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Cyclones and attractive streaming generated by acoustical vortices
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Acoustical and optical vortices have attracted great interest due to their ability to capture and manipulate
particles with the use of radiation pressure. Here we show that acoustical vortices can also induce axial vortical
flow reminiscent of cyclones, whose topology can be controlled by adjusting the properties of the acoustical
beam. In confined geometry, the phase singularity enables generating “attractive streaming” with the flow directed
toward the transducer. This opens perspectives for contactless vortical flow control.
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I. INTRODUCTION

Acoustic streaming, that is, vortical flow generated by
sound, plays a fundamental role in a variety of industrial
and medical applications such as sonochemical reactors [1],
megasonic cleaning processes [2], ultrasonic processing [3],
acoustophoresis [4], and therapeutic ultrasound [5,6]. More
recently, acoustic streaming has been the subject of a burst
of interest with the development of microfluidic applica-
tions [7,8]. For instance, it is at the core of the physics
involved in droplet actuation with surface acoustic waves [9]
for laboratory-on-a-chip facilities, providing a versatile tool
for droplet displacement [10–12], atomization [13], jetting
[14,15], or vibration [12,16,17]. Moreover, vorticity associated
with acoustic streaming is the main phenomenon envisioned
to ensure efficient mixing of liquids [18,19].

Different forms of streaming are generally distinguished
according to the underlying physical mechanism [20,21].
Boundary-layer-driven streaming [22] arises when an acoustic
wave impinges a fluid-solid interface due to viscous stresses
inside the viscous boundary layer. This form of streaming
can be divided into inner streaming, also called Schlichting
streaming [23], occurring inside the viscous boundary layer,
and counter-rotating outer streaming, outside it [24]. The
former is not exclusive to acoustics since it does not require
compressibility of the fluid, but only the relative vibration
of a fluid and a solid. The latter, first enlightened by Lord
Rayleigh, can be seen either as the fluid entrainment outside
the boundary layer induced by Schlichting streaming or as a
consequence of the tangential velocity continuity requirement
for an acoustic wave at a fluid-solid boundary. Finally, bulk
streaming, or so-called Eckart streaming [25], is due to the
thermoviscous dissipation of acoustic waves and the resulting
pseudomomentum transfer to the fluid [26,27]. Since the early
work of Rayleigh [24], many studies have been dedicated to
acoustic streaming and investigation of the influence of various
phenomena on the resulting flow such as unsteady excitation
[28–30], nonlinear acoustic-wave propagation [31,32], and
high hydrodynamic Reynolds numbers [33,34]. However, in
all these studies, only plane or focalized acoustical waves [35]
are considered.

*michael.baudoin@univ-lille1.fr

In this paper, we report on bulk acoustic streaming gener-
ated by specific solutions of the Helmholtz equation called
acoustical vortices. New acoustic streaming configurations
are obtained with cyclone-like flows, whose topology mainly
depends on the one of the acoustical vortex. Flow streamlines
are not only poloidal, as in classic bulk streaming [25], but also
toroidal, due to the orbital momentum transfer. This special
feature provides an acoustical control of the axial vorticity,
while in all forms of acoustic streaming reported up to now,
the topology of the induced hydrodynamical vortices is mainly
determined by the boundary conditions. Finally, in confined
geometries, the azimuthal vorticity can also be tailored by
adjusting the properties of the acoustic beam. In this way,
attractor and repeller hydrodynamic vortices, corresponding,
respectively, to flow directed toward and away from the sound
source, can be obtained.

II. THEORETICAL ANALYSIS

Acoustical vortices (or Bessel beams) are helical waves
possessing a pseudo-orbital angular momentum and a phase
singularity on their axis (for orders �1). The pitch of the helix
l is called the order or topological charge [36]. These waves are
separated variable general solutions of the Helmholtz equation
in cylindrical coordinates and are therefore not exclusive
to acoustics (see, e.g., [37] for their optical counterparts).
Separated variable solutions mean that their axial and radial
behavior are independent; i.e., the diffraction is canceled for
infinite aperture and remains weak in other cases [38]. This
enables their controlled synthesis even in confined geometries.
Acoustical vortices can be generated by firing an array of
piezoelectric transducers with a circular phase shift [39] or
using inverse filtering techniques [40–42]. As few as four
transducers are enough to develop a first-order vortex [39]. Re-
cently, it has been observed that their orbital momentum can be
transferred to dissipative media, which results in a measurable
torque for solids [43,44] or azimuthal rotation for fluids [45].

