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Interfacial dynamics of two immiscible fluids in spatially periodic porous media:
The role of substrate wettability

Pranab Kumar Mondal, Debabrata DasGupta, and Suman Chakraborty*

Department of Mechanical Engineering, Indian Institute of Technology Kharagpur, West Bengal 721302, India
(Received 19 December 2013; revised manuscript received 24 April 2014; published 8 July 2014)

We delineate the contact line dynamics of two immiscible fluids in a medium having spatially periodic porous
structures. The flow is driven by an external applied pressure gradient. We bring out the combined consequences
of the solid fraction distribution and the substrate wettability on the resulting dynamics of the contact line, by
employing phase-field formalism. We capture the sequence of spatiotemporal events leading to formation of
liquid bridges by trapping a small amount of displaced phase fluid between two consecutive porous blocks, as
dictated by the combinations of substrate wettability and solid fraction. We also demonstrate the existence of a
regime of complete interfacial recovery, depending on the parametric space of the governing parameters under
concern. Our results essentially demonstrate the intricate mechanisms by virtue of which the wettabilities of
the substrates alter the dynamical evolutions of interfaces and the subsequent shapes and sizes of the adsorbed
dispersed phases, bearing far-ranging consequences in several practical applications ranging from oil recovery
to groundwater flow.
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I. INTRODUCTION

A large number of physical processes involve the transport
of fluids through porous pathways. Examples include oil
recovery, hydrology, regeneration in chemical processes, fuel
cells, groundwater flow, to name a few [1–3]. In order to unveil
the underlying physics of flows pertinent to these applications,
it is necessary to fully understand the governing physical
processes at the pore scale. In many cases, the situation
gets further complicated by the considerations of multiphase
flows of immiscible fluids over interfacial scales, dictating the
resultant larger-scale transport in a rather profound manner
[3,4–8]. The underlying dynamics, in effect, is governed by the
intricate interplay of different forces acting at the three-phase
contact line and is a strong function of a number of factors, such
as the length scales of the porous structure [9], the chemical
characteristics of the surface [10], and the fluid rheology
considered [11].

Interfacial dynamics at the pore scale and its influence
in dictating the overall multiphase transport through porous
media has been studied extensively, both numerically and
experimentally [12–19]. Experimental studies have shown that
the wetting properties of the fluids with regard to the solid
substrate have a major effect on the formation and motion of
the interface [20]. However, in order to capture the complete
details of the interfacial behavior due to the wide range
of the physical phenomena occurring in a pore-scale flow,
experimental investigations may turn out to be challenging
owing to two important factors: one is associated with the
large-scale heterogeneity of the porous structures, while the
other is essentially due to multidimensional and transient
nature of the flow. The difficulties associated with detailed
experimental investigations on the pore-scale flow of two
immiscible fluids, in essence, have prompted the research
community to adhere to empirical formalisms like Darcy’s law
[21] or its suitable variants [22]. While this approach may be
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somewhat effective for single-phase flows, difficulties do arise
when situations concerning multiphase flows are encountered
[23]. The complexities associated with the implementation of
the interfacial boundary conditions for pore-scale polyphasic
flows along with large-scale heterogeneity of the morphology
of the porous structure necessitates the use of mathematical
and numerical frameworks to model the intricate interplay of
various forces and their combined influence in dictating the
transport within the porous media [24–27].

It has been well established by the researchers that the
presence of large-scale heterogeneity in conjunction with the
wetting characteristics of the porous structure surface, which
results because of the nature of the porous substrate and
the contamination of various reagents, essentially plays a
significant role in dictating the contact line motion, which
significantly alters the imbibition dynamics [3]. However,
a closer scrutiny of the available literature reveals that no
prior studies exist that describe the contact line motion of
two immiscible fluids in a periodic porous medium with
specified substrate wettabilities. The scarcity albeit necessity
for predicting the flow dynamics inside the porous media in
presence of varying surface characteristics from fundamental
consideration of contact line dynamics together with the
assorted scale of the porous structure, accordingly, are the
motivation of the present study.

