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Dynamics of an axisymmetric liquid bridge close to the minimum-volume stability limit
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We analyze both theoretically and experimentally the dynamical behavior of an isothermal axisymmetric
liquid bridge close to the minimum-volume stability limit. First, the nature of this stability limit is investigated
experimentally by determining the liquid bridge response to a mass force pulse for volumes just above that limit.
In our experiments, the liquid bridge breakup takes place only when the critical volume is surpassed and is never
triggered by the mass force pulse. Second, the growth of the small-amplitude perturbation mode initiating the
liquid bridge breakage is measured experimentally and calculated from the linearized Navier-Stokes equations.
The results of the linear stability analysis allow one to explain why liquid bridges with volumes just above
the stability limit are so robust. Finally, the nonlinear process leading to the liquid bridge breakup is described
from both experimental data and the solution of the full Navier-Stokes equations. Special attention is paid to
the free-surface pinchoff. The results show that the flow becomes universal (independent of both the initial and
boundary conditions) sufficiently close to that singularity and suggest that the transition from the inviscid to the
viscous regime is about to take place in the final stage of both the experiments and numerical simulations.
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I. INTRODUCTION

A liquid bridge is a drop of liquid held by surface tension
between two solid supports. It can be regarded as the simplest
idealization of the configuration appearing in the floating zone
technique [1], which endows the study of liquid bridges with
great interest not only in fluid mechanics but also in the field
of material engineering.

The mechanical behavior of isothermal liquid bridges has
frequently been examined over the past few decades both
theoretically and experimentally. As far as the static problem is
concerned, studies have focused on the calculation of both the
liquid bridge equilibrium interface shape [2] and its stability
limit [3]. There is a considerable body of literature dealing with
the theoretical analysis of linear phenomena in liquid bridges.
The eigenfrequencies characterizing the axisymmetric modes
of cylindrical and axisymmetric shapes have been calculated
semianalytically [4] and numerically [5], respectively, for
arbitrary values of the capillary (Ohnesorge) number (see
its definition in Sec. II A). More recently, the frequency and
damping of lateral oscillations of a viscous axisymmetric
liquid bridge have also been determined semianalytically [6].
Experimental studies of the linear behavior of isothermal
liquid bridges have been relatively scarce, probably due to
the high spatial and temporal resolutions required to examine
the experiments under normal gravity conditions [7].

The analysis of nonlinear phenomena in liquid bridges
has focused on forced and free oscillations [8], the steady
streaming flow due to high-frequency vibration [9], the defor-
mation of stretching bridges [10,11], and the breakup process
[12,13], among others. Rivas and Meseguer [14] derived a
one-dimensional self-similar solution to study the liquid bridge
dynamics close to Plateau-Rayleigh stability. The sensitivity
of liquid bridges to axial residual acceleration and mass
force pulses have been examined both theoretically [15,16]
and experimentally [17,18]. The dynamical stability limits
(i.e., those for nonlinear perturbations) can differ significantly
from the static ones [15,16,19]. The liquid bridge response

to arbitrary axisymmetric and nonaxisymmetric perturbations
have recently been investigated by integrating numerically the
full Navier-Stokes equations [16,20].

For a given value of the liquid bridge slenderness, there is a
volume below which the equilibrium shape becomes unstable.
This critical volume hardly depends on the Bond number (see
its definition in Sec. II A) for short enough liquid bridges
[3]. For slender columns, the equilibrium shape becomes
more sensitive to small variations of the Bond number [21]
and so does the stability limit [3]. The breakup of inviscid
liquid bridges at the minimum-volume stability limit was first
analyzed from the slice model [22]. The nonlinear oscillations
and the breakup of liquid bridges in this parameter region
have recently been examined using both a one-dimensional
viscous model [23] and the inviscid Navier-Stokes equations
[24]. Neither the linearized nor the full viscous Navier-Stokes
equations have been solved to analyze the liquid bridge
dynamics at the minimum-volume stability limit.

