thin concentric circular shells
so that the value of a quantity at a radius r from the drop center
of mass corresponds to an average over the particles within the
shell centered at that radius. In Fig. 4 the profiles are compared
for two different choices of the gradient energy coefficient K

in Eq. (15). The vertical line in the density plots mark the
position of the equimolar radius (see next section). The results
are qualitatively similar to those of Nugent and Posch [22] for a
drop with T ≈ 0.91 (their Figs. 2, 3, and 4). Here the use of an
adaptive density kernel estimation reduces the size of the errors
carried by Eq. (10) due to particle inconsistency at the borders
of the liquid drop, resulting in much less smooth density
profiles there from the beginning, and controls the amount of

smoothing that is effectively applied in the vapor phase. This is
so because this class of estimates requires a less broad kernel
than the fixed kernel approach in zones where the density is
low. This later aspect results in better spatial resolution across
the liquid-to-vapor transition zone and therefore in more rapid
density fall-offs through the interface than in the calculations
of Nugent and Posch [22], where the width of the kernel is kept
fixed during the evolution. We note from Fig. 4 that increasing
K from 0.1 to 1 causes little differences in the final equilibrium
profiles as all curves essentially overlap, with the exception
of the temperature variation where K = 1 results in slightly
higher temperatures in the bulk phases.

We see from Figs. 3 and 4 that moving from the drop
center to the interface the liquid overheats and the pressure
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FIG. 3. (a) SPH-averaged radial density, (b) pressure, and (c)
temperature profiles for an equilibrium drop with a temperature T ≈
0.64. The vertical line in (a) marks the position of the equimolar
radius. All quantities are expressed in terms of our reduced units.

variations become negative with respect to the coexistence
pressure (Maxwell’s tie line). This is followed by a region of
undercooled vapor with positive pressure differences before
entering the vapor phase. The first extreme is a stability
limit for the liquid state, where the liquid overheats without
vaporizing, while the second one is the stability limit for the
vapor state, where the vapor undercools without condensing.
Away from these extrema, the temperature at the drop center
and in the vapor atmosphere are nearly the same, indicating
that the drop is very close to thermal equilibrium. The vdW
loop is evident from the variation of the pressure through the
interface. In real systems other stability limits exist, such as
for melting and crystallization [44], which, however, cannot
be modeled with a vdW equation of state.

B. Surface tension

Although the vdW mean-field theory has been successful
in capturing both the liquid and vapor states of matter, as well
as predicting the coexistence region by using the Maxwell
construction, the surface properties of the vdW model can be
predicted only in an approximate sense. In general, knowledge
of either the density gradient or the radial density distribution
through the liquid-vapor interface is required to determine
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FIG. 4. (a) SPH-averaged radial density, (b) pressure, and (c)
temperature profiles for an equilibrium drop with a temperature T ≈
0.66. The profiles obtained with K = 0.1 (solid lines) are compared
to those calculated using K = 1 (dashed line) for an identical model.
The vertical line in (a) marks the position of the equimolar radius.
All quantities are expressed in terms of reduced units.

the surface tension [1]. However, this information cannot
be obtained experimentally for the vdW model because it
represents only an approximation to real fluids [23].

The surface tension of the circular drops can be easily
calculated using the Young-Laplace equation

pl − pv = 2σ

R
, (26)

where pl is the pressure in the interior of the drop, here
calculated as the average particle pressure within a small circle
around the center of the drop, pv is the pressure in the ambient
vapor, corresponding to an average value taken over a thin ring
far away from the drop, and R is the radius of the equimolar
surface, which separates the liquid from the vapor. The Tolman
length correcting for the deviations of the surface tension from
its planar value in Eq. (26) is not considered here because for
almost all models it was smaller than the simulation error bars.
In two dimensions, the equimolar radius can be defined as [1]

R2 = − 1

ρl − ρv

∫ ∞

0
r2 dρ

dr
dr, (27)

where dρ/dr is the radially symmetric variation of the density.
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FIG. 5. Dependence of the surface tension σ on temperature for
the vdW drops. The SPH results (filled dots) are compared with
those of Nugent and Posch [22] (open dots). The open triangles and
open squares refer to molecular dynamics [45] and Monte Carlo
simulations [46] for a Lennard-Jones fluid, respectively, while the
continuous lines correspond to available experimental data for liquid
argon [47] (solid line), kripton (dashed line), ethane (dotted line), and
R152a (dot-dashed line) [48].