In order to unveil the essential physics dictating the influ-
ence of the substrate wettability conditions on the dynamical
evolution of two immiscible fluid phases, and at the same time
in an effort to keep the key parametric variations and numerical
computations tractable, we have considered idealized periodic
porous media with simple circular obstacles having uniform
surface wettabilities. Our results effectively demonstrate that
the relative affinity of the substrates may alter the flow
dynamics in a rather profound manner. Further, depending on
the surface affinity condition and the solid fraction distribution,
two distinctive dynamical regimes may be identified. We
also show how the wettability condition alters the interface
evolution dynamics and the subsequent shapes and sizes of the
adsorbed dispersed phase.
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II. THEORETICAL MODEL

A. Problem description

We consider the flow of two immiscible fluids in a periodic
porous medium. The representative volume element (RVE) of
the porous medium mimics a two-dimensional pore structure
with circular obstructions. Figure 1 shows the schematic of
the periodic porous medium, the RVE and the computational
domain considered in the present study. The computational
domain is considered to be periodic along the y direction,
whereas along the x direction we have considered a series
of representative obstructions (four in the present study) in
order to mimic the present flow scenario. It is important to
note that the classical structure of the computational domain
considered in the single-phase flow studies is the RVE itself
with periodicity along both the x and the y directions. This
treatment will, however, not work for the present case, as
the application of the periodicity condition in the direction of
the flow, for a multiphase flow scenario, will make the flow
structure plug type and not mimic the physical reality.

We vary the size of the circular obstruction while keeping
the size of the RVE fixed so as to vary the solid fraction. Four
such solid fractions have been considered in the present study.
Initially, the entire channel is filled with fluid B (shown by blue
color or dark shade) and fluid A (shown by red color or light
shade) enters the computational domain from the left end. In
order to study the effect of the varying surface characteristics
on the dynamics inside the porous media, we have considered
the walls of the obstructions (circles in the present study)
to be chemically patched with different predefined surface
wettabilities, as manifested in terms of static contact angle θs .
The subscripts 1 and 2 are used to describe the properties of
liquids A and B, respectively.

B. Phase-field model for immiscible binary fluids

In the present study, we have used the phase-field model for
describing the fluid motion in the capillary. In this context, we
would like to mention here that a number of methods available
in the literature have successfully been used in investigating
the characteristics of multiphase flow hydrodynamics like
volume of fluid (VOF) method [28], the level set method (LS)
[29,30], and combined level set-VOF method (CLSVOF) [31].
However, the phase-field model has received a growing interest
in the research community owing to several advantageous
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FIG. 1. (Color online) Schematic of the porous structure, the
representative volume element (RVE), and the computational domain.

features inherent to this model [32–35]. A few such advan-
tageous features include the existence of a thermodynamics
basis, the implicit interface tracking capability, removal of
stress singularity by introduction of slip at the fluid-solid
interface, and fairly accurate mass conservation during the
process. In the phase-field method, an order parameter φ is
used to differentiate between two immiscible fluids in a binary
fluids system. The order parameter describes the local fluid
composition at any instant and is directly related to the scaled
phase concentrations of the respective phases. In the present
analysis, we define the order parameter as

φ = (n1 − n2)/(n1 + n2), (1)

where, n1 and n2 denote the number of molecules of the
displacing phase fluid (fluid A in the present study) and
the displaced phase fluid (fluid B in the present study),
respectively. Therefore, the order parameter values of φ = 1
and −1 indicate the bulk phases A and B, respectively. It
is important to mention in this context here that, in the
present study, the phase boundary separating the bulk phases
is smooth and the Ginzburg-Landau free-energy functional for
the two-phase system can be defined as the function of the
order parameter as [33–40]

F =
∫

∀

{
f (φ) + 1

2
σξ |∇φ|2

}
dV. (2)

