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Nonequilibrium shock-heated nitrogen flows using a rovibrational state-to-state method
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A rovibrational collisional model is developed to study the internal energy excitation and dissociation processes
behind a strong shock wave in a nitrogen flow. The reaction rate coefficients are obtained from the ab initio database
of the NASA Ames Research Center. The master equation is coupled with a one-dimensional flow solver to study
the nonequilibrium phenomena encountered in the gas during a hyperbolic reentry into Earth’s atmosphere.
The analysis of the populations of the rovibrational levels demonstrates how rotational and vibrational relaxation
proceed at the same rate. This contrasts with the common misconception that translational and rotational relaxation
occur concurrently. A significant part of the relaxation process occurs in non-quasi-steady-state conditions.
Exchange processes are found to have a significant impact on the relaxation of the gas, while predissociation
has a negligible effect. The results obtained by means of the full rovibrational collisional model are used to
assess the validity of reduced order models (vibrational collisional and multitemperature) which are based on
the same kinetic database. It is found that thermalization and dissociation are drastically overestimated by the
reduced order models. The reasons of the failure differ in the two cases. In the vibrational collisional model
the overestimation of the dissociation is a consequence of the assumption of equilibrium between the rotational
energy and the translational energy. The multitemperature model fails to predict the correct thermochemical
relaxation due to the failure of the quasi-steady-state assumption, used to derive the phenomenological rate
coefficient for dissociation.

DOI: 10.1103/PhysRevE.90.013009 PACS number(s): 47.70.Nd, 34.50.Ez, 34.50.Lf, 34.80.Gs

I. INTRODUCTION

Modeling of the aerothermal environment encountered in
hypersonic flight is characterized by a wealth of physical
processes, strongly coupled to each other [1]. Strong shock
waves, formed in front of the vehicles, heat up the flow, thus
converting the flow kinetic energy into thermal energy. As a
consequence, chemical transformations in the composition of
the gas occur, and the gas becomes chemically reactive. Often,
since the characteristic time of the chemical processes and the
flow characteristic time are comparable, the state of the gas is
out of local thermodynamic equilibrium.

In the hypersonic flight regimes, the chemical transfor-
mation occurring in the gas can drastically influence the
dynamics of the flow [2]. Traditionally, the modeling of
nonequilibrium effects relies on the numerical solution of a
set of conservation equations, which include the following:
the continuity equations for each chemical component in the
gas, the set of Navier-Stokes equations, and an additional set
of energy conservation equations for the description of the
thermal relaxation processes of the atoms and molecules [3,4].
A self-consistent derivation of these systems of equations
can be obtained by using perturbative methods [5–13]. For
example, Nagnibeda and Kustova [8] adopted this method
to derive a model which accurately describes the vibrational
relaxation of the gas, including the effects of the relaxation on
chemistry, thermodynamics, and transport properties.

These approaches rely on the correct scaling the Boltz-
mann equation, based on sound assumptions concerning the

characteristic time of the different relaxation processes. Thus,
the assessment of the validity of the underlying assumptions
is seen as a fundamental prerequisite to the mathematical
derivation of the governing equations.

Today’s paradigm for the aerospace science and plasma
physics communities [14–20] consists of avoiding empiricism
by integrating quantum chemistry databases into computa-
tional models and constructing models based on ab initio
theories. The present work is at the interface between compu-
tational chemistry and computational fluid dynamics and aims
at the development of reduced models based on microscopic
theory and applying them to the macroscopic scale. The avail-
ability of ab initio rate parameters for elementary collisional
processes has enabled the development of state-to-state (STS)
models [19,21–32]. These models allow for the detailed study
of kinetic processes under strong nonequilibrium conditions,
for which the distribution of the internal energy levels strongly
departs from the equilibrium Maxwell-Boltzmann distribution.

The most detailed models developed in the literature are
rovibrational collisional models [33]. In these models the
population of the internal levels is explicitly computed as
a solution to the master equation governing the populations
of each individual internal level. Examples of rovibrational
collisional models found in literature are often restricted
to computationally more tractable systems, e.g., hydrogen
dissociation [34–36]. The present work aims at assessing the
validity of some fundamental assumptions, often made in the
modeling of high-temperature reacting flows, by using a model
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free of empiricism. In the past vibrational collisional models
have been widely selected as the preferred tool to accomplish
this task [21,25,31,37–45]; however, these models rely on the
assumption of thermal equilibrium between the translational
and rotational energy modes, which is questionable [46–50]
for strong nonequilibrium conditions often encountered in
hyperbolic atmospheric entry applications.

Recently, state-to-state (or collisional) models have become
increasingly popular, due to the availability of ever-increasing
computational resources. However, multitemperature models
(MT) are still the method of choice when describing the
nonequilibrium effects in hypersonic flows. Multitemperature
collisional models have been used extensively in the literature
so far, mostly because they are easy to implement in multidi-
mensional flow codes and they are computationally efficient
given the reduced number of equations in the model.

In MT models, the physicochemical properties of the
airflow are obtained through the shock layer by assuming
that, for all species, the population of each internal (rotational,
vibrational, or electronic) energy mode follows a Maxwell-
Boltzmann distribution at its own temperature. To calculate
these temperatures and the energy exchanged between all
the energy modes (i.e., translational, rotational, vibrational,
and electronic), conservation equations for the internal energy
modes in thermal nonequilibrium are added to the conventional
equations for total mass, momentum, and energy conser-
vation. For the chemical kinetics model, macroscopic rate
coefficients are assumed to depend on an empirical temper-
ature that is a function of the different temperatures in the
flow.

We study the rovibrational energy excitation and dissocia-
tion processes in nitrogen gas, behind a strong shock. In the free
stream, cold nitrogen molecules at room temperature, seeded
with a small amount of nitrogen atoms, are suddenly heated
by several thousand degrees kelvin, driving the gas toward a
strong nonequilibrium condition. The present investigation is
devoted to the in-depth study of the relaxation of N2(1�+

g )
by collision with N(4Su). Our proposed model relies on state-
specific reaction rate coefficients from the ab initio database
developed at NASA Ames Research Center. The published
results will serve as a benchmark for validation of more
approximate theories [37,38,51–54] and reduced order models.
Furthermore, the insights gained by the analysis of nitrogen
dissociation will serve as guidelines for the development of
reduced models. First steps in this direction have already been
published by our group [16–18,55,56].

The paper is organized as follows: The physical model is
discussed in Sec. II. In particular, the NASA Ames database
is discussed in Sec. II A; the governing equations for the
rovibrational, vibrational, and multitemperature collisional
models are discussed in Sec. II B. Section III presents the
results of the investigation and it is divided into three
subsections: Section III A discusses the results obtained with
the rovibrational collisional (RVC) model, starting from the
analysis of the macroscopic thermodynamic parameters, down
to the details of the nonequilibrium rovibrational distribution
function. Section III B compares the results obtained with the
different nonequilibrium reduced order models. The reasons
of the discrepancies among the three models are discussed in
Sec. III C.

II. PHYSICAL MODEL

A. NASA Ames database

The NASA Ames database [57–61] comprises a set of con-
sistent thermodynamic and kinetic data for the rovibrational
excitation, dissociation and predissociation of the N2 molecule
colliding with an N atom. Both chemical components are in
their electronic ground state [i.e., N2(1�+

g )-N(4Su) system].
While the analysis carried out in this work is restricted to the
study of N2-N interactions, an ongoing effort addresses the
study of dynamics of the N2(1�+

g )-N2(1�+
g ) system [62].