The temperature dependence of the surface tension is
depicted in Fig. 5 for all drops. The estimated accuracy
of the data is always less than ±15%. We compare our
results to those from the SPH simulations of Nugent and
Posch [22] (open circles). Although their results follow a
qualitatively similar trend to those predicted here, they are
comparatively higher. This difference can be attributed to a
better treatment of the diffuse interface in the present work.
Molecular dynamics [45] (open squares) and Monte Carlo
simulations [46] (open triangles) taking the effects of two-body
interactions in a Lennard-Jones fluid close to phase coexistence
are also included in Fig. 5 along with experimental data
for liquid argon [47], krypton, ethane, and the refrigerant
R152a [48], which are all represented by continuous lines. Our
results can be compared to those from molecular dynamics
and Monte Carlo simulations in the range of temperatures
between T/Tc ≈ 0.6 and 0.7, for which good agreement is
observed. A comparison to the experimental data shows a rea-
sonably good agreement between our SPH simulations and the
experiment.

The variation of the equimolar radius with temperature
is shown in Fig. 6. The same symbols of Fig. 1(a) are
used to represent the data in this and subsequent figures to
identify the initial conditions to which the data belong. We see
that square-shaped liquids of higher initial density produced
equilibrated drops of larger sizes, higher liquid densities, and
lower vapor densities at phase coexistence for a fixed initial
temperature. This occurs because in the present models the
initial liquid density is decreased by reducing the mass of the
particles, which is equivalent to decrease the strength (α) of
the attractive forces in the vdW equation of state (7). For all
sequences the equimolar radius decreases as the equilibrium
temperature increases. This trend is consistent with the surface
tension vanishing as the critical temperature is approached,
which according to Eq. (26) implies that R → 0 at the critical
point.
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FIG. 6. Dependence of the equimolar radius R on temperature.
The same symbols in Fig. 1(a) are used to identify the initial state for
each sequence of data. The squares and diamonds represent models
with m = 0.5 and 0.8, respectively, for K = 0.1 (filled symbols) and
K = 1 (open symbols).

C. Vapor pressure

It is well known that the quantity of vapor above a liquid
increases with the temperature and is normally measured as
the vapor pressure of the system. As the temperature increases,
a greater number of molecules have enough energy to escape
the intermolecular attraction forces of the liquid and enter the
vapor phase, thereby increasing the vapor pressure. Therefore,
a measure of the molecular attraction of the liquid is the latent
heat (or enthalpy) of vaporization �Hvap, which is the energy
required to transform a certain quantity of liquid into vapor
without a change in temperature. In this way, large values
of �Hvap would indicate strong attractive forces between the
liquid’s molecules. A mathematical relation between the vapor
pressure and the temperature is provided by the well known
Clausius-Clapeyron equation

pv = A exp

(
−�Hvap

k̄BT

)
, (28)

where A is an experimental constant related to the normal
boiling point and k̄B = 1. If we take the natural logarithm on
both sides of the above equation, we find that

ln pv = −�Hvap

k̄B

1

T
+ C, (29)