In the following, we derive the equations of the flow
generated by an attenuated collimated Bessel beam of finite
radial extension r1 [Fig. 1(a)], traveling along the z axis of an
unbounded cylindrical tube of radius r0. This model constitutes
an extension of Eckart’s perturbation theory [25] initially
limited to plane waves. In the case of Bessel beams [39], the
density variation ρ1 induced by the acoustical wave takes the
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(a) (b)

FIG. 1. (Color online) (a) Acoustical vortex with topological
charge l = 3, tan(α) = 1.21, and Kr1 = 10 (z axis was enlarged 10
times). Surfaces correspond to the phase lθ + kzz = π/2, while col-
ors indicate the magnitude of the radial function B. (b) Corresponding
radial function B(Kr) for l = 1 to 3.

form

ρ1(r,θ,z,t) = ρ̂1B(s) sin(lθ + kzz − ωt), (1)

B(s) = A(s)Jl(s). (2)

In these equations, ρ̂1, l, θ , kz, ω, t , and Jl denote, respectively,
the amplitude of the acoustical wave, the topological charge
of the Bessel beam, the angular coordinate, the projection of
the wave vector on the z axis, the wave angular frequency, the
time, and the cylindrical Bessel function of order l. The spatial
window function, A(s), is used to limit the infinite lateral
extension of the Bessel function. The phase of such a vortex is
given by φ = lθ + kzz − ωt , yielding to helicoidal equiphase
surfaces as shown in Fig. 1(a). We introduce the shorthand
notation s = Kr and, by analogy s1 = Kr1, s0 = Kr0, with K

the transversal component of the wave vector. It is defined by
the dispersion relation of a Bessel beam: K2 + k2

z = ω2/c2,
with c the sound speed. We also introduce the variable α,
measuring the helicoidal nature of the flow and defined by
tan(α) = kz/K . The radial dependence in Eq. (1) is based
on Bessel functions, which are plotted in Fig. 1(b). Provided
that l � 1, these functions cancel at s = 0, where destructive
interference between the wavelets from opposite sides of the
vortex occurs. Consequently, the core of the vortex is not
solely a phase singularity, but also a shadow area.

Following Eckart [25], acoustic streaming can be calculated
by decomposing the flow into a first-order compressible and
irrotational flow (corresponding to the propagating acoustical
wave) and a second-order incompressible vortical flow (de-
scribing the bulk acoustic streaming). The insertion of this de-
composition into Navier-Stokes compressible equations yields
Eckart’s diffusion equation for the second-order vorticity field
�Ω2 = �∇ × �u2, with �u2 the second-order velocity field. This

diffusion is forced by a nonlinear combination of first-order

terms and simplifies at steady state into

	 �Ω2 = − b

ρ2
0

�∇ρ1 × �∇ ∂ρ1

∂t
, (3)

with b = 4/3 + μ′/μ, μ′ the bulk viscosity, μ the shear
viscosity, ρ0 the density of the fluid at rest, and ρ1 the
first-order density variation. Since the streaming flow is
incompressible, we can introduce the vector potential ��2 such
that �u2 = �∇ × ��2, with the Coulomb gauge fixing condition:
�∇ × ��2 = �0. The resolution of Eq. (3) thus amounts to the res-
olution of the inhomogeneous biharmonic equation: 	2 ��2 =
− b

ρ2
0

�∇ρ1 × �∇ ∂ρ1

∂t
. Originally, this equation was integrated by

Eckart for truncated plane waves. In the present work, we
solve it in the case of Bessel beams, whose expression is given
by Eqs. (1) and (2). Owing to the linear nature of this partial
differential equation, we consider only solutions verifying the
symmetries imposed by the forcing term and the boundary
conditions: the no-slip condition on the walls, an infinite
cylinder in the z direction, and no net flow along the channel.
In this case, the problem reduces to a set of two linear ordinary
differential equations, which were integrated with standard
methods. The complete procedure is detailed in Appendix A.