One of the most suggestive surface-tension-driven flows
is that taking place when the interface defining a fluid
shape pinches due to a capillary instability. Consider first
the pinching of the free surface that separates a liquid shape
from a passive ambient. In the final stage of this finite-time
singularity, the local fluid typical size goes to zero and the
system is expected to lose memory of both initial and boundary
conditions and to exhibit a universal behavior characterized
by its intrinsic properties [25,26]. Dimensional analysis
allows one to infer the scaling power laws characterizing the
dynamical regimes arising as the spatial and temporal distances
from the singularity vanish [27,28]. These distances must be
measured in terms of the viscous length �μ = μ2/σρ and
time tμ ≡ μ3/σ 2ρ [29,30], where μ, σ , and ρ are the liquid
viscosity, surface tension, and density, respectively.

For sufficiently small Ohnesorge numbers, the liquid passes
through an intermediate stage where both the local spatial and
time scales are much smaller than those characterizing the
boundary and initial conditions, but much larger than �μ and
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tμ, respectively. This corresponds to an inviscid regime where
capillary pressure and inertia are balanced and the size of the
neck region decreases with the time to pinching according
to the power exponent 2/3. This universal inviscid behavior
has been analyzed theoretically [31–33] and observed exper-
imentally [34,35] over the past few decades. As the system
approaches the singularity, the local spatial and time scales
eventually become comparable and subsequently smaller than
�μ and tμ, respectively, and thus extensional viscous stresses
come into play [25,26,29,36]. Then the power-law exponent
shifts from 2/3 to 1. Finally, thermal noise drives the pinching
and alters qualitatively the fluid behavior when the microscopic
scale is reached [37,38].

For sufficiently large Ohnesorge numbers, the inviscid
intermediate regime is replaced with another scaling solution
characterized by a set of irrational exponents [39]. The
presence of a viscous outer medium fundamentally changes
the final stage of the breakage process. In fact, if one includes
viscosity in the external fluid then the asymptotic regime is
dominated by surface tension and viscous stresses in the two
fluids, while inertia becomes negligible [40]. In this case, the
pinchoff is not determined by the local dynamics exclusively,
although the nonlocal contribution preserves the self-similarity
of the pinching dynamics [41,42]. Doshi et al. [43] found that
the breakup of a low-viscosity drop in a viscous bath produces
an exceptional form of singularity in which a long thread forms
prior to pinchoff, which violates universality and retains an
imprint of the initial and boundary conditions. This behavior
was subsequently found in bubbles quasistatically injected in
moderately viscous baths [44,45] and coflowing streams [46].
Finally, the inclusion of non-Newtonian effects [11] gives rise
to a variety of phenomena whose characterization allows one
to measure both interfacial and rheological properties.

In this paper the dynamics of an isothermal axisymmetric
liquid bridge close to its minimum-volume stability limit will
be examined both theoretically and experimentally. Several
aspects of the problem will be considered: (i) the nature of
the minimum-volume stability limit by studying how pertur-
bations affect that limit, (ii) the initial stage of the breakup
process by analyzing the growth of the linear perturbation
that destabilizes the liquid bridge, and (iii) the final phase of
that process, focusing our attention on the local flow at the
free-surface pinchoff.

The paper is organized as follows. The theoretical approach
and the experimental method used to analyze the problem
are described in Secs. II and III, respectively. The results are
presented and discussed in Sec. IV. Finally, the paper closes
with a summary in Sec. V.