which is the equation of a straight line of slope equal to
−�Hvap/k̄B . Figure 7 depicts ln pv as a function of the inverse
of the temperature for all drops. The solid straight line gives the
best fit of the data to Eq. (29) and has a slope �Hvap/k̄B ≈ 2.08,
which is very close to ᾱ = 2. However, we note that at the
right bottom of the figure the data points represented by
asterisks and diamonds are randomly scattered and deviate
substantially from the linearly arranged distribution observed
for all other data points. This occurs because these models
evolved from initial conditions very close to the liquid zone
of the phase diagram [see Fig. 1(a)], forming stable liquid
drops with essentially no vapor atmosphere as shown in the
top panels of Fig. 2. In addition, the filled dots in the left
top of the figure, corresponding to models with m = 4 and
initially close to the critical point, also deviate from the general
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FIG. 7. Natural logarithm of the vapor pressure as a function of
the inverse of the temperature for all models. The same symbols in
Fig. 1(a) are used to identify the initial state for each sequence of
data. The solid line fits the numerical data to the Clausius-Clapeyron
equation (29) and the dashed line fits the same data by excluding the
scattered points, corresponding to liquid drops with essentially no
vapor atmosphere or not fully in equilibrium. The slope of the former
linear fit is �Hvap/k̄B ≈ 2.08, while that of the latter is �Hvap/k̄B ≈
3.4, which gives a better representation of the numerical data and
defines the vaporization pressure in reduced units for this vdW fluid.

trend because they never reached full equilibrium within the
simulation time. If we discard these points, the best linear fit
to the remaining data is depicted by the dashed line in Fig. 7
and has a slope �Hvap/k̄B ≈ 3.4, which is more representative
of the constant value of the enthalpy of vaporization for this
vdW fluid. For comparison, Fig. 8 plots the dependence of
the vapor pressure on temperature. The solid line represents
the best exponential fit to all data and obeys the relation
pv ≈ 0.19 exp(−2.10/T ), implying that �Hvap/k̄B ≈ 2.10,
while the dashed line represents the best exponential fit by
excluding the scattered data and corresponds to the relation
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FIG. 8. Dependence of the vapor pressure pv on temperature
for all models. The solid line represents the best exponential fit to
all numerical data: pv ≈ 0.19 exp(−2.10/T ), yielding �Hvap/k̄B ≈
2.10. The dashed line represents the same fit when the scattered data,
corresponding to liquid drops with essentially no vapor atmosphere
or not fully in equilibrium, are omitted. It satisfies the relation
pv ≈ 1.69 exp(−3.42/T ) and provides a better representation of the
Clausius-Clapeyron relation for the 2D vdW drops.

pv ≈ 1.69 exp(−3.42/T ), which again gives a much better
representation of the Clausius-Clapeyron relation for these
low and moderate vapor pressures.

We remind that several approximations are necessary to
write the Clausius-Clapeyron relation in the form given by
Eqs. (28) and (29). First, the enthalpy of vaporization �Hvap is
assumed to be constant over the temperature range of interest,
while the vapor is assumed to be an ideal gas. Although these
two approximations are good at low and moderate pressures
for most substances, they fail at high pressures and near the
critical point. Under these conditions, Eqs. (28) and (29) will
give inaccurate results. Second, the change in volume that
accompanies evaporation (or sublimation) is assumed to be
equal to the volume of the vapor produced and the external
pressure is supposed to have no effect on the vapor.

The slopes of the linear fits in Fig. 7 are determined
by the ratio of latent heat released in the phase transition
and the discontinuity between the liquid and vapor volumes.
Since the entropy, expressed as the first derivative of the
Helmholtz potential with respect to temperature, and the
volume, expressed as the first derivative of the Gibbs free
energy with respect to pressure, are both discontinuous across
the line, the Clausius-Clapeyron equation applies to first-order
phase transitions. As we approach the limit T/Tc → 1, the
discontinuity diminishes and the liquid entropy tends to the
gas entropy. At T/Tc = 1 the liquid cannot be distinguished
from the gas since, in addition, their molar volumes and heat
capacities at constant volume become the same. So, at the
critical temperature we have a second-order phase transition.
Furthermore, as T/Tc → 1, the enthalpy of vaporization
becomes temperature dependent [49], i.e.,