In Eq. (2), the first term is the bulk free-energy density,
which is responsible for the immiscibility of the fluids, and the
second term of Eq. (2) provides the excess free energy of the
interface owing to the presence of the diffuse interface of finite
thickness between the bulk phases. It is important to mention
that σ and ξ appearing in Eq. (2) denote the surface energy
per unit area and the order of the diffuse interface thickness,
respectively. The form of the double-well potential f (φ) may
be expressed in the form [34]

f (φ) = σ

4ξ
(1 − φ2)2, (3)

where the two minima (φ = ±1) correspond to the two stable
phases A and B, respectively.

The chemical potential μ is defined as the variational
derivative of free energy, with respect to the order parameter
φ, and is given by

μ = δF

δφ
= f ′ (φ) − σξ∇2φ. (4)

The interface profile in equilibrium condition may be
obtained by setting μ(φ) = constant.

C. Cahn-Hilliard model coupled with
Navier-Stokes system of equations

In order to obtain the time-dependent interface profile, it
is customary to describe the evolution of the order parameter
φ in the flow field. The Cahn-Hilliard equation describes the
order parameter evolution accounting the advective transport
due to the presence of the velocity field. The complete form
of the convective Cahn-Hilliard equation can be expressed as
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follows [41,42]:

∂φ

∂t
+ u · ∇φ = ∇ · (M∇μ) . (5)

Here, M > 0 is a mobility constant, which controls the
diffusion across the interface. For the governing transport
equation of the order parameter evolution [Eq. (5)], we define
the following boundary conditions [43]:

∇μ · n = 0, (6a)

n · ∇φ = − tan

(
π

2
− θs

)
|∇φ − (n · ∇φ) n| , (6b)

where, n is the normal vector pointing outward from the solid
surface.

It is important to mention in this context that the boundary
condition given in Eq. (6a) indicates zero flux through the
surface, whereas Eq. (6b) is the natural boundary condition,
which essentially ensures specified contact angle θs at the
boundary such that the order parameter remains approximately
constant along the tangent to the interface [43].

The evolution equation for the order parameter is coupled
with the Navier-Stokes equation. The Navier-Stokes equation
is augmented with body force term μ∇φ, which is represen-
tative of the surface tension forcing. For a detailed derivation
of the related force arising because of the presence of the
interface, one may refer to an earlier review by Jacqmin [44].
The Navier-Stokes equation, including the body-force terms
can be written in the form

ρ

(
∂u
∂t

+ u · ∇u
)

= −∇p + ∇ · [η{(∇u) + (∇u)T }] + μ∇φ,

(7a)

∇ · u = 0, (7b)

where, p is the pressure. The fluid properties like the density
and viscosity are considered to be functions of the order
parameter and are given by [33,35]

ρ = ρA

(
1 + φ

2

)
+ ρB

(
1 − φ

2

)
, (8a)

η = ηA

(
1 + φ

2

)
+ ηB

(
1 − φ

2

)
. (8b)

The boundary conditions considered for all the simulations are
given below:

At the inlet : u = um, (8c)

At the outlet : p = p0, (8d)

At the solid surface : u = 0. (8e)

The complete set of governing transport equations describing
the motion through the narrow fluidic pathways of the porous
microstructure is given by the Eqs. (5) and (7), coupled with
the boundary condition for φ as given by Eq. (6). For the
Navier-Stokes equations, we use the standard no-slip boundary
condition for at the walls, as well as velocity inlet and pressure
outlet boundary conditions on the inlet and outlet boundaries
mentioned in Eqs. (8c)–(8e).