II. THEORETICAL APPROACH

A. Fluid configuration

The fluid configuration considered (Fig. 1) consists of an
isothermal mass of liquid of volume V held between two
parallel and coaxial circular supports of radius R placed a
distance L apart. Due to the sharpness of their edges, one
assumes that the liquid anchors perfectly to those edges,
preventing motion of the triple contact line. The liquid bridge
is surrounded by air, whose effects can be neglected, and
is subjected to the action of gravity, whose magnitude per

FIG. 1. Liquid bridge configuration.

unit mass is g. The liquid density and viscosity are ρ and
μ, respectively, while the surface tension is σ . The initial
equilibrium contour of the liquid bridge is characterized by the
function F0(z), which measures the distance between a surface
element and the axis of the disks (z axis). The free-surface
position during the breakup is characterized by the function
F (z,t), which measures that distance at the instant t .

In this section all the quantities are made dimensionless
using the disk radius R, the capillary time t0 ≡ (ρR3/σ )1/2,
and the liquid density ρ as the characteristic length, time, and
density, respectively. The dimensionless parameters character-
izing the fluid configuration are the slenderness � ≡ L/(2R),
the dimensionless volume V ≡ V/(πR2L), the static Bond
number B0 ≡ ρgR2/σ , and the capillary number (defined as
the square root of the Ohnesorge number) Cμ ≡ μ(ρσR)−1/2.
For fixed values of �, B0, and Cμ, there is a minimum
value of the liquid bridge volume V below which this fluid
configuration becomes unstable [3].

B. Governing equations

We will analyze the liquid bridge dynamics at the minimum-
volume stability limit from the axisymmetric, incompressible
Navier-Stokes equations

(ru)r + rwz = 0, (1)

ut + uur + wuz = −pr + Cμ[urr + (u/r)r + uzz], (2)

wt + uwr + wwz = −pz + Cμ[wrr + wr/r + wzz], (3)

where r and z are the radial and axial coordinates, respectively,
t is the time variable, u and w are the radial and axial velocity
components, respectively, and p is the (hydrostatic) reduced
pressure. Subscripts denote hereinafter the partial derivatives.
In addition to the regularity conditions (u = wr = pr = 0
at r = 0) and the nonslip boundary conditions at the disks,
one considers the kinematic compatibility and equilibrium
of tangential and normal stresses at the free-surface position
r = F (z,t):

Ft + Fzw − u = 0, (4)

Cμ

(
1 − F 2

z

)
(wr + uz) + 2Fz(ur − wz)(

1 + F 2
z

)1/2 = 0, (5)

p − B0 z + FFzz − 1 − F 2
z

F
(
1 + F 2

z

)3/2

− 2Cμ[ur − Fz(wr + uz) + F 2
z wz]

1 + F 2
z

= 0. (6)
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The boundary condition (6) must be complemented with the
anchoring conditions

F = 1 at z = 0,2�. (7)

Finally, the volume of the fluid configuration is prescribed (and
conserved), namely,

π

∫ 2�

0
F 2dz = 2�V. (8)

Consider an infinitesimal perturbation of the form εf e�t

(ε � 1). Here f stands for the spatial dependence of the per-
turbation of the free-surface position and velocity and pressure
fields, while � = γ + iω is the corresponding eigenfrequency.
If one introduces these perturbations into the above governing
equations and neglects terms in ε2, one gets a set of linear
equations for the perturbed fields f , which are written in terms
of the liquid bridge equilibrium shape F0(z). The solution of
this eigenvalue problem is a discrete set of oscillations modes
that can be calculated numerically.