The number of rovibrational energy levels N2(v,J ) of
the electronic ground-state of N2 is 9390, and the indices
v and J stand for the vibrational and rotational quantum
numbers, respectively. The energy of the rovibrational level
(v,J ) can be written as the sum of the vibrational and rotational
contributions as follows:

EvJ = Ẽv + �Ẽv(J ), v ∈ V, J ∈ Jv, (1)

where V = {0, . . . ,vmax} is the set of vibrational quantum
numbers and Jv = {0, . . . ,Jmax(v)} is the set of rotational
quantum numbers for a given vibrational quantum state v.
The vibrational energy Ẽv is defined as the energy of the
rotationless level (J = 0) having vibrational quantum number
v. The rotational energy is defined based on the vibrational
energy as �Ẽv(J ) = EvJ − Ẽv . The energy splitting adopted
in Eq. (1) is arbitrary defined and other choices are possible
[63]. The degeneracy of the rovibrational energy level (v,J ) is
as follows:

gvJ = (2J + 1) gNS
vJ ,

(2)

gNS
vJ =

{
6 even J

3 odd J
, v ∈ V, J ∈ Jv.

The quantity gNS
vJ is the nuclear spin degeneracy of N2. Its

dependence on the rotational quantum number J is due to
the fact that the total wave function of N2 must be symmetric
with respect to exchanging the nuclei (Bose-Einstein statistics)
[57–61]. The number of vibrational energy levels is 61
(vmax = 60) and for the vibrational ground state (v = 0) the
maximum rotational quantum number is 279. Most of the
rovibrational levels (7421) are bound (B). This means that
their energy is lower than the dissociation energy relative to the
(v = 0, J = 0) level, equal to 9.75 eV. The remaining levels
are predissociated (P), or quasibound. Thus, their energy is
higher than the dissociation energy relative to the level (v = 0,
J = 0) but lower than the J -dependent centrifugal barrier
[63]. This means they have a finite lifetime and spontaneously
dissociate by tunneling through the centrifugal barrier. The
numerical values of the rovibrational energy levels have been
obtained by applying the Wentzel-Kramers-Brillouin (WKB)
approximation [64] using the potential for N2 developed by
Leroy et al. [65].

The rovibrational energy levels can be also represented
by sorting them by increasing energy and denoting them by
means of a global index i. The correspondence between the i

and (v,J ) notations can be expressed as

i = i(v,J ), v ∈ V, J ∈ Jv, (3)
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and conversely by the relations

v = v(i), J = J (i), i ∈ IBP , (4)

where IBP is the set containing the rovibrational levels. For
the sake of later convenience, it is useful to introduce the
sets IB and IP containing, respectively, the bound and the
predissociated rovibrational energy levels of N2. These satisfy
the relations IB ∪ IP = IBP and IB ∩ IP = ∅. When the i

notation is used, the degeneracy of the rovibrational energy
level i is written as gi = (2J (i) + 1) gNS

i .
The NASA Ames database for the N2-N system comprises

more than 20 million reactions in total for three types of pro-
cesses: (i) collisional dissociation of bound and predissociated
states,

N2(i) + N
kDf
i (T )

�
kDb
i (T )

N + N + N, i ∈ IBP ; (5)

(ii) spontaneous predissociation, or tunneling, of predissoci-
ated states,

N2(i)
kPf
i

�
kPb
i (T )

N + N, i ∈ IP ; (6)

and (iii) collisional excitation between all states,

N2(i) + N
kE
i→j (T )

�
kE
j→i (T )

N2(j ) + N, i < j, i,j ∈ IBP . (7)

The collisional excitation processes include the contribution of
both inelastic (nonreactive) and exchange processes as follows:

kE
i→j (T ) = kIE

i→j (T ) + kEE
i→j (T ), i < j, i,j ∈ IBP . (8)

The first term kIE
i→j (T ) accounts for the contribution due to

inelastic processes, where kinetic energy is transferred into
internal energy during the collision. The second term kEE

i→j (T )
accounts for exchange processes and the transfer between
kinetic and internal energies occurs via substitution of one
bounded atom of the molecule with the colliding partner.
The importance of this elementary process on the kinetics
of dissociation is discussed in detail in Sec. III A 1.

The exothermic rate coefficients for collisional recombi-
nation, inverse predissociation, and collisional deexcitation
[kDb

i (T ), kPb
i (T ) and kE

j→i(T ), with i < j , respectively] can be
computed based on microreversibility:

kDf
i (T )

kDb
i (T )

=
[
gNQT

N (T )
]2

giQ
T
N2

(T )
exp

[−(2EN − Ei)

kBT

]
, i ∈ IBP ,

(9)

kPf
i (T )

kPb
i (T )

=
[
gNQT

N (T )
]2

giQ
T
N2

(T )
exp

[−(2EN − Ei)

kBT

]
, i ∈ IP ,

(10)

kE
i→j (T )

kE
j→i(T )

= gj

gi

exp

(
Ei − Ej

kBT

)
, i,j ∈ IBP ,

(11)
i < j, i,j ∈ IBP ,

where the symbol kB denotes the Boltzmann’s constant and
quantity EN is the formation energy of N. The translational

partition functions are defined as

QT
N (T ) =

(
2πkBmNT

h2
P

)3/2

,

(12)

QT
N2

(T ) =
(

2πkBmN2T

h2
P

)3/2

,

where symbol hP denotes Planck’s constant and the quantities
mN and mN2 are, respectively, the masses of N and N2. The
degeneracy of N is gN = 12 and accounts both for the nuclear
and electronic spin contributions.

The cross sections for the processes in Eqs. (5) and (7)
have been computed using the quasiclassical trajectory (QCT)
method with an analytical potential energy surface (PES)
that was fit to accurate quantum chemistry calculations for
the N2-N system [57–60]. Rate coefficients are available
at nine values of the gas translational temperature between
7500 K and 50000 K. Numerical values for the former have
been obtained by integrating the QCT cross sections over a
Maxwellian velocity distribution function. These data have
been fitted to a modified Arrhenius form for interpolation. The
maximum error resulting from the fit does not exceed 10%, in
correspondence of the nodal values.

The total number of possible combinations for collisional
excitation exceeds 44 million processes. Among these, some
of the transitions are very unlikely (e.g., inelastic excitation
for which j � i) or forbidden by quantum mechanical
arguments (�J is odd for inelastic collisions). In this work,
the most relevant processes have been included based on the
analysis of the results of the QCT calculations. Notice that
both endothermic (excitation) and exothermic (deexcitation)
processes are found in the database. The number of exothermic
processes, about 13.5 million, is larger than the number of
endothermic processes (only 7.1 million). A reduced number
of transitions (about 1.5 million) include rate coefficients
for both types of processes. In this case, the endothermic
rate coefficients are preferentially used. In general, we have
observed that all the endothermic rate coefficients agree within
70% with the quantities computed by means of the exothermic
rate coefficients using micro-reversibility. These discrepancies
are due to differences in the statistical sampling errors of the
QCT calculations between direct and reverse processes. We
have found the results of the master equation calculations to
be insensitive to the rate coefficients selected when data from
both processes are available.

B. Flow governing equations: Standing shock wave

The nonequilibrium flow behind a normal shock wave is
computed under the following assumptions: (i) The flow is
steady and one-dimensional, (ii) the flow is inviscid, and
(iii) the shock wave moves at a constant speed.