Nondimensionalization of the governing transport equa-
tions. Here, we adopt the following nondimensionalization

scheme: ū = u/uref ; v̄ = v/uref ; x̄,ȳ = x/ξ,y/ξ ; η̄ = η/ηref ;
ρ̄ = ρ/ρref ; p̄ = p/pref , and t̄ = t/tref where pref =
ηrefuref/ξ ; tref = ξ/uref . The scale for nondimensionalization
of the chemical potential is given as μ̄ = μ/ (σ/ξ ). Upon
implementation of the above scheme of nondimensionaliza-
tion, we finally arrive at the following set of dimensionless
equations:

∂φ

∂t̄
+ u · ∇φ = 1

Pe
∇ . (M̄∇μ̄), (9)

Re · ρ̄

(
∂ū
∂t̄

+ ū · ∇ū
)

= −∇p̄ + ∇ · [η̄{(∇ū) + (∇ū)T }]

+ 1

Ca
μ̄∇φ, (10)

∇ · ū = 0. (11)

The scheme of nondimensionalization leads to a few dimen-
sionless parameters given as

Peclet number (Pe) = urefξ
2/Mcσ.

Capillary number (Ca) = urefηref/σ.

Reynolds number (Re) = ρrefurefξ/ηref .

In Eq. (9), M̄ is defined as: M̄ = M/Mc. The value of
the mobility parameter, M̄ has an important bearing on the
stability of the solution and the increasing value of mobility
parameter stabilizes the flow [45]. In our present numerical
experimentation, we define Mc following reported molecular
dynamics simulation studies [46] as Mc = C l4√

m̃εe
, where l

and εe are the length scale and energy scale in the Lennard-
Jonnes potential for fluid molecules, respectively, and m̃ is
the molecular mass of fluid, and C is a constant (given by
0.023), so as to ensure the convergence of the solution. It is
important to note that in the nondimensionalization scheme,
one can use either of the fluid properties to be the reference
values of the different fluid properties (like viscosity and
density) to define the two-phase flow configuration. In the
present study, we have considered the properties of fluid A as
the reference properties. We do mention here that apart from
the dimensionless parameters mentioned above, the ratios of
different fluid properties, such the density ratio, ρr = ρB

ρA
, and

the viscosity ratio, ηr = ηB

ηA
, play an important role to on the

interfacial dynamics. Please note that in the present study,
we consider density and viscosity matched immiscible binary
fluids for all our simulations.

Keeping in view the wide variety of substrate wettability
conditions encountered in reality, in the present study, we have
considered a range of values of the static contact angle θs in
order to gain insight into all the anticipated flow scenarios.

We consider the flow to be driven by an external velocity
field where an average velocity uavg = 0.2 is taken in the anal-
ysis that corresponds to value given in Ref. [35]. It is important
to be noted here that the scheme of nondimensionalization does
not alter the form of the boundary conditions used in the present
study; rather it replaces all the variables by the corresponding
nondimensional ones. In the subsequent sections, we will drop
the overbars from the variables for clarity of representation.
In Fig. 2, we show the governing transport equations along
with the appropriate boundary conditions schematically. In the
present study, we have used unstructured triangular meshes
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FIG. 2. (Color online) Schematic of the problem domain delin-
eating the governing transport equations and boundary conditions.
The channel is initially filled with fluid B (shown in blue color or
dark shade) and fluid A (shown by red color or light shade) enters the
channel from the left.

generated using advancing front technique where maximum
element size is restricted to less than 0.5ξ . Even though the
mesh is nonorthogonal it is conformal. A mesh resolution
of 0.5ξ is sufficient to resolve the interface as indicated
in a number of previous studies [33,35]. For all numerical
experimentations carried out in the present study, we have used
the commercial software package COMSOL. The numerical
framework used in the present study is benchmarked with the
results reported by Wang et al. [35].