C. Numerical methods

The nonlinear problem was numerically solved with a
spectral method developed in the present work. Use was
made of the intrinsic coordinate system (q,s) defined by the
coordinate transformation r = f (s,t) q and z = g(s,t), where
f (s,t) and g(s,t) are the functions that define the parametric
curve r∗ = f (s,t) and z∗ = g(s,t) corresponding to the liquid
bridge free-surface position at the instant t . The coordinate
s is the free-surface arc length normalized in such a way that
s = 0 and s = 1 correspond to the lower and upper ends of that
surface, respectively. By using this coordinate transformation,
the fluid domain was mapped onto the computational square
domain (0 � q � 1,0 � s � 1). This square was discretized
using nq Chebyshev collocation points [47] along the q axis
and ns points uniformly distributed along the s axis. We used
fourth-order central finite differences to get the derivatives with
respect to this last coordinate, except close to the s boundaries,
where second-order upwind finite differences were applied. By
using this spatial discretization, remarkable accuracy could be
obtained with a relatively reduced number of mesh points. The
results presented in this paper were obtained with nq = 11 and
ns = 181. The (implicit) time advancement was performed
using second-order backward differences, with a time step
adapted in the course of the simulation. At each time step, the
resulting set of 3nq×ns + 2ns discrete nonlinear equations
were solved iteratively using the Newton-Raphson method
implemented in the MATLAB subroutine FSOLVE. The initial
guess for the iterations at each time step was the solution at the
previous instant. To trigger the liquid bridge breakup process
right at the stability limit, a stable shape with a volume just
above the critical one was slightly perturbed by applying a very
small mass force. This perturbation was not expected to affect
the liquid bridge dynamics close to the free-surface pinchoff.

The linearized problem was solved with the spectral method
developed in Ref. [48]. The fluid domain was mapped onto the
computational square domain (0 � ξ � 1,0 � η � 1) through
the coordinate transformations [ξ = r/F0(z),η = z/2�]. The
resulting square was discretized using nξ and nη Cheby-
shev collocation points [47] along the ξ and η directions,

FIG. 2. Experimental apparatus: A, upper needle; B, bottom disk;
C, liquid bridge cell; D, vibrating platform; E, electrodynamic shaker;
F, camera; G, optical lenses; H, micrometer screws; I, optical fiber;
J, frosted diffuser; and K, optical table.

respectively. This spatial discretization yielded high accuracy
with a relatively small number of mesh points [48]. The
results presented in this paper were obtained with nξ = 10 and
nη = 70. This last parameter was increased up to nη = 190
to properly resolve the eigenvalue bifurcation close to the
minimum-volume stability limit (as will be explained in
Sec. IV B). Use was made of the MATLAB subroutine EIGS

to calculate the eigenvalues of the system of 3nη×nξ + nξ

discrete linear equations.

III. EXPERIMENTAL METHOD

Figure 2 shows the experimental setup used in the present
study. A liquid bridge of 5-cSt silicone oil (where 1 cSt ≡
10−2 cm2/s, with ρ = 917 kg/m3, σ = 0.019 N/m, and μ =
0.0046 kg/ms) was formed between an upper needle (A) and
a coaxial bottom disk (B), both about 1 mm in radius and
placed in a cubic cell (C). The upper needle was capable
of displacement along its axis and was used to feed and
remove liquid by using a syringe pump connected to a stepping
motor. The cell was mounted on a vibrating platform (D). An
electrodynamic shaker (E) produced the vertical motion of
the platform when needed. This motion was controlled with a
10-MHz function and arbitrary waveform generator (Agilent,
LXI) connected to the power amplifier of the electrodynamic
shaker.

Digital images of the liquid bridge were acquired at up to
210 000 frames per second with an exposure time of about
2 μs using a ultra-high-speed complementary metal-oxide
semiconductor camera (Photron, FASTCAM SA5) (F). The
camera was equipped with a set of optical lenses (G) that
consisted of a 10× magnification zoom objective (Mitutoyo)
and a system of lenses (Optem Zoom 70 XL) with variable
magnification from 0.75× to 5.25×. The magnification ob-
tained ranged approximately from 5.0 to 1.0 μm/pixel. The
camera could be displaced both horizontally and vertically
using a triaxial translation stage (H) to focus the liquid bridge.
The fluid configuration was illuminated from the back side by
cool white light provided by an optical fiber (I) connected to a
light source. A frosted diffuser (J) was positioned between the
optical fiber and the cell to provide a uniformly lit background.
All these elements were mounted on an optical table with
a pneumatic antivibration isolation system (K) to damp
the vibrations coming from the building. The experiments
were performed at room temperature and the viscosity value
was obtained from the literature for that temperature. The
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images of the liquid bridge at equilibrium were processed by
the theoretical image fitting analysis axisymmetric interface
method [49] to measure the surface tension. The free-surface
position was determined by processing the images with a
superresolution technique at the subpixel level [50]. In the
experiments, the liquid bridge volume was reduced in steps of
0.1 μl by suctioning the liquid at a flow rate of 36 μl/h.