Results are given by Eqs. (4) to (11):

uz
2 = 2

Ω�
θ

K

[(
1 − s2

s2
0

)
f (s0) + 1

2

(
s2

s0
2
Λl

z(s0) − Λl
z(s)

)]
,

(4)

uθ
2 = Ω�

z

K

(
s

s0
2
Λl

θ (s0) − 1

s
Λl

θ (s)

)
, (5)

with f (s) = −1

2
Λl

z(s) + 2

s2

∫ s

0
x1Λ

l
z(x1)dx1, (6)

Λl
θ (s) =

∫ s

0
x2

∫ x2

0

B2(x1)

x1
dx1dx2, (7)

Λl
z(s) =

∫ s

0

1

x2

∫ x2

0
x1B

2(x1)dx1dx2, (8)

Ω�
θ = 1

2

ωb tan (α)

ρ0c2
E1, (9)

Ω�
z = 1

2

ωbl

ρ0c2
E1, (10)

E1 = c2 (ρ̂1)2

ρ0
. (11)

In these expressions, we see that the ratio between the axial
and the azimuthal velocities uz

2/u
θ
2 is proportional to the

ratio Ω�
θ /Ω

�
z = tan(α)/l, indicating that as α decays or l

increases (increasing the gradients along the r and θ directions,
respectively), the azimuthal velocity tends to dominate over its
axial counterpart. Both speeds are proportional to the acoustic
energy rather than the amplitude, emphasizing the fundamental
nonlinear nature of acoustic streaming. Furthermore, both
terms are linearly proportional to ω such that its product
with the elastic potential energy, (11), refers to the power
flux carried by the wave.
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FIG. 2. (Color online) Top: Nondimensional velocities for l = 1,
tan(α) = 1.21, and Kr1 = 1.84 for progressively increased cavity
geometrical proportions r0/r1 = [1 (A), 1.44 (B), 1.89 (C), 2.33 (D),
2.78 (E)]. Axial velocity is represented by solid lines, and the
azimuthal component by dashed ones. Bottom: Flow streamlines.
Colors are indicative of the speed magnitude along uz

2: extrema are
represented by the most intense colors, red for positive and blue for
negative.

Equations (4) to (11) were integrated numerically to
compute the velocity field. A square spatial window function
for A(s) (whose expression is given in Appendix (B1)) is
chosen to simplify the algebra. In the following, we investigate
the case l = 1, tan(α) = 1.21, and Kr1 = 1.84 to get an
overview of the flow pattern when the geometric ratio r0/r1

is tuned. The resulting velocity profiles and the associated
streamlines are presented in Fig. 2. They show a combination
of axial and azimuthal vortical structures whose topology
depends on the ratio r0/r1.

III. REPELLER AND ATTRACTOR VORTICES

It is commonly accepted that Eckart’s streaming is the result
of pseudomomentum transfer from the sound wave to the fluid
[26]. Consequently, the acoustic beam (r < r1) should push the
fluid away from the transducer. This is what actually occurs
in weakly confined geometry, that is, for the highest ratios

r0/r1 (see Fig. 2, C to E). In these cases, confinement and
mass conservation impose a backflow at the periphery of the
acoustic beam, resulting in azimuthal vorticity similar to that
observed by Eckart. But Bessel beams also carry an angular
momentum, which is transmitted to the fluid and results in
axial vorticity [45]. Since for l > 0 the wave is rotating in the
positive direction (when time increases, equiphase is obtained
for growing θ ), the azimuthal velocity is also positive.

However, this analysis does not hold when applied to very
confined geometries such as A and B in Fig. 2, where the
beam covers almost all the cylindrical channel. Under these
conditions, radial variations of the beam intensity must be
considered. Indeed, in Fig. 1 we clearly see that the Bessel
beam offers a shadow area in the neighborhood of its axis,
where the wave amplitude cancels. This holds for all non-
zero-order vortices. The backflow generally appears where the
wave forcing is weaker. Hence, the fluid recirculation can occur
either near the walls or at the core of the beam, which becomes
the only option as the free space at the periphery of the vortex
shrinks to 0, as in case A. Let us call these vortices attractor
vortices since they tend to drive fluid particles towards the
sound source, and their opposite repeller vortices, since they
push fluid particles away from the source. Although streaming
pushing the fluid away from a transducer is common, (i) it is
not usually associated with axial vorticity, and (ii) the vorticity
topology depends on the boundary conditions. Furthermore,
Bessel beams enable for the first time the synthesis of attractive
vortices, offering original prospects for flow control and
particle sorting in confined geometries.