The flow problem is conveniently studied in the shock
reference frame. The shock front is treated as a mathematical
discontinuity in that the flow quantities experience a discrete
jump when crossing the shock. The governing equations for the
problem under investigation are the steady, one-dimensional
Euler equations.
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The global momentum conservation equation is as follows:

d

dx
(ρu2 + p) = 0, (13)

where the quantities ρ, u, and p are, respectively, the mixture
mass density, velocity, and pressure. The mass density is
computed based on the relation ρ = nN2mN2 + nNmN , where
quantities nN and nN2 are, respectively, the number densities
of N and N2. The global energy conservation equation is as
follows:

d

dx
(ρuH ) = 0, (14)

where the total enthalpy density is ρH = ρeT + ρeI + ρeF +
p + 1

2ρu2, with the translational, internal, and formation
energy densities being equal to ρeT = 3/2(nN2 + nN )kBT ,

ρeI = ∑
i∈IBP

niEi and ρeF = nNEN , respectively. The mix-
ture pressure is computed based on the relation p = 2

3ρeT .

1. Rovibrational collisional model

In the RVC model, each rovibrational level of N2 is treated
as a separate species. Hence, in order to predict the flow field
behind the shock, one must couple the global momentum and
global energy conservation Eqs. (13) and (14) with the species
continuity equations for N and the rovibrational levels of N2,

d

dx
(nNu) = ωN

mN

, (15)

d

dx
(niu) = ωi

mN2

, i ∈ IBP . (16)

The production rates for N and for the rovibrational energy
levels of N2 due to collisional dissociation and excitation, and
predissociation (and the related reverse exothermic processes)
can be computed based on the zeroth-order reaction rate theory
[6,66]:

ωN = 2mNnN

∑
i∈IBP

[
nik

Df
i (T ) − n2

NkDb
i (T )

] + 2mN

∑
i∈IP

[
nik

Pf
i (T ) − n2

NkPb
i (T )

]
, (17)

ωi = mN2nN

∑
j ∈ IBP

j > i

[
njk

E
j→i(T ) − nik

E
i→j (T )

] − mN2nN

∑
j ∈ IBP

j < i

[
njk

E
i→j (T ) − nik

E
j→i(T )

]

−
{

mN2nN

[
nik

Df
i (T ) − n2

NkDb
i (T )

] + mN2

[
nik

Pf
i (T ) − n2

NkPb
i (T )

]
, i ∈ IBP,

mN2nN

[
nik

Df
i (T ) − n2

NkDb
i (T )

]
, i ∈ IB.

(18)

In order to characterize macroscopically thermal nonequi-
librium effects when using the RVC model, internal, rotational,
and vibrational temperatures are extracted from the rovibra-
tional populations based on the following implicit relations:∑

i ∈ IBP

niEi − nN2E
I
N2

(T I ) = 0, (19)

∑
v ∈ V
J ∈ Jv

nvJ �Ẽv(J ) − nN2E
R
N2

(T R,T V ) = 0, (20)

∑
v ∈V

ñvẼv − nN2E
V
N2

(T R,T V ) = 0. (21)

The number density of the vibrational level v is computed by
summing the individual contributions of all of its rotational
levels, ñv = ∑

J∈Jv
nvJ . The (partial) equilibrium internal,

rotational, and vibrational energies (per molecule) are defined
as follows:

EI
N2

(T I ) = kBT I 2 ∂ ln QI
N2

(T I )

∂T I
, (22)

ER
N2

(T R,T V ) = kBT R2 ∂ ln QI
N2

(T R,T V )

∂T R
, (23)

EV
N2

(T R,T V ) = kBT V 2 ∂ ln QI
N2

(T R,T V ),

∂T V
, (24)

where the one- and two-temperature internal partition func-
tions are

QI
N2

(T I ) =
∑

i∈IBP

gi exp

(
− Ei

kBT I

)
, (25)

QI
N2

(T R,T V ) =
∑

v ∈ V
J ∈ Jv

gvJ exp

[
− Ẽv

kBT V
− �Ẽv(J )

kBT R

]
. (26)

The flow field behind the shock is obtained by solving
numerically Eqs. (13), (14), (15), and (16). The solution
initial value is obtained by means of the Rankine-Hugoniot
jump relations (with the assumption of frozen dissociation
and excitation within the shock). The population of the
rovibrational levels immediately behind the shock is assumed
to follow a Maxwell-Boltzmann distribution as follows:

ni

nN2

= gi

QI
N2

(T I )
exp

( −Ei

kBT I

)
, i ∈ IBP , (27)

where the internal temperature is set equal to the adopted
free-stream temperature value. Due to the typical stiffness
of chemical kinetics problems, the numerical integration of
Eqs. (13), (14), (15), and (16) is performed by means of the
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backward-differentiation-formula (BDF) implicit methods as
implemented in the LSODE library [67].

2. Vibrational collisional model

The vibrational collisional (VC) model has been developed
based on the RVC model described in Sec. II B 1 and relies
on the simplifying assumption of equilibrium (Maxwell-
Boltzmann) distribution of the rotational levels [16,18],

nvJ

ñv

= gvJ

Q̃v

(
T R

v

) exp

[
−�Ẽv(J )

kBT R
v

]
, v ∈V, J ∈Jv, (28)

where the rotational partition function of the vibrational level
v is defined as Q̃v(T R

v ) = ∑
J∈Jv

gvJ exp[−�Ẽv(J )/(kBT R
v )].

In the VC model predissociation is not taken into account and
it is further assumed (as often done in the literature [21,68])
that rotation and translation are in equilibrium (i.e., T R

v =
T , v ∈ V).

The set of master equation for the VC model can be obtained
by substituting Eq. (28) (with T R

v = T ) in Eqs. (17) and (18)
and summing over the rotational levels of each vibrational state
as follows:

d

dx
(nNu) = ωN

mN

, (29)

d

dx
(ñvu) = ω̃v

mN2

, v ∈ V. (30)

The production rates of N and the vibrational levels of N2 are

ωN = 2mNnN

∑
v∈V

[
ñvk̃

Df
v (T ) − k̃Db

v n2
N (T )

]
, (31)

ω̃v = mN2nN

∑
w > v

w ∈ V

[
ñwk̃E

wv(T ) − ñvk̃
E
vw(T )

]

−mN2nN

∑
w < v

w ∈ V

[
ñwk̃E

wv(T ) − ñvk̃
E
vw(T )

]

−mN2nN

[
ñvk̃

Df
v (T ) − n2

N k̃Db
b (T )

]
, v ∈ V. (32)

The vibrational dissociation and excitation rate coefficients
[k̃Df

v (T ) and k̃E
vw(T ), with v < w, respectively], and those of

the related exothermic processes, can be obtained by averaging
over the rotational levels the elementary rovibrational rate
coefficients. Their mathematical expressions [obtained from
the algebraic manipulation leading to Eqs. (29) and (30) are
provided in Appendix A].

For the VC model, due to the assumption of thermal
equilibrium between rotation and translation, the internal
energy density of N2 [to be used in Eq. (14)] becomes

ρeI =
∑
v∈V

ñv

[
Ẽv + kBT 2 ∂ ln Q̃v(T )

∂T

]
. (33)

The flow field behind the shock wave is computed by ap-
plying the same procedure as for the RVC model (Sec. II B 1),
with the difference that the postshock conditions are obtained
by imposing rotational equilibrium within the shock. The
population of the vibrational levels immediately behind the

shock is assumed to follow a Maxwell-Boltzmann distribution,

ñv

nN2

= Q̃v(T )

QI
N2

(T ,T V )
exp

( −Ẽv

kBT V

)
, v ∈ V, (34)

where the vibrational temperature is set equal to the adopted
free-stream temperature value.