III. RESULTS AND DISCUSSIONS

The main aim of the present study is to instigate the
evolution of the interface of two immiscible fluids over porous
structures having different surface wettabilities. Toward this,
we note that the interfacial dynamics is strongly dictated by
the following parameters: (i) solid fraction of the porous media
(fs), (ii) the wettability of the porous structures as manifested
in terms of static contact angle specified at the surface (θs).
The solid fraction fs is defined as the ratio of volume (or
area for the 2D case presented here) of solid obstacles to the
volume of the RVE. In the present study we have considered
four different solid fractions fs ∈ [0.15,0.26,0.4,0.51] and
seven different substrate wettabilities as governed by θs ∈
[45◦,60◦,75◦,90◦,105◦,120◦,135◦]. The values of the other
dimensionless parameters have been chosen as Pe = 0.2,Re =
0.03, and Ca = 0.083 and are assumed to be constant through-
out the analysis unless otherwise mentioned.

In order to instigate the effect of substrate wettability on
the evolution of the interface and the resultant capillary filling
dynamics, we show the time sequence of the interface evo-
lution for θs = 60◦ and θs = 120◦ representative of different
wettability scenarios for fs = 0.25.

It is important to note that the two image sequences shown
in Fig. 3 depict two distinctive regimes of interface evolution.
In the left series (which corresponds to θs = 60◦), we observe a

FIG. 3. (Color online) Time sequence of interface evolution fs =
0.25 and (a) θs = 60◦ at nondimensional times of t̄ = 40, 45, 50, 60,
70, 80, 90, 100, and 140 and (b) θs = 120◦ at nondimensional times
of t̄ = 40, 45, 50, 60, 80, 100, 130, 150, and 180.

complete recovery of the interface as the interface moves from
one RVE to the other. In the right series (which corresponds
to θs = 120◦), on the other hand, we observe the formation of
liquid bridge between the successive obstacles.

Quite notably, the shape and size of the liquid bridge
formed between two consecutive porous blocks keeps on
changing until it acquires a steady-state configuration. Once
the liquid bridge attains a steady configuration, its shape and
size does not change appreciably any further. We confirm this
phenomena from Fig. 4, where we show the interface evolution
at nondimensional times of 160 and 260, respectively. One
can see that the shape and size of the liquid volume trapped
between first two porous blocks remains unchanged with time
and does not get altered by the surrounding flows.

In Fig. 5, we show the velocity vector plots depicting the
flow structure for the two cases shown above viz. complete
interface recovery and bridge formation. It is interesting to
note that the evolving interface significantly alters the flow

FIG. 4. (Color online) Interface evolution for fs = 0.4 and θs =
60◦ at nondimensional times of 160 and 260, respectively.
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FIG. 5. (Color online) Velocity vector plot depicting the flow
structure for fs = 0.25 and (a) θs = 60◦ and (b) θs = 120◦ at
nondimensional times of 160 and 220, respectively.

structure. Also, there is no significant flow through the surface
of the liquid bridge primarily due to the location of the bridge,
which forms between the successive blocks.

In order to understand the underlying mechanism respon-
sible for this distinctive behavior, we try to explore the
influence of the substrate wettability on the contact line
dynamics and its eventual role in dictating the transport. As the
interface progresses and first encounters the solid obstacle, it
essentially subtends zero angle with the surface. As soon as the
interface touches the surface, contact line forms, which, due
to symmetry of the obstacle, progresses symmetrically along
the top and the bottom edges of the circular obstacle as clearly
evident from Fig. 3. At the instant when the contact line forms,
the contact angle is close to zero (since the interface touches
the obstacle tangentially) and the interface at the contact line
subsequently relaxes in an effort to attain the dynamic contact
angle depending on the surface wettability. Therefore, initially
the contact line velocity is very high and it decreases as the
interface relaxes with time. The similar trend is observed in
Fig. 6, where we show the variation of the velocity of the
moving contact line (tangential to the obstacle surface) with

FIG. 6. (Color online) Variation of the velocity of the moving
contact line (tangential velocity along the obstacle surface) with
axial location of the contact line for two different values of surface
wettability θs = 60◦ and 120◦, respectively.

(a) (b) 

120o

60o

FIG. 7. (Color online) Schematic representation of the interface
showing the contact line for (a) θs = 60◦ and (b) θs = 120◦.

axial distance for the two cases discussed above i.e., fs = 0.25
and θs = 60°/120°.