IV. RESULTS

A. Liquid bridge sensitivity to a mass force pulse

The first step of our analysis is to investigate the nature
of the minimum-volume stability limit by determining the
liquid bridge response to perturbations close to that limit.
Specifically, we here analyze experimentally the liquid bridge
sensitivity to g-jitter for volumes very close to the critical
ones. For this purpose, the following experimental sequence
was conducted. A liquid bridge with a given slenderness �

and initial volume V was formed. Then V was reduced while
keeping � constant. Each of the resulting equilibrium shapes
was perturbed by introducing the mass force pulse described
below. The liquid bridge response to that perturbation was
analyzed. This sequence was continued until the liquid bridge
broke up.

The mass force pulse was applied by moving vertically the
liquid bridge cell with an electrodynamic shaker excited with
a electric wave generator (see Sec. III). The resulting liquid
bridge vertical displacement Z(t) was approximately given by
the Boltzmann function

Z

Zmax
= et/t

1 + et/t
. (9)

Here the time origin is that at which the liquid bridge is located
at the midpoint Z = Zmax/2, while Zmax and t characterize
the pulse magnitude and duration, respectively. The values of
these parameters were selected by appropriately choosing the
electric wave amplitude.

The liquid bridge displacement Z(t) was precisely measure
by processing the images acquired in the course of the
experiments. Figure 3(a) shows Z/Zmax as a function of t/t

for five experiments. The mean values of the fitting parameters
were Zmax = 202 ± 5 μm and t = 3.42 ± 0.07 ms [51]. The
small measurement uncertainty reflects the high degree of

FIG. 3. (a) Liquid bridge displacement Z/Zmax as a function of
the (normalized) time t/t for five experiments. The time origin
is that at which Z = Zmax/2. Here, Zmax and t are the maximum
displacement and pulse duration, respectively, and are calculated from
the fit (9) in each case. (b) Time dependence of the dynamic Bond
number produced by the pulse.

FIG. 4. Minimum volume stability limit Vmin as a function of the
slenderness � for B0 = 0.478 and Cμ = 0.0349.

reproducibility of the displacement produced by the shaker.
The pulse duration was on the order of the capillary time t0.
The liquid bridge acceleration gave rise to an inertial force
characterized by the dynamic Bond number

B = − 1
4β cosh−2(t/2t) tanh(t/2t), (10)

where β = ρ(Zmax/t2) R2/σ . Here B > 0 (B < 0) implies
that the inertial force direction is the same as (opposite to)
that of gravity. Figure 3(b) shows the time dependence of
the dynamic Bond number. In our experiments, the maximum
magnitude of this parameter was about 0.081, around 17% of
the static value B0.

Interestingly, all the liquid bridges analyzed in the experi-
mental sequences withstood the perturbation without breaking,
i.e., they oscillated and returned to their equilibrium shapes.
This occurred even for the shapes obtained right before the
minimum-volume stability limit was crossed. In other words,
the liquid bridge breakage always took place when the critical
volume was surpassed and never when the mass force pulse
was applied. Figure 4 shows the minimum volumes reached in
the experimental sequences for fixed values of the slenderness
�. These values agree with those reported in Ref. [3] and
the ones calculated here from the linear stability analysis
(see Sec. IV B).