3. Multitemperature model

The multitemperature (MT) model used in the present
work is based on the thermodynamic and kinetic data of the
NASA Ames database and has been developed by Panesi
et al. [33] by means of isothermal heat bath calculations.
The MT model allows for the existence of rotational and
vibrational temperatures. The study of the flow behind the
shock wave is performed by coupling the global momentum
and global energy conservation Eqs. (13) and (14) with the
species continuity equation for N and N2, and the rotation and
vibrational energy conservation equations,

d

dx
(nNu) = ωN

mN

, (35)

d

dx
(nN2u) = ωN2

mN2

, (36)

d

dx

(
nN2mN2E

R
N2

u
) = 1

mN2

(
�T-R

N2
+ �D-R

N2

)
, (37)

d

dx

(
nN2mN2E

V
N2

u
) = 1

mN2

(
�T-V

N2
+ �D-V

N2

)
. (38)

The production rates of N and N2 are as follows:

ωN = 2mNnN

[
nN2k

Df
QSS(T ) − n2

NkDb(T )
]
, (39)

ωN2 = −mN2nN

[
nN2k

Df
QSS(T ) − n2

NkDb(T )
]
, (40)

where QSS indicates that the macroscopic dissociation rate
coefficient has been extracted at quasi-steady-state conditions
[33]. The macroscopic recombination rate coefficients is
obtained via microreversibility,

kDf
QSS(T )

kDb(T )
=

[
gNQT

N (T )
]2

QT
N2

(T )QI
N2

(T )
exp

(−2EN

kBT

)
. (41)

The energy source terms on the right-hand-side of Eqs. (37)
and (38) account for the creation or destruction of rotational
and vibrational energy due to collisional excitation (�T-R

N2
and

�T-V
N2

) and dissociation (�D-R
N2

and �D-V
N2

). The dependence of the
aforementioned quantities on the gas macroscopic properties
(such as temperature and chemical composition) have been
obtained based on isothermal heath bath calculations [33] (the
detailed expressions are provided in Appendix B).

For the MT model, due to the assumption of (partial)
equilibrium of rotational and vibrational energy models, the
internal energy density of N2 [to be used in Eq. (14)] becomes

ρeI = nN2E
R
N2

(T R,T V ) + nN2E
V
N2

(T R,T V ). (42)

The flow field immediately behind the shock wave is
initialized by applying the Rankine-Hugoniot jump relations
(where the rotational and vibrational temperature are both
frozen within the shock).
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TABLE I. Translational temperature, pressure, velocity, and ni-
trogen atom mole fraction for a N2-N mixture in the ground electronic
state [the first column indicates the chemical nonequilibrium thermal
equilibrium conditions in the free-stream (∞)]; “RVC and MT”
indicates the postshock nonequilibrium conditions at the shock
location for the RVC and MT models; “VC” indicates the postshock
nonequilibrium conditions at the shock location for the VC model;
“LTE” indicates the local thermodynamic equilibrium postshock
conditions).

∞ RVC and MT VC LTE

T (K) 300 62 546 46 759 11 351
p (Pa) 13.33 10 792 12 275 13 363
u (km/s) 10 2.51 1.69 0.72
XN 0.028 0.028 0.028 1

III. RESULTS AND DISCUSSION

The nonequilibrium thermodynamic state of the shock
heated nitrogen gas is analyzed in detail over the next
sections. The N2-N gas mixture is assumed to be in chemical
nonequilibrium and thermal equilibrium in the free-stream
(∞) at p∞ = 0.1 torr (13.33 Pa) and T∞ = 300 K. A chemical
nonequilibrium value of 2.8% mole fraction of N was chosen
to have enough nitrogen atoms in the flow, since only N2-N col-
lisions are considered in this work. The postshock conditions
for the three nonequilibrium models (RVC, VC, and MT) are
computed as explained in Sec. (II B). The related numerical
values for pressure, temperature, and velocity are provided
in Table I, together with the postshock local thermodynamic
equilibrium (LTE) conditions. In the present analysis, the
shock location is always fixed at the origin of the reference
frame (x = 0 m).

A. Postshock relaxation: Rovibrational collisional model

1. Nonequilibrium thermodynamic properties

This section characterizes the nonequilibrium state of the
gas behind a strong shock wave in terms of macroscopic
thermodynamic quantities. For this purpose, we use the
RVC model to analyze the evolution of the temperature and
composition in the postshock nonequilibrium relaxation for a

wide range of flow conditions. The influence of exchange and
dissociation processes on the macroscopic flow quantities in
the postshock relaxation region is also discussed.

Figure 1(a) shows the translational and the internal temper-
atures as a function of the distance from the shock for the RVC
model. It is important to note that the internal temperature
has been computed in the postprocessing phase [through
Eq. (19)], as discussed by Panesi et al. [33]. The cooling of
the translational temperature is caused by the excitation of
the internal energy modes and by the onset of the chemical
reactions. This can be easily confirmed by inspection of the
dynamics of the internal temperature in Fig. 1(a) and by
the evolution of the mole fraction of atomic nitrogen shown
(with solid line) in Fig. 1(b). The distance required to achieve
complete equilibration slightly exceeds 0.02 m. However, the
thermal equilibrium is already achieved in the near-shock
region (after only 0.005 m).

Exchange processes play a fundamental role in the energy
transfer and dissociation processes as already discussed by
Panesi et al. [33]. In an exchange process, one of the atoms of
the N2 molecule is replaced by the free atom participating to
the collision. As a consequence, the product molecule has no
memory of the initial state of excitation and can assume a broad
distribution of energy levels, compatible with the total energy
of the collision. This is not the case for inelastic transitions,
which are also subject to the selection rule that constrains �J

to be even. In order to assess the relative importance of the two
channels, we analyze the results of relaxation with and without
exchange reactions. Figure 1 shows the influence that these
processes have on temperatures and the N mole fraction. When
exchange processes are not taken into account, the relaxation
distance is roughly doubled, as shown in Fig. 1(a). Thus,
neglecting the exchange processes lowers the excitation
rate of nitrogen molecules which, in turn, slows down the
dissociation.

Figure 2 shows the influence of predissociation on the
temperatures and the N mole fraction. Predissociation has
the effect of decreasing the dissociation rate of N2. However,
its influence on the relaxation dynamics appears negligible,
especially when compared with the effects of the exchange
processes. The same conclusion holds also for other flow
quantities, such as velocity, pressure, etc., not shown in Fig. 2.
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FIG. 1. RVC model. Temperature (a) and N mole fraction (b) evolution behind the shock wave with or without exchange processes
[p∞ = 0.1 torr and u∞ = 10 km/s; in (a) unbroken line, T with exchange; dashed line, T I with exchange; dotted-dashed line, T without
exchange; dotted line, T I without exchange; in (b) unbroken line, with exchange; dashed line, without exchange].
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FIG. 2. RVC model. Temperature (a) and N mole fraction (b) evolution behind the shock wave with or without predissociation [p∞ = 0.1 torr
and u∞ = 10 km/s; in (a) unbroken line, T with predissociation; dashed line, T I with predissociation; dotted-dashed line, T without
predissociation; dotted line, T I without predissociation; in (b) unbroken line, with predissociation; dashed line, without predissociation].