Intrigued by this reverse-flow motion, we performed a
systematic investigation of the conditions of its appearance.
Looking at the expression of the velocity, we note that the
sign of uz

2(r = 0) is independent of tan(α), such that the set of
parameters reduces to the topological charge l, the typical
dimension Kr1, and the geometrical ratio r0/r1. All these
parameters are gathered in Fig. 3 to give an overview of
the streaming induced by Bessel beams in confined space.
Looking at the flow map for l = 1, we first note that there
is a bounded set of parameters leading to attractor vortices.
Indeed, these vortices are squeezed by two restrictions: the
beam must be confined enough (ratio r0/r1 close to 1) as
previously explained, and the value of Kr1 has to be small.
Looking back at Fig. 1(b), we note that as Kr1 increases, the
Bessel function amplitude decreases at the periphery, which
facilitates the flow recirculation close to the channel walls.
This trend is reinforced by the apparition of new nodes of the
Bessel function for higher values of Kr1 and the quadratic
dependence of the streaming flow. In addition, as the beam
gets wider, the envelope of the beam weakens for increasing
r , and hence, the recirculation preferentially flows towards the
periphery.

Introducing the topological order l as a free parameter,
we note the progressive broadening of the attractor domain.
Referring to Fig. 1(b), it appears that Bessel functions of
higher order roughly translate towards increased Kr1 or,
reciprocally, need a higher Kr1 to reach the analog extremum.
This explains the Kr1 part of the broadening, whereas the
r0/r1 is due to the progressive flattening of Bessel functions,
which, nonetheless, rapidly saturates. Using the asymptotic
forms of Bessel development, we compute this limit in
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FIG. 3. (Color online) Contour plot of uz
2(r = 0) = 0 at various

topological charges l, typical dimension Kr1, and geometrical ratio
r0/r1. The parameter plane is partitioned into two areas: one close
to the origin, corresponding to attractor vortices, with negative
axial velocities at r = 0, and the other corresponding to repeller
vortices. The dashed line at r0/r1 ∼ 2.218 indicates an asymptotic
limit obtained for large l values.

Appendix B. The extreme value is given solving the equation
ln(x) = 1 − 1/x2,with x = r0/r1. The existence of this upper
bound highlights the essential condition of the confined nature
of the channel.

To compute these last results, we use a window function,
A(s), with a sharp cutoff to ease the comparison with Eckart
results. If we relax this condition, no change is expected in the
case of weakly confined beams, Kr1 � 1. For such a beam,
the flow will recirculate preferentially at the periphery due to
the radial decrease in the Bessel function. The strictly confined
case r0/r1 = 1 is possible since Bessel beams are the modes of
cylindrical wave guides for discrete values of the radial wave
number K = s/r , i.e., no window A(s) is required. Hence
flow reversal at the vortex core should be observable. The in-
termediate situation of a strongly confined beam, 1 < r0/r1 =
1 < 2, is more challenging to carry out experimentally due
to diffraction spreading. However, this problem is mitigated
since truncated Bessel beams are weakly diffracting [38].

IV. CONCLUSION

In this paper, we derive the streaming flow induced
by Bessel beams (acoustical vortices). The resulting flow
topology is reminiscent of cyclones with both axial and
azimuthal vorticity. The axial component is solely controlled
by the acoustic field. Regarding the azimuthal vorticity, two
categories of flow pattern should be distinguished: repeller and
attractor vortices. The first category exhibits a positive velocity
at the center of the beam and appears when the beam radius is
small compared to the fluid cavity, whereas the latter needs a
very confined geometry and develops a negative velocity in its

core. To the best of our knowledge, streaming-based attractor
beams have never been described before and are due to the spe-
cific radial dependence of the sound-wave intensity in Bessel
beams. This work opens prospects for vorticity control, which
is an essential feature in many fluidic systems [46–49]. More-
over, the combination of attractive streaming and radiation
pressure [50–52] induced by acoustical vortices could provide
an efficient method for particle sorting. Indeed, large particles
are known to be more sensitive to radiation pressure, and small
particles to streaming [53]. Large particles would therefore be
pushed away from the sound source by the radiation pressure,
while small particles would be attracted by the flow toward it.
Compared to existing techniques relying on radiation pressure
generated by standing waves [54,55], the advantage would be
that a resonant cavity is not mandatory for sorting particles
with acoustical vortices since progressive waves can be used.
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APPENDIX A: RESOLUTION OF THE ECKART
EQUATION FOR ACOUSTICAL VORTICES