B. Linear stability analysis

We devote this section to study the initial phase of the
breakage process that occurs when the liquid bridge volume
equals the critical one. The free-surface motion at this stage is
determined by the growth of the first axial oscillation mode,
which becomes unstable for volumes below that threshold.
Both the frequency ω and damping rate γ of the first axial
oscillation mode were calculated as a function of the liquid
bridge volume for fixed values of the rest of parameters.
For this purpose, the linearized Navier-Stokes equations were
solved with the numerical method described in Sec. II C.

Figure 5 shows the theoretical predictions for ω and γ ,
as well as the experimental data reported in Ref. [16]. There
is good agreement between the two results for all the cases
considered. The small discrepancies can be attributed mainly to
slight variations of the surface tension characterizing the liquid
bridges formed in the experiments. The oscillation frequency
ω vanishes for a liquid bridge volume slightly larger than
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FIG. 5. (a) Frequency ω and (b) damping rate γ characterizing
the first axial oscillation mode for � = 1.74, B0 = 0.478, and Cμ =
0.0349. The symbols and solid lines correspond to the experimental
and linear stability analysis results, respectively.

the critical one. For that volume, the damping factor curve
bifurcates into two practically vertical branches. Then the sign
of the dominant branch changes and thus the liquid bridge
destabilizes. Interestingly, the range of volumes for which
there is overdamping (ω = 0 and γ > 0) is negligible (on the
order of 10−5), and not accesible experimentally. This means
that the minimum-volume instability essentially lies in the
transition from damped oscillations to an exponential growth.
This behavior differs from what happens in, for instance, the
Plateau-Rayleigh stability limit, where overdamping can be
found in a significant region of the parameter space [4].

We determined experimentally the spatial dependence of
the unstable mode by measuring the free-surface evolution
right after the instability appears. Figure 6 shows the free-
surface deformation F − F0 with respect to the initial shape
F0 at four instants. The results were normalized to prove that
the free-surface evolution corresponds to the temporal growth
of an unstable mode. The solid line is the numerical result
obtained from the linear stability analysis. Owing to the growth
of this mode, the upper part of the liquid bridge shrinks while
the lower one bulges. For this reason, the upper drop resulting
from the liquid bridge breakup is smaller than the lower one.

The linear stability analysis results explain the liquid
bridge robustness close to the minimum-volume stability limit

FIG. 6. Initial stage of the liquid bridge deformation for �=1.31,
V = 0.500, B0 = 0.478, and Cμ = 0.0349. The symbols correspond
to the normalized free-surface deformation measured at four instants
separated by 10 ms. The corresponding values of the maximum
deformation were |F − F0|max = 26.4, 28.7, 33.7, and 39.9 μm. The
solid line is the numerical result obtained from the linear stability
analysis.

(see Sec. IV A). Mass force pulses essentially excite the first
axial oscillation mode of the liquid bridge [52]. Close to the
minimum-volume stability limit, the oscillation frequency ω

of that mode vanishes (Fig. 5) and thus the hydrodynamic
time characterizing the liquid bridge evolution becomes much
longer than the capillary time t0. If the pulse duration is of the
order of the capillary time (as occurs in our experiments), then
it becomes much shorter than the hydrodynamic time. This
means that potential energy is suddenly introduced into and
removed from the liquid bridge and thus the fluid system does
not experience that perturbation. Therefore, g-jitter consisting
of isolated pulses with durations smaller than or of the order
of the capillary time are not expected to alter the liquid bridge
stability. In addition, the fact that the damping rate reaches its
maximum value and plunges at the minimum-volume stability
limit implies that the liquid bridge becomes more dissipative
for volumes just above the critical one.

C. Breakup

In this section we examine the nonlinear breakup process
taking place when the liquid bridge volume equals the critical
one. Once the initial deformation (described in the previous
section) has occurred, a fluid ligament forms in the liquid
bridge central part (Fig. 7). This ligament connects the two
major drops formed after the breakup. The influence of the
gravitational force on the liquid bridge initial shape increases
with the slenderness � and so does the asymmetry of that
initial shape. There is a noticeable imprint of that asymmetry
on the ligament shape, which becomes more asymmetric as
the liquid bridge slenderness increases.