We conclude this section with the analysis of the behavior
of the rotational and vibrational excitation of the N2(1�+

g )
molecules in the postshock region. In order to characterize the
influence of shock velocity on the extent of nonequilibrium
in the gas, we have investigated the postshock relaxation for
shock speeds ranging from 4 to 10 km/s. The results of the
analysis are shown in Fig. 3.

The characterization of excitation of the molecules is ob-
tained by plotting the rotational and vibrational temperatures
extracted by the population distributions obtained from the
RVC model. These temperatures are roughly proportional to
the instantaneous average rotational and vibrational energies
at each position after the shock and can be used to characterize
the average state of excitation of the N2(1�+

g ) molecules.
The analysis of the temperature evolution demonstrates how

both rotation and vibration are found in strong nonequilibrium
conditions for large portion of the thermochemical relaxation.
Furthermore, their rates of relaxation are comparable for the 6-
and 10-km/s conditions. The only condition for which rotation
is significantly faster than vibration is 4 km/s. It is important
to mention that these conditions are of limited interest to the
scientific community since the nonequilibrium effects (or high-

temperature effects, in general) have been proven to have a
limited influence on the flow quantities.

In the literature, several studies have addressed the mod-
eling of rotational nonequilibrium: For example, Olynick
and Hassan [69], Holman and Boyd [70], and Deschenes
et al. [71] have used Parker’s model [72] and the Landau-
Teller relaxation form to describe rotational nonequilibrium
effects. More recently, Kim and Boyd [20] have used a
three-temperature model (partially derived using ab initio
data) to study the nonequilibrium relaxation behind a standing
shock wave. All these analyses rely on the assumption of the
Maxwell-Boltzmann population distribution of the internal
energy levels. In the next sections we will show that this
assumption does not hold in nonequilibrium conditions of
interest. Furthermore, Parker’s model was derived by using
a overly simplified description of the molecular collisions and
the result obtained with this model cannot be conclusive.

2. Rovibrational energy level dynamics

The analysis proceeds with the investigation of the behavior
of the internal rovibrational levels in the post shock relaxation
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FIG. 3. RVC model. Comparative evolution of the translational, rotational, and vibrational temperatures behind the shock wave
(p∞ = 0.1 torr). (a) Lines with symbols refer to the u∞ = 6 (km/s) case. In this case, the circles indicate T , squares T R , and triangles
T V . The simple lines refers to the u∞ = 4 (km/s) case. In this case, the solid line indicates T , dashed-line T R , and dot-dashed line T V . (b)
The u∞ = 10 (km/s) case. The solid line indicates T , dashed-line T R , and dot-dashed line T V .
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TABLE II. RVC model. Position, N mole fraction, and temperatures for the locations where the population distributions are extracted.

No. x (m) t (s) N T (K) T I (K) T R (K) T V (K)

1 2.5×10−5 1.0×10−9 2.8×10−2 62 486 473 375 947
2 2.5×10−4 1.0×10−7 2.9×10−2 61 926 1595 1059 2269
3 2.3×10−3 1.0×10−6 7.5×10−2 53 205 11 232 10 367 11 964
4 3.2×10−3 1.5×10−6 2.3×10−1 40 637 19 953 20 771 19 275
5 3.4×10−3 1.6×10−6 3.2×10−1 36 297 22 291 23 565 21 210
6 3.6×10−3 1.7×10−6 4.1×10−1 32 481 23 748 25 185 22 506
7 3.9×10−3 1.9×10−6 5.4×10−1 27 794 23 891 25 092 22 850
8 5.1×10−3 3.0×10−6 8.1×10−1 18 987 18 016 18 408 17 696

zone. To this aim, we have extracted the level populations for
eight locations in the postshock region. The corresponding
distances from the shock, Lagrangian times, temperatures and
compositions are indicated in Table II.

Immediately behind the shock, most of the nitrogen
molecules in the flow occupy the lower rovibrational energy
levels. Over 99% of the molecules are found in the ground
vibrational state and only the low-lying rotational levels are
significantly populated. With time, the thermal motion of
molecules brings about collisions, thus enabling the transfer
of kinetic energy into rotational and vibrational energy. As a
result, in the early stages of the relaxation, the population of the
internal levels strongly departs from equilibrium distribution
and the dynamics of each level is governed by its own kinetics,
as shown by Fig. 4(b).

The behavior of the rovibrational level population depends
upon their energy and their quantum state, uniquely character-
ized by the vibrational and rotational quantum numbers. Thus,
three different groups of levels can be identified in Fig. 4(a): the
low-lying, intermediate, and high-lying rovibrational levels.

At the beginning of the relaxation, the molecules in the
lower vibrational and rotational levels (0 to 2.5 eV) still
follow a Maxwell-Boltzmann distribution at the free-stream
temperature. As the relaxation evolves, they slowly thermalize
to the instantaneous translational temperature. The analysis of
the evolution of N concentration [in Fig. 4(a)] shows that the
relaxation process for the low-lying levels has not completed
when the molecules start to undergo dissociation.

The intermediate levels (2.5 to 9 eV) appear to be
thermalized at a common temperature, which is closer to the
instantaneous translational temperature. Their relaxation rate
appears significantly faster with respect to the low-lying levels.
In the early stages of the relaxation (2.5×10−5–2.5×10−4 s)
the population of the intermediate levels, characterized by sim-
ilar internal energy, spans several orders of magnitude, while,
as the relaxation proceeds further, they quickly thermalize at a
Maxwell-Boltzmann distribution, identified by a straight line
in the Boltzmann plot.

The quasibound levels (>9 eV) behave differently from the
intermediate ones. The reason for this behavior is twofold: they
exhibit different excitation dynamics and, due to their finite
lifetime, they have the additional spontaneous dissociation
channel. Their excitation kinetics proceeds from the low-lying
vibrational levels by following a ladder-climbing process
within their rotational structure. This is because the quasi-
bound levels are characterized by high rotational and low
vibrational energy, as opposed to the high-lying bound levels
(with v � 1), which tend to store energy in the vibrational
energy mode. Thus, the probability of energy transfer between
quasibound and high-lying vibrational states is low, and
hinders the thermalization process. Because of their different
dynamics, the quasibound levels strongly depart from the
equilibrium distribution. Furthermore, the majority of them
dissociate by quantum tunneling. The short-lived ones are
strongly depleted and can be safely neglected, since they play
a very small role in the relaxation. In general, due to their large
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FIG. 4. (Color online) RVC model. Comparative evolution of the N mole fraction (a) and rovibrational energy level distribution (b) behind
the shock wave [p∞ = 0.1 torr and u∞ = 10 km/s; the symbols in (a) highlight the locations at which the population distributions, plotted in
(b), are extracted].
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FIG. 5. (Color online) RVC model. Evolution behind the shock
wave of the population of the rovibrational energy levels lying close
to the ground state (p∞ = 0.1 torr and u∞ = 10 km/s; the locations
at which the distributions are plotted are the same as those of Fig. 4).

cross sections for dissociation, the quasibound level population
can be obtained assuming chemical equilibrium with the free
state (Guldberg and Waage equations [73,74]).

Figure 5 shows the populations of the low-lying states in the
early stages of the relaxation. The low-lying levels are frozen
at T I

0 and the populations of higher levels (intermediate and
high-lying levels) steadily increase, displaying a characteristic
“banana shape.” As the relaxation proceeds further, part of
the gas reaches a state of partial equilibrium, during which the
population is dissected into separate strands for each low-lying
v, while the intermediate levels have already thermalized at
the translational temperature, T . This is a manifestation of the
faster equilibration of rotation at lower temperatures.