�Hvap

T
∝

(
1 − T

Tc

)1/2

, (30)

so that �Hvap → 0 as T/Tc → 1. On the other hand, in the
limit of low temperatures, when T/Tc → 0, the enthalpy
of vaporization becomes independent of temperature and
approaches the finite limit �Hvap = ᾱ/β̄ [49]. Since ᾱ = 2 and
β̄ = 0.5 for our vdW fluid, this limit gives �Hvap = 4. This
exact value differs from the slope of the dashed straight line in
Fig. 7 by ∼15% and from that of the solid line by a factor of 2,
implying that the former is a much better representation of the
Clausius-Clapeyron relation. The same is true for the dashed
curve in Fig. 8. Although the limit when T/Tc → 0 may be a
useful test to check the reliability of the numerical results for
this vdW models, it is interesting only from a theoretical point
of view because for real substances there are no liquid-vapor
phase transitions at T → 0, and so the near-zero temperature
limit should be applied in the temperature interval Ttp < T �
Tc, where Ttp is the triple-point temperature. We conclude that
the Clausius-Clapeyron relation is very well reproduced by the
numerical calculations in the range of moderately low vapor
pressures where the enthalpy of vaporization is expected to be
approximately constant.

V. CONCLUSION

In this paper we have applied the method of smoothed
particle hydrodynamics (SPH) to model liquid-vapor phase
separation in nonisothermal, van der Waals (vdW) liquid drops
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initially in a nonequilibrium state for a range of densities
and temperatures. To model the rapid but smooth transition
across the liquid-vapor interface as a diffuse region and the
effects of surface tension properly we have relied on the
diffuse-interface model, where convective motion at the late
stages of phase separation is accounted for by means of a
reversible, nonequilibrium (Korteweg) force entering the mo-
mentum equations [25]. An adaptive density kernel estimation
procedure was implemented into the SPH scheme to resolve
high- and low-density regions in the flow simultaneously and
with a minimum amount of smoothing, using the particle
density distribution. This procedure requires less broad kernels
in regions where the density is low compared to a fixed kernel
approach and other conventional adaptive SPH schemes. It
therefore results in a reduction of the rates of numerical
dissipation and diffusion, thereby improving the stability and
accuracy of SPH [32,33].

The models all start from a square-shaped liquid and
stable circular drops floating in its vapor atmosphere
are formed by spinodal decomposition for a wide range
of the initial conditions. The densities and temperatures
of the coexisting liquid and vapor are found to closely match
the binodal curve as predicted by the vdW equation of state.
At subcritical temperatures, the pressure excess at the center
of an equilibrated drop gives rise to the surface tension. Since
extracting the surface tension from the slope of the density

variation at the equimolar radius, where the liquid phase
separates from the vapor, is difficult [1], we calculate it directly
from the Young-Laplace equation. Although our results predict
a dependence of the surface tension on temperature which is
qualitatively similar to that calculated by Nugent and Posch
[22], their values are higher at comparable temperatures.
We attribute this discrepancy to differences in the interface
treatment in both sets of SPH calculations. A comparison
to experimental data and the results of molecular dynamics
[45] and Monte Carlo simulations [46] for a Lennard-Jones
fluid close to coexistence shows a much better agreement with
our SPH predictions for the surface tension. On the other
hand, the Clausius-Clapeyron equation, which characterizes
the discontinuous liquid-to-vapor phase transition, is very well
reproduced by the numerical dependence of the vapor pressure
on temperature, yielding an estimate of the vaporization
pressure for this vdW fluid.
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[28] D. J. Korteweg, Arch. Néerl. Sci. Exactes Nat. Sér. II, Tome 6,

1 (1901).
[29] J. D. van der Waals, J. Stat. Phys. 20, 200 (1979).
[30] B. W. Silverman, Density Estimation for Statistics and Data

Analysis (Chapman & Hall, London, 1996).