The liquid bridge free surface pinches at two points. The
first pinching takes place at the lower end of the liquid
ligament. Subsequently, the free surface pinches at the upper
part and thus a satellite droplet forms between the two
major drops. This droplet moves upward while oscillating
until it touches the upper major drop and coalesces with
it. The satellite droplet exhibits slight asymmetry, which is
the imprint of the lack of symmetry of the liquid bridge
initial shape (and therefore the fluid ligament) due to the
gravitational force. The speed at which the droplet displaces

FIG. 7. (a) Ligament formed between the two major drops
produced by the breakage of a liquid bridge with B0 = 0.478 and
Cμ = 0.0349. The slenderness and volume values are (a1) � = 1.07
and V = 0.415, (a2) � = 1.36 and V = 0.526, and (a3) � = 1.67
and V = 0.779. (b) Sequence of images of the satellite droplet formed
after the liquid bridge breakup for � = 1.36 and V = 0.526. The
images were acquired at t = 80, 147, 213, 280, and 347 μs after the
first pinching [53].
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FIG. 8. Final stage of the liquid bridge breakup for � = 1.34,
V = 0.509, B0 = 0.478, and Cμ = 0.0349. The images correspond
to the time to the pinching (a) τ = 11.9, (b) τ = 7.14, (c) τ = 2.38,
and (d) τ = −2.38 μs.

and its asymmetry decrease as the liquid bridge slenderness
(initial shape asymmetry) decreases. In our experiments,
quasisymmetrical droplets practically levitated while viscous
stresses damped the free-surface oscillations (Fig. 7). As can
be observed, the breakage of a short liquid bridge due to the
minimum-volume stability limit may constitute a convenient
way of analyzing the evolution of levitating micrometer drops
under the action of both capillary and viscous forces.

The final stage of the pinching process is illustrated through
the images displayed in Fig. 8, which were acquired at 210 000
frames per second. As can be observed, the free surface
delimiting the lower drop retracts and produces a depression
right before the pinchoff (the so-called overturning limit
[36]). This effect significantly hinders the measurement of the
minimum free-surface radius with backlight optical imaging,
the method mostly used in this type of experiment [35,44–46].

FIG. 9. Minimum value of the free-surface radius Fmin as a
function of the time to the pinching τ for B0 = 0.478 and Cμ =
0.0349. The circles correspond to � = 1.72 and V = 0.857, the
up-pointing triangles to � = 1.67 and V = 0.779, the squares to
� = 1.07 and V = 0.415, and the down-pointing triangles to � =
1.36 and V = 0.526. The thick solid line is the simulation result for
� = 1.72 and V = 0.857. The thin solid lines indicate the slopes 1
and 2/3.

Figure 9 shows the minimum value Fmin of the free-surface
radius as a function of the time to the pinching τ measured
for several values of liquid bridge slenderness and volume. As
can be observed, the free-surface radius was measured with
a small spatial uncertainty for values down to 4 μm (about 2
times the pixel size), which shows the capabilities of the image
processing technique [50]. The figure also shows the numerical
solution of the full Navier-Stokes equations. As mentioned
in Sec. II C, this solution corresponds to the evolution of a
quasiunstable liquid bridge whose breakage was induced by a
mass force pulse of small magnitude.