To better clarify this idea, the rovibrational population
of the first four vibrational levels is shown in Fig. 6. The
bound levels relax toward equilibrium through series of partial
equilibrium rotational distributions, so the molecules in the
same vibrational quantum state v are populated according to
a Maxwell-Boltzmann distribution at a common rotational
temperature. The rotational temperature of the low-lying
vibrational states (0 < v < 5) is lower than T and steadily
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FIG. 7. RVC model. Translational and rotational temperature
evolution behind the shock wave (p∞ = 0.1 torr and u∞ = 10 km/s;
unbroken line, T ; dashed line, T R; line with circles, T R

0 ; line with
squares, T R

1 ; line with triangles, T R
2 ; line with diamonds T R

3 ).

increases with the vibrational quantum number, until T R
v = T

for the higher vibrational levels.
A careful inspection of Fig. 6 demonstrates how the

dynamics of the low-lying states strongly depends on whether
the rotational quantum number is even or odd. The rotational
levels characterized by even quantum number have twice the
nuclear spin degeneracy compared to the odd levels [Eq. (2)].
Thus, the total preshock population of N2(1�+

g ) molecules,
characterized by even J quantum number, is twice the odd J

population. This justifies the splitting of the low-lying energy
levels into two strands in the early part of the relaxation.
It is important to mention that the population exchange
among levels with even and odd rotational quantum number
is forbidden by the quantum mechanical selection rules for
the energy transfer processes. As a result, the only way
to exchange population is via exchange reactions, which,
however, are rather inefficient for the low-lying energy levels,
due to the higher height of the exchange barrier. Thus, the
nonequilibrium population maintains this difference, until the
exchange reactions become significant.

The spatial evolution of the rotational temperatures for the
first four rotational levels is shown in Fig. 7. In the same
figure an averaged rotational temperature is also included.
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FIG. 6. (Color online) RVC model. Rotational energy level distribution for the ground and the first three excited vibrational states at
x = 3.6×10−3 m behind the shock wave [p∞ = 0.1 torr and u∞ = 10 km/s; global view (a) and zoom around the ground state (b)].
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FIG. 8. Comparison of the VC and RVC models. Translational and vibrational temperature (a) and N mole fraction (b) evolution behind
the shock wave [p∞ = 0.1 torr and u∞ = 10 km/s; in (a) unbroken line, T RVC; dashed line, T V RVC; dotted-dashed line, T VC; dotted line,
T V VC; in (b) unbroken line, RVC; dashed line, VC].

After a sharp rise in the rotational temperatures T R
v , not shown

in the figure, the temperatures appear frozen throughout the
incubation period, which precedes the onset of dissociation.
The dynamics of the averaged rotational temperature is similar
to the dynamics of the temperature of the low-lying vibrational
levels (e.g., v = 0,1). This is the result of the averaging
procedure, which tends to favor the levels characterized by
higher population density. All the rotational temperatures
significantly depart from the translational temperature until
large part of the dissociation has occurred and a state of
thermal equilibrium has been achieved. This is an important
finding since the equilibration between rotation and translation
is often assumed in the multitemperature as well as in the more
advanced vibrational collisional models.

B. Comparison of the nonequilibrium models

The nonequilibrium flow behind a strong shock wave is
solved using a hierarchy of nonequilibrium models: (1) the
MT model, based on the assumption of Maxwell-Boltzmann
distribution for the rovibrational levels of N2 [33]; (2) the VC
model, which allows for the nonequilibrium population of the
vibrational levels retains the assumption of equilibrium popu-
lation for the rotational levels with T R = T ; and (3) the RVC
model, which is free of simplifying assumptions concerning
the internal level populations. Both the VC and the MT models
can be obtained directly from the RVC models by taking
moments of the master equations [18,33]. All the models rely
on the same ab initio kinetic database discussed in Sec. II A.
Thus, the differences in the calculations observed in the results
presented can be attributed to the differences in the funda-
mental assumptions adopted by the nonequilibrium models.
Furthermore, the use of a unique database across the different
models implies that the results obtained with the RVC model
can be taken as a reference and considered more accurate, since
it is based on a reduced number of simplifying assumptions.

Figure 8 shows a comparison of the temperature and N mole
fraction profiles in the postshock region obtained by using the
VC and the RVC models. The main difference between the VC
and the RVC model is the assumption that each rotational level
is populated according to a Maxwell-Boltzmann distribution

at T = T R
v . This assumption is responsible for the differences

observed in Fig. 8. When crossing the shock, the equilibration
of translational and rotational energy modes causes a signifi-
cant lowering of the postshock translational temperature due to
the higher heat capacity of the gas. This explains the difference
between the initial translational temperatures of the RVC and
the VC models, shown in Fig. 8(a). Furthermore, in the VC
model, the elevated rotational temperature, encountered in the
postshock region, significantly enhances the dissociation rate
and promote a faster thermal and chemical relaxation of the
gas to the final equilibrium condition.

Figure 9 compares the temperatures and mole fractions
predicted by the RVC and MT models. In the case of the
RVC model, the rotational and vibrational temperatures shown
in Fig. 9(a) have been computed in the postprocessing phase
[through Eqs. (20) and (21)], as discussed by Panesi et al. [33].
These temperatures give an idea of the average energy content
of the gas in the rotational and vibrational energy modes,
respectively. However, their physical significance is limited,
since for the RVC model, the rotational and vibrational distri-
butions strongly depart a Maxwell-Boltzmann distribution.

The thermal relaxation obtained with MT model appears
significantly faster than the RVC result as will be discussed in
the next sections. The spatial evolution of the atomic concen-
tration is shown in Fig. 9. The time required for the atomic
concentration to reach 80% of its final value, for the MT model,
is about half the time needed by the RVC model. This result
has been observed shock speeds ranging from 6 to 11 km/s.

Thus, the MT model predictions are in close agreement
with the VC results in terms of temperature evolution and
composition profiles. Both models tend to overestimate the
dissociation rate, thus leading to faster production of atomic
nitrogen and to a faster cooling of the translational temperature.
The reason for this finding is discussed in the next section.

C. Dissociation rates and dynamics of dissociation

The previous sections have shown a comparison of the
MT and VC predictions with ones obtained by using the
RVC model. The disagreement between the simplified MT
and VC models and the RVC model is further investigated in
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FIG. 9. RVC and MT model comparison. Temperature and N mole fraction evolution behind the shock wave [p∞ = 0.1 torr and
u∞ = 10 km/s; in (a) unbroken line, T RVC; dashed line, T R RVC; dotted-dashed line, T V RVC; line with circles, T MT; line with squares,
T R MT; line with triangles, T V MT; in (b) unbroken line, RVC; dashed lines, MT].

this section through the analysis of the dissociation kinetics.
The reasons behind the inabilities of the reduced models to
capture the dynamics of N2 dissociation differ in the two cases.
The in-depth analysis of the dissociation kinetics for the MT
models is discussed in Sec. III C 1, while the one for the VC
models is discussed in Sec. III C 2.