Eckart acoustic streaming [25] is adequately described by a
set of nonlinear partial differential equations. Although exact
analytical solutions have not been found in the general case,
the problem can be solved with a perturbation analysis, as long
as the acoustic wave propagation is weakly nonlinear (weak
acoustical Mach number) and the flow remains laminar (weak
Reynolds number). Following Eckart, the flow generated by
a transducer can be decomposed into a first-order compress-
ible and irrotational flow (corresponding to the propagating
acoustic wave) and a second-order incompressible vortical
flow (corresponding to the acoustic streaming) [56]:

ρ = ρ0 + ρ1 + ρ2 + · · · , (A1)

�u = �u1 + �u2 + · · · , (A2)

with ρ2 � ρ1 � ρ0 and ‖ �u2‖ � ‖ �u1‖. Basically the order
of magnitude of the ratio between first-order and second-
order fields is given by the acoustical Mach number. In this
development, we have considered a homogeneous fluid at rest
in the absence of an acoustic field. Thus the density ρ0 is
constant in space and time, and the velocity �u0 = �0.

By replacing this decomposition into Navier-Stokes com-
pressible equations, Eckart showed that the first-order field
is the solution of D’Alembert (wave) equation. Acoustical
vortices are solutions of this equation in cylindrical coordinates
[57] and their expression calculated by Hefner and Marston
[39] takes the following form for weakly attenuated waves:

ρ1(r,θ,z,t) = ρ̂1A(Kr)Jl(Kr) sin(lθ + kzz − ωt). (A3)

In this equation, φ = lθ + kzz − ωt is the phase of the
acoustical vortex, l the topological charge of the vortex, θ

the angular coordinate, kz the projection of the wave vector
on the z axis, z the height, ω the wave frequency, and t the
time. Finally, ρ̂1 is the amplitude of the first-order density
fluctuation, which is related to its pressure counterpart P̂1
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according to ρ̂1 = P̂1/c
2, and K the transversal component

of the wave vector. It is defined by the dispersion relation
of an acoustical vortex, K2 + k2

z = ω2/c2, with c the sound
speed.

Eckart obtained, in his paper, a diffusion equation for
the second-order vorticity field �Ω2 = �∇ × �u2, which can be
used to compute the acoustic streaming. In the following,
we consider steady streaming generated by a monochromatic
acoustic wave with constant amplitude and therefore the Eckart
equation reduces to

	 �Ω2 = − b

ρ2
0

�∇ρ1 × �∇ ∂ρ1

∂t
, (A4)

b = 4/3 + μ′/μ, (A5)

with μ the shear viscosity and μ′ the bulk viscosity. From
now on, we use the shorthand notation s = Kr , s1 = Kr1,
and s0 = Kr0. In addition, we introduce B to gather the radial
dependence of the beam,

B(s) = A(s)Jl(s), (A6)

where the function A(s) is introduced to limit the infinite
lateral extension of the Bessel function. The derivation of ρ1 in
Eq. (A3) in cylindrical coordinates and the replacement of the
result in Eq. (A4) give an inhomogeneous Poisson equation
with the first-order field playing the role of the streaming
source term:

1

K2
	 �Ω2(r,θ,z) = Ω�

θ

dB2(s)

ds
�eθ − Ω�

z

s

dB2(s)

ds
�ez, (A7)

Ω�
θ = 1

2

kzωb

Kρ0c2
E1, (A8)

Ω�
z = 1

2

ωbl

ρ0c2
E1, (A9)

E1 = c2 ρ̂2
1

ρ0
. (A10)

The beam is assumed to be of infinite extent along z and
invariant by rotation θ around this axis, therefore �Ω2 has only
a radial dependence. Also, the conservative nature of vorticity
allows us to drop off the �er component. The resulting solution
candidate for �Ω2 is

�Ω2 = Ωθ
2 (s) �eθ + Ωz

2(s) �ez. (A11)