013021-10

http://dx.doi.org/10.1146/annurev.ms.09.080179.001251
http://dx.doi.org/10.1146/annurev.ms.09.080179.001251
http://dx.doi.org/10.1146/annurev.ms.09.080179.001251
http://dx.doi.org/10.1146/annurev.ms.09.080179.001251
http://dx.doi.org/10.1007/s12540-009-0193-6
http://dx.doi.org/10.1007/s12540-009-0193-6
http://dx.doi.org/10.1007/s12540-009-0193-6
http://dx.doi.org/10.1007/s12540-009-0193-6
http://dx.doi.org/10.1063/1.1730447
http://dx.doi.org/10.1063/1.1730447
http://dx.doi.org/10.1063/1.1730447
http://dx.doi.org/10.1063/1.1730447
http://dx.doi.org/10.1016/0001-6160(61)90182-1
http://dx.doi.org/10.1016/0001-6160(61)90182-1
http://dx.doi.org/10.1016/0001-6160(61)90182-1
http://dx.doi.org/10.1016/0001-6160(61)90182-1
http://dx.doi.org/10.1063/1.464527
http://dx.doi.org/10.1063/1.464527
http://dx.doi.org/10.1063/1.464527
http://dx.doi.org/10.1063/1.464527
http://dx.doi.org/10.1103/PhysRevLett.75.4031
http://dx.doi.org/10.1103/PhysRevLett.75.4031
http://dx.doi.org/10.1103/PhysRevLett.75.4031
http://dx.doi.org/10.1103/PhysRevLett.75.4031
http://dx.doi.org/10.1103/PhysRevE.70.046702
http://dx.doi.org/10.1103/PhysRevE.70.046702
http://dx.doi.org/10.1103/PhysRevE.70.046702
http://dx.doi.org/10.1103/PhysRevE.70.046702
http://dx.doi.org/10.1103/PhysRevE.75.056309
http://dx.doi.org/10.1103/PhysRevE.75.056309
http://dx.doi.org/10.1103/PhysRevE.75.056309
http://dx.doi.org/10.1103/PhysRevE.75.056309
http://dx.doi.org/10.1063/1.3103826
http://dx.doi.org/10.1063/1.3103826
http://dx.doi.org/10.1063/1.3103826
http://dx.doi.org/10.1063/1.3103826
http://dx.doi.org/10.1088/0953-8984/24/11/115102
http://dx.doi.org/10.1088/0953-8984/24/11/115102
http://dx.doi.org/10.1088/0953-8984/24/11/115102
http://dx.doi.org/10.1088/0953-8984/24/11/115102
http://dx.doi.org/10.1103/PhysRevE.62.4968
http://dx.doi.org/10.1103/PhysRevE.62.4968
http://dx.doi.org/10.1103/PhysRevE.62.4968
http://dx.doi.org/10.1103/PhysRevE.62.4968
http://dx.doi.org/10.1016/S0378-4371(00)00026-1
http://dx.doi.org/10.1016/S0378-4371(00)00026-1
http://dx.doi.org/10.1016/S0378-4371(00)00026-1
http://dx.doi.org/10.1016/S0378-4371(00)00026-1
http://dx.doi.org/10.1103/PhysRevE.68.066702
http://dx.doi.org/10.1103/PhysRevE.68.066702
http://dx.doi.org/10.1103/PhysRevE.68.066702
http://dx.doi.org/10.1103/PhysRevE.68.066702
http://dx.doi.org/10.1146/annurev.fluid.30.1.139
http://dx.doi.org/10.1146/annurev.fluid.30.1.139
http://dx.doi.org/10.1146/annurev.fluid.30.1.139
http://dx.doi.org/10.1146/annurev.fluid.30.1.139
http://dx.doi.org/10.1063/1.868851
http://dx.doi.org/10.1063/1.868851
http://dx.doi.org/10.1063/1.868851
http://dx.doi.org/10.1063/1.868851
http://dx.doi.org/10.1017/S0022112099006874
http://dx.doi.org/10.1017/S0022112099006874
http://dx.doi.org/10.1017/S0022112099006874
http://dx.doi.org/10.1017/S0022112099006874
http://dx.doi.org/10.1007/BF01011514
http://dx.doi.org/10.1007/BF01011514
http://dx.doi.org/10.1007/BF01011514
http://dx.doi.org/10.1007/BF01011514


DIFFUSE-INTERFACE MODELING OF LIQUID-VAPOR . . . PHYSICAL REVIEW E 90, 013021 (2014)
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