Consider the breakup interval for which Fmin � 100 μm.
Within this interval, the free surface in the pinching region
seems to behave independently of the liquid bridge initial
shape. Both the theoretical and experimental results indicate
that Fmin ∼ τ 2/3 over a great part of the time interval analyzed.
This behavior corresponds to the so-called inviscid regime,
where the flow is locally dominated by inertia and surface
tension [31–35]. For Fmin � 10 μm, the curve slope slightly
increases, a sign of incipient viscous regime [25,26,29]. In
fact, Fmin(τ ) exhibits a small curvature when represented on
a linear scale (see the inset of Fig. 9). It must be noted
that the viscous length and time are lμ � 1.21 μm and
tμ � 294 ns, respectively, and thus the asymptotic behavior
was not expected to appear at that stage. The free surface
adopts a double-cone shape next to the pinching region
[36,54]. The angle characterizing the upper cone in the
last image of the experimental sequences was θ = 10 ± 1◦,
while the corresponding simulation prediction was θ = 10.4◦.
This value is significantly smaller than the asymptotic value
θ = 18.1◦ in the inviscid case [36,54].

If one keeps only the lowest radial dependence in
Eqs. (1)–(6), then the following expression is obtained [29]:

ŵt + ŵŵz︸ ︷︷ ︸
I

= −Cz︸︷︷︸
II

+ 3Cμ(F 2ŵz)zF
−2︸ ︷︷ ︸

III

−B0z, (11)

where ŵ is the axial velocity component evaluated at the liquid
bridge axis and C is the local mean curvature of the free surface.
The terms I, II, and III correspond to the liquid inertia, capillary
force, and viscous force, respectively. Figure 10 shows the
“skyline” formed by the magnitudes of these three terms cal-
culated from the simulation in the region next to the first free-
surface pinching. The forces were calculated for τ = 32 μs,

FIG. 10. Magnitude of the three terms indicated in Eq. (11)
for � = 1.72, V = 0.857, B0 = 0.478, and Cμ = 0.0349. All the
quantities were made dimensionless using R, t0, and ρ.
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when the minimum free-surface radius was about 8.3 μm. As
can be observed, the viscosity force becomes comparable to
and even larger than both the inertia and surface tension next
to the pinching point, which confirms that the viscous regime
is rising. The gravitational force takes values on the order of
10−1 and therefore it can be neglected in the pinching region.

V. CONCLUSION

In this work we studied the dynamical behavior of an
isothermal axisymmetric liquid bridge whose volume is just
above or below the minimum value leading to its breakup. To
this end, we combined the solutions of both the linearized and
full Navier-Stokes equations with experimental data obtained
with a superresolution image processing technique [50]. The
critical role played by the liquid bridge volume in this stability
limit was verified experimentally. In fact, equilibrium shapes
with volumes just above the threshold withstood the action of
g-jitter in all the cases considered. In contrast, all the liquid
bridges broke up spontaneously for volumes just below the
critical ones.

We calculated both the frequency and damping factor
characterizing the first oscillation mode as a function of
the liquid bridge volume. The oscillation frequency vanishes
before the minimum-volume stability limit is reached. At that
point, the damping factor curve bifurcates into the dominant
and subdominant branches. For volume slightly smaller than
that of the bifurcation point, the dominant branch becomes

positive and thus the liquid bridge destabilizes. The interval
of the liquid bridge volume within which the oscillations
are overdamped is negligible. The comparison between the
numerical and experimental results for the unstable mode
shows remarkable agreement.

Finally, we analyzed the liquid bridge breakup by solv-
ing the full Navier-Stokes equations and by measuring the
temporal evolution of the free-surface location. The use of a
computationally efficient spectral method on the theoretical
side and our superresolution image processing technique on
the experimental one allowed us to reach very high spatial
and temporal resolutions. Our results confirm the conclusions
obtained for other fluid systems [26]. We showed that the
local flow taking place at times and distances sufficiently close
to the free-surface pinchoff becomes universal, i.e., it is not
affected by the initial or boundary conditions. The system
undergoes an inviscid collapse over a significant time interval
characterized by the power-law exponent 2/3. This regime
leads to an asymptotic behavior where the viscosity force
becomes comparable to both the inertia and surface tension.
Our results barely suggest the birth of this asymptotic regime.
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