Plugging it into Eq. (A7) gives two linear ordinary differential
equations:

s2 d2

ds2
Ωθ

2 + s
d

ds
Ωθ

2 − Ωθ
2 = s2Ω�

θ

dB2(s)

ds
, (A12)

s
d2

ds2
Ωz

2 + d

ds
Ωz

2 = −Ω�
z

dB2(s)

ds
. (A13)

Using standard methods, the homogeneous (H) and particular
(P) solutions are determined:

Ωθ
2

∣∣
H

= Mθ
1 s + Nθ

1

s
, (A14)

Ωθ
2

∣∣
P

= 1

s
Ω�

θ

∫ s

0
x1B

2(x1)dx1. (A15)

The equation along z is treated by introducing g = d
ds

Ωz
2 :

g|H = M1
z

s
, (A16)

g|P = −Ω�
z

B2(s)

s
, (A17)

Ωz
2 = Nz

1 + M1
z ln(s) − Ω�

z

∫ s

0

B2(x1)

x1
dx1. (A18)

Removing the terms diverging at s = 0, we have

�Ω2 =
[
Mθ

1 s + 1

s
Ω�

θ

∫ s

0
x1B

2(x1)dx1

]
�eθ (A19)

+
[
Nz

1 − Ω�
z

∫ s

0

B2(x1)

x1
dx1

]
�ez. (A20)

Since the second-order flow (streaming) is incompressible, we
can introduce the vector potential ��2 verifying �u2 = �∇ × ��2

with the gauge �∇ × ��2 = �0 to compute the velocity field from
the vorticity field:

	 ��2 = − �Ω2. (A21)

For symmetry reasons, the flow is assumed to be invariant
by rotation θ around z and translation along the propagation
axis z, and due to the conservative nature of �u2, the radial
component is dropped off. Consequently, the velocity field is
of the form �u2 = uθ

2(s) �eθ + uz
2(s) �ez. Computing the curl of

�� in order to get �u2, we note that ��2 = �θ (s) �eθ + �z(s) �ez.
Equation (A21) is very similar to (A4), except for the source
term:

s2 � ′′
θ + s� ′

θ − �θ

= − 1

K2

(
Mθ

1 s3 + sΩ�
θ

∫ s

0
x1B

2(x1)dx1

)
,

s� ′′
z + � ′

z = s

K2

(
−Nz

1 + Ω�
z

∫ s

0

B2(x1)

x1
dx1

)
.

Using the same procedure as for �Ω2 we get the general solution:

�θ = M2
θ s − 1

K2

(
Mθ

1

8
s3 + Ω�

θ Iθ (s)

s

)
, (A22)

�z = N2
z + 1

K2

(
−Nz

1

s2

4
+ Ω�

z Iz(s)

)
, (A23)

Iθ =
∫ s

0
x3

∫ x3

0

1

x2

∫ x2

0
x1B

2(x1)dx1dx2dx3, (A24)

Iz =
∫ s

0

1

x3

∫ x3

0
x2

∫ x2

0

B2(x1)

x1
dx1dx2dx3. (A25)

The resulting velocity field can now be simply obtained by
taking the curl of ��2:

uθ
2 = 1

K

(
1

2
Nz

1 s − 1

s
Ω�

z Λ
l
θ (s)

)
, (A26)

uz
2 = 2M2

θ K − 1

K

(
Mθ

1

2
s2 + Ω�

θ Λ
l
z(s)

)
, (A27)
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Λl
θ (s) =

∫ s

0
x2

∫ x2

0

B2(x1)

x1
dx1dx2, (A28)

Λl
z(s) =

∫ s

0

1

x2

∫ x2

0
x1B

2(x1)dx1dx2. (A29)

This velocity field must satisfy the adherence boundary
condition at the wall of the channel s = s0:

uθ
2(s0) = 0, (A30)

uz
2(s0) = 0. (A31)

In addition, the steady and incompressible nature of the
flow must not violate mass conservation, such that a closure
condition is enforced:∫ 2π

0

∫ r0

0
ρ0u

z
2(r)rdrdθ = 0,

(A32)
⇔

∫ s0

0
x1uz(x1)dx1 = 0.