In Fig. 7, we depict a representation of the interface showing
the contact line. The variations in contact angle made by the
interface with the solid substrate are different because of the
variations in the surface wettability conditions. It is important
to note that because of the variation in surface affinity
conditions, the conditions at the contact line at the instant
of its formation are more severe with respect to its dynamic
equilibrium condition. The term “dynamic equilibrium” is
loosely employed in the present context to merely emphasize
that the interface evolves dynamically and it will not reach its
equilibrium configuration. The local contact angle eventually
reaches the dynamic contact angle value, which will in turn
keep on changing because of the substrate curvature. However,
its variation is much less compared to the variation of the
contact angle during the initial phase of the transience for the
case with θs = 60◦, as compared to that for θs = 120◦. As a
result of this, the magnitude of contact line velocity during
the initial phase is more for case with θs = 60◦ compared to
θs = 120◦, which is also evident from Fig. 6. As the contact
line moves and it relaxes, its velocity decreases monotonically
at a faster rate till a point when the interface has adjusted
considerably and it roughly occurs when the point of inflection,
existing on the interface joining the periodically repeating
obstacles, vanishes (see third instance of Fig. 3(a) and fourth
instance of Fig. 3(b). Beyond this point, the decrease in contact
line velocity is somewhat slower. Since fluid A is displacing
fluid B in the porous pathways, the mobility of the contact
line will be more when the surface has affinity toward fluid
A. The same trend is observed in Fig. 6, where we see that
the contact line velocity is more when θs = 60◦, as compared
to θs = 120◦. For θs = 120◦, the contact line velocity drops
to zero and contact line pinning is observed. This appears to
be clearer from Fig. 8. From Fig. 8, we show the variation
of the axial location of the contact line with time and we see
the interface stalling toward the end of the obstacle. In the
inset, we have shown the location of the point of stalling for
three different surface affinity conditions. It is important to
note that as θs increases and the affinity of the surface toward
fluid B increases, the point of interface pinning shifts toward
the upstream direction, i.e., toward the left. This shifting of the
point of pinning with variation in surface affinity condition has
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FIG. 8. (Color online) Variation of the x component of the
contact line location with time for fs = 0.25 for two different values
of surface wettability θs = 60◦ and 120◦, respectively. In the inset,
we show the location of stalled interface with variation in the static
contact angle.

important consequences as will be discussed in a subsequent
section.

Till this point, we have tried to focus our attention on the
dynamics of the contact line. Next, let us try to look at the
interface as a whole, evolving between two successive periodic
obstacles as shown in Fig. 9, where we have shown the periodic
repeats of half of the domain.

As the interface evolves with time, two distinctive features
are observed. When the substrate preferentially likes fluid A,
the mobility of the contact line is more and we see complete
recovery of the interface; i.e., the two contact lines moving
along the upper and the lower halves of the obstacles merge
together to form a single interface again. On the other hand,
when the substrate wettability is such that it preferentially
likes fluid B, the contact line velocity is relatively lower and
we observe contact line pinning. As a result of which, with
passage of time, the evolving interface touches the obstacle
located on the downstream RVE and we observe formation
of a new contact line. This leaves behind a liquid bridge of
fluid B between the two consecutive obstacles. However, this
is not a universal phenomenon. It not only depends on the
surface affinity condition but also on the solid fraction, as

FIG. 9. (Color online) Evolution of the interface and existence
of distinctive regimes for fs = 0.4 and (a) θs = 60◦ corresponding
to complete interface recovery and (b) θs = 120◦ corresponding to
formation of liquid bridge

FIG. 10. (Color online) Interface evolution for solid frac-
tion (a) fS = 0.15 and (b) fS = 0.51, obtained at dif-
ferent wetting conditions of the porous structure surface
(θs = 45◦,60◦,75◦,90◦,105◦,120◦,135◦). The liquid bridge between
two consecutive porous blocks for fs