1. Dissociation dynamics predicted by the MT model

In order to understand the possible sources for this
systematic discrepancy between the RVC and MT models, the
mass production and energy transfer terms have been extracted
from the RVC and MT solutions and are shown in Fig. 10.
The results suggest that the MT model fails to predict the
correct thermochemical relaxation, due an overestimation of
the macroscopic dissociation rate. The interpretation of the
energy relaxation source terms is more difficult due to the
influence of the chemistry on the energy transfer processes.

In order to isolate the major contribution to the relaxation
of energy transfer (�T-R

N2
and �T-V

N2
) and chemistry energy

coupling (�D-R
N2

and �D-V
N2

), we have repeated the simulation ex-

cluding the dissociation processes from the models. Figure 11
shows a comparison between the temperature fields obtained
with the MT and RVC models. In this case, the agreement
between the two predictions is excellent. Thus, the nonreactive
energy transfer source terms in the MT energy equations seem
to correctly capture the dynamics of the energy transfer.

The shortcoming of the MT model is due to its inability to
correctly model the N2 dissociation rate using a phenomeno-
logical (or macroscopic) dissociation rate coefficient. Only
in the presence of a quasi-steady-state (QSS) distribution,
among the internal energy levels, is it possible to define a
macroscopic reaction rate coefficient, as discussed by Park
[75]. In the present work, the derivation of the rate coefficient
for dissociation is obtained from the study of the relaxation
of nitrogen molecules in a 0D isothermal chemical reactor, as
discussed by Panesi et al. [33].

The macroscopic rate coefficient kDf is defined as follows:

kDf(T ) =
∑

i∈IBP

nik
Df
i (T )

nN2

. (43)
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FIG. 10. RVC and MT model comparison. Mass production (a) and energy transfer (b) term evolution behind the shock wave [p∞ = 0.1 torr
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FIG. 11. RVC and MT model comparison. Temperature evolution
behind the shock wave switching off dissociation [p∞ = 0.1 torr and
u∞ = 10 km/s; unbroken line, T RVC; dashed line, T R RVC; dotted-
dashed line, T V RVC; line with circles, T MT; line with squares, T R

MT; line with triangles, T V MT].

The global dissociation rate coefficient, kDf, changes with
time throughout the relaxation in the chemical reactor, as
shown in Fig. 12. This is due to the fact that the state-specific
rate coefficients of each rovibrational level differ and the
distribution of the molecules in the rovibrational levels changes
with time. Only when the system reaches the QSS condition
is it possible to define a meaningful global rate coefficient,
because the relative populations of the rovibrational levels
do not change appreciably. Thus, the value of the plateau in
the time evolution of kDf is used to define the QSS reaction
rate coefficient, kDf

QSS(T ). This method was first proposed by
Bourdon et al. [76] for the estimation of the ionization rate
coefficient of nitrogen atoms.

At low temperatures, the time required for the establishment
of the QSS distribution is shorter then the time before the
onset of dissociation. As the temperature increases, the QSS
distribution is established only when significant fraction of
the molecules has already dissociated. Thus a significant
portion of the dissociation occurs at non-QSS conditions when
kDf < kDf

QSS(T ), leading to an overestimation of the rate of
dissociation.
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FIG. 12. RVC model. Time evolution of the macroscopic dissoci-
ation rate coefficient [33] (unbroken line, T = 10 000 K; dashed line,
T = 15 000 K; dotted-dashed line, T = 20 000 K; line with circles,
T = 30 000 K; line with squares, T = 40 000 K).
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FIG. 13. Estimation of the phenomenological rate coefficient for
dissociation kDf in a 0D isothermal reactor, behind the normal shock
wave [unbroken line, kDf based on the RVC population distribution
and temperature field [Eq. (43)]; dashed line, kDf

QSS based on the RVC
temperature field; and dotted-dashed line, kDf

QSS based on the MT
temperature field].

In the postshock region, the temperature is elevated and
the flow residence time is insufficient for the establishment
of the QSS distribution. One way to quantify the departure of
the nonequilibrium distribution from the QSS distribution is
to compare the phenomenological rate coefficient (shown in
Fig. 13) with the global instantaneous rate coefficient given by
Eq. (43), where the population fractions (ni/nN2 ) are taken
from the RVC simulation of the normal shock wave. To
facilitate the comparison, we fitted the QSS rate coefficient
using a modified Arrhenius form,

kDf
QSS(T ) = 1.60×10−5T −0.847 exp(−113 422/T ) (cm3/s).

(44)

Figure 13 compares the instantaneous dissociation rate
coefficient kDf given by Eq. (43), for the RVC model, with the
one obtained using kDf

QSS(T ) and the translational temperature
taken from the RVC model. The early part of the relaxation is
characterized by strong deviation from the QSS distribution.
kDf

QSS(T ) is about 20 times higher than the actual rate coefficient
obtained using the instantaneous N2(1�+

g )(i) populations. As
the relaxation proceeds further, the QSS condition is achieved,
and kDf

QSS(T ) = kDf.
The dotted-dashed line in Fig. 13 is the reaction rate

constant obtained by using kDf
QSS(T ) with T taken from the

MT model, shown in Fig. 1. In the early part of the relaxation,
when the dissociation is small and the kinetics is dominated by
energy transfer processes, the results also greatly overestimate
the dissociation rate and the trend closely reproduces the
behavior obtained with the RVC model and the QSS rate
coefficient (e.g., dashed line). However, as the relaxation
proceeds, the dissociation becomes significant, causing the
cooling of the translational temperature and the consequent
lowering of the dissociation rate coefficient. In this region the
MT and the RVC-QSS curves differ significantly. From this
analysis, it is clear that the breakdown of the QSS assumption
is responsible for the inability of the MT model to capture the
thermal and chemical relaxation directly behind the shock.
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FIG. 14. Estimation of the phenomenological rate coefficient for
dissociation kDf, behind the normal shock wave [unbroken line, kDf

based on the RVC population distribution and temperature field
[Eq. (43)]; dashed line, kDf

QSS based on the RVC temperature field;
and dotted-dashed line, kDf based on the VC population distribution
and temperature field].

2. Dissociation dynamics predicted by the VC model

The reasons for the failure of the VC models are investigated
next. The starting point is the comparison of the phenomeno-
logical dissociation rate coefficient computed with the VC and
the RVC models. It is clear, from the analysis of the results
shown in Fig. 14, that this model tends to overestimate the
dissociation rate [77] in the early part of the relaxation.

To better understand the deficiencies of this model, we
need to further characterize the dissociation dynamics of the
RVC model. The availability of instantaneous rovibrational
population allows us to compute the contribution of each
internal level to the dissociation flux. If we divide each of the
individual fluxes by the total dissociation flux (i.e., one-way
flux),

p(Ei) = kDf
i (T )ni

kD(T )nN2

, (45)

we obtain the probability of dissociation from each rovibra-
tional level. Thus, the cumulative distribution function (CDF)
is defined as the cumulative sum (or integral in the continuous
case) of the probability density function defined above.

In Fig. 15, we have computed the CDF for different
locations in the postshock relaxation for the RVC and the
VC model. In the case of the RVC model, it is interesting
to note that roughly 50% of the dissociation proceeds from
the high-lying rovibrational levels (with energies higher than
8 eV). Furthermore, at the onset of the QSS condition, the CDF
is “frozen” until the dissociation process approaches the final
equilibrium condition. At the equilibrium (LTE) configuration
the dissociation is further biased toward the high-lying states.

A similar CDF has been extracted for the VC model.
In general, the bulk of the dissociation flux comes from
the low-lying vibrational levels. This is not surprising since
the predissociated states, which significantly contribute to the
dissociation flux in the RVC case, are characterized by low
vibrational quantum number. It is clear, from what has been
discussed previously, that the assumed equilibrium distribution
for the quasibound levels is highly inappropriate and is largely
responsible for the overestimation of the dissociation rate. This
effect is exacerbated by the assumption of equilibrium between
rotation and translational energy modes.

IV. CONCLUSIONS

We have performed an extensive analysis of the nitrogen
dissociation in a shock-heated environment. The calculations
presented simulate a shock tube experiment with nitrogen
molecules being dissociated by collisions with atomic nitrogen
in its ground electronic state. The solution of the master
equation for the entire rovibrational structure of N2(1�+

g ),
coupled with the one-dimensional Euler flow equations,
allowed us to describe accurately the internal energy relaxation
and dissociation processes for a wide range of test conditions.
The state-to-state approach, adopted in this work, relies on
the knowledge of the rovibrational collisional excitation and
dissociation rate coefficients, computed as part of the ab initio
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FIG. 15. Cumulative distribution function for the RVC (a) and VC (b) models [in (a) unbroken line, XN = 5%; dashed line, QSS
(XN = 50%); dotted-dashed line, XN = LTE; in (b) unbroken line, XN = 5%; dashed line, XN = 10%; dotted-dashed line, XN = 25%;
line with circles, XN = 50%; line with squares, LTE].
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database developed at the NASA Ames Research Center for
the N2-N system.

The analysis of the results shows the differences in
the dynamics of low-lying, intermediate, and high-lying
rovibrationally excited levels. The relaxation of the low-
lying vibrational levels can be successfully approximated by
a series of Maxwell-Boltzmann distributions for rotational
temperature T R

v , where the temperature of each vibrational
level monotonically increases with the vibrational quantum
number. The population of the intermediate levels rapidly
thermalizes at a common temperature close to the local
translational temperature. The dynamics of the quasibound
levels drastically differs from the bound levels and it is
dominated by their widths. This behavior was already observed
by Panesi et al. [33] studying the 0D chemical relaxation in an
ideal chemical reactor.

We have investigated the influence of spontaneous pre-
dissociation and the collisional exchange reaction. While
predissociation seems to have a negligible effect on the
macroscopic thermodynamic quantities such as temperature
and composition, the exchange reaction drastically affects
the relaxation by increasing the energy transfer rates and the
dissociation.

We have used the rovibrational collisional model to assess
the validity of two reduced order models based on simplified
kinetics: vibrational collisional and multitemperature models.
Both models rely on the same kinetic database used for
the rovibrational model. We found that both models are
incapable of reproducing the correct chemical and thermal
relaxation given by the rovibrational model. The reasons of
the disagreement differ depending on the model.

The multitemperature model tends to overestimate the
chemical relaxation due to the invalidity of the quasi-steady-
state assumption used to derive the phenomenological dissoci-
ation rate coefficient. The internal energy relaxation, modeled
by using a simple Landau-Teller equations was found to
correctly capture the energy transfer process.

The vibrational collisional model tends to overestimate the
dissociation rate because of the assumption of equilibrium be-
tween rotational and translational energy modes. Furthermore,
while the assumption of rotational equilibrium seems to work
for the low-lying vibrational levels, the high-lying rotational
levels strongly depart from the equilibrium distribution and
they tend to be in equilibrium with the free state.

The insights gained by this analysis of nitrogen dissociation
serve as guidelines for the development of reduced models.
First steps in this direction have already been published by our
group [24,54–56].

ACKNOWLEDGMENTS

The authors have benefited from numerous discussions
with D. W. Schwenke, G. Chaban, W. Huo, and Y. Liu at
the NASA Ames Research Center. We gratefully acknowl-
edge K. Schulz at The University of Texas at Austin for
his help in substantially speeding up the code. Funding
for this research was provided through a University of
Illinois Startup Grant. R.L.J. acknowledges support from
NASA’s Space Technology/Hypersonics-Entry, Descent and
Landing Project and Fundamental Fundamental Aeronautics

Program/Hypersonics Project. A.M. and T.E.M. acknowledge
support from the European Research Council Starting Grant
No. 259354.

APPENDIX A: VIBRATIONAL DISSOCIATION
AND EXCITATION RATE COEFFICIENTS

The vibrational specific rate coefficients for collisional
dissociation and excitation are as follows [18]:

k̃Df
v (T ) = 1

Q̃v(T )

∑
J∈Jv

gvJ kDf
vJ (T ) exp

[
−�Ẽv(J )

kBT

]
, (A1)

k̃E
v→w(T ) = 1

Q̃v(T )

∑
J∈Jv

∑
Y∈Jw

gvJ kE
vJ→wY (T ) exp

[
−�Ẽv(J )

kBT

]
,

v < w, v,w ∈ V. (A2)

Rate coefficients for the reverse processes can be obtained
based on microreversibility as follows:

k̃Df
v (T )

k̃Db
v (T )

=
[
gNQT

N (T )
]2

QT
N2

(T )Q̃v(T )
exp

[−(2EN − Ẽv)

kBT

]
, v ∈ V,

(A3)

k̃E
v→w(T )

k̃E
w→v(T )

= Q̃w(T )

Q̃v(T )
exp

[−(Ẽw − Ẽv)

kBT

]
, v < w, v ∈ V.

(A4)

APPENDIX B: ENERGY TRANSFER TERMS

The translational-rotational and translational-vibrational
energy transfer terms (�T-R

N2
and �T-V

N2
, respectively) obey a

Landau-Teller relaxation model [33],

�T-R
N2

= nN2

ER
N2

(T ,T ) − ER
N2

(T R,T V )

τ T-R
N−N2

(T ,pN )
, (B1)

�T-V
N2

= nN2

EV
N2

(T ,T ) − EV
N2

(T R,T V )

τ T-V
N−N2

(T ,pN )
. (B2)

The relaxation times τ T-R
N−N2

and τ T-V
N−N2

are functions of the
translational temperature T and of the N partial pressure,
pN = nNkBT . Both relaxation times can be fitted with the
following expression:

τ term
N−N2

pN = exp[a0(T −1/3 + a1)] + a2 exp[a3(T −1/3 + a4)]

(s × atm), (B3)

where the ai fitting coefficients are provided in Table III.

TABLE III. Relaxation time fitting parameters.

Term a0 a1 a2 a3 a4

T -R −60.202 0.26245 −1 −135.875 0.10501
T -V 246.747 −0.11930 1 46.9888 −0.41714
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The energy transfer terms coupling dissociation with
rotational and vibrational energy (�D-R

N2
and �D-V

N2
, respectively)

are written by assuming that the average energy lost by N2

due to dissociation is a temperature-dependent fraction of its
dissociation energy [78],

�D-R
N2

= 2mN nN2 nN CD-R
N2

(T ) 2EN kD
QSS(T ), (B4)

�D-V
N2

= 2mN nN2 nN CD-V
N2

(T ) 2EN kD
QSS(T ). (B5)

The dissociation energy fractions for dissociation-rotation
and dissociation-vibration coupling (CD-R

N2
and CD-R

N2
,

TABLE IV. Dissociation energy fraction fitting parameters.

Term b0 b1

D-R −0.99138 0.13029
D-V 5.867 −0.23341

respectively) can be fitted with the following relations:

CD-R
N2

= b0 + b1 ln(T ), (B6)

CD-V
N2

= b0 T b1 , (B7)

where the bi fitting coefficients are provided in Table IV.
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