The determinant of the system is equal to s4
0

8K
, such that it

always admits a unique solution. Solving this linear system of
equations, we get

Nz
1 = 2Ω�

z

s0
2

Λl
θ (s0), (A33)

M1
θ = 4Ω�

θ

s0
2

(
f (s0) − 1

2
Λl

z(s0)

)
, (A34)

M2
θ = Ω�

θ

K2
f (s0), (A35)

f (s) = −1

2
Λl

z(s) + 2

s2

∫ s

0
x1Λ

l
z(x1)dx1. (A36)

Including these boundary conditions in the expressions of the
velocity field, we finally obtain

uθ
2 = Ω�

z

K

(
s

s0
2
Λl

θ (s0) − 1

s
Λl

θ (s)

)
,

u(2)
z = 2

Ω�
θ

K

( (
1 − s2

s0
2

)
f (s0) + 1

2

(
s2

s0
2
Λl

z(s0) − Λl
z(s)

))
.

APPENDIX B: ASYMPTOTIC DEVELOPMENT
WHEN K r0 � 2

√
l + 1

In this section, we compute an asymptotic development
of our final expression when Kr0 � 2

√
l + 1. We show that

Eckart’s result obtained for the plane wave can be recovered as
an asymptotic limit of our more general expression. Recover-
ing, the Eckart result dictates the choice of the function A(s):

A(s) =
{

1 if s < s1,

0 if s � s1.
(B1)

1. Asymptotic development

For all s < s0 = Kr0, we have

Jl(s) ∼ 1

l!

( s

2

)l

, (B2)

�l
z(s) ∼

{
s2 l+2

(2 l+2)2 22 l l!2 if s < s1,

s1
2 l+2 1+(2l+2)ln(s/s1)

(2 l+2)2 22 l l!2 if s � s1,
(B3)

f ∼

⎧⎪⎪⎨
⎪⎪⎩

s2 l+2

(2 l+2)2 (2 l+4) 22 l l!2

(
2 − 2l+4

2

)
if s < s1,

Cl

[
(s1/s)2

(
l (1 − (s/s1)2) + 1

l+2

)
+((l + 1)ln(s/s1) − (1/2))

]
if s � s1,

(B4)

with Cl = s1
2 l+2

(2 l + 2)2 22 l l!2 . (B5)

2. Recovering Eckart’s streaming with l = 0 and K r0 � 1

The case of the plane wave can be recovered from our
expression by considering a topological charge equal to 0 and
a radius r0 � 1/K:

�l
z(s) ∼

{
s2/4 if s < s1,(
s2

1

/
4
)
(1 + 2ln(s/s1)) if s � s1;

(B6)

f ∼
{

0 if s < s1,(
s2

1

/
8
)
[(s1/s)2 + 2ln(s/s1) − 1] if s � s1.

(B7)

In the original paper [25], Eckart introduces the notation x =
s/s0 and y = s1/s0:

uz
2 ∼ 2

Ω�
θ

K

{
s2

1/4[(1/2)(1 − (x/y)2) − (1 − y2/2)(1 − x2) − ln(y)] if s < s1,

−s2
1/4[(1 − y2/2)(1 − x2) + ln(x)] if s � s1.

(B8)

Equation (B9) is exactly the expression of the acoustic streaming obtained by Eckart [25] for plane waves.

3. Asymptotic limit for large values of l and K r0 � 2
√

l + 1

�l
z(s) ∼

{
s2 l+2

(2 l)2 22 l l!2 if s < s1,

s1
2 l+2 ln(s/s1)

(2 l) 22 l l!2 if s � s1;
(B9)

f ∼

⎧⎪⎨
⎪⎩

− s2 l+2

2(2 l)2 22 l l!2 if s < s1,

Cl

[
(s1/s)2(1 − (s/s1)2)

+ ln(s/s1)

]
if s � s1;

(B10)
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Cl = s1
2 l+2

4l 22 l l!2 ; (B11)

uz
2(s = 0) = 2

Ω�
θ

K
f (s0). (B12)

Using the Eckart [25] notation y = s1/s0:

uz
2(s = 0) = 2

Ω�
θ Cl

K
(y2 − 1 − ln(y)). (B13)

We highlight here that in Eq. (B13) Cl is decreasing extremely rapidly, such that increasing l dramatically decreases the magnitude
of uz

2(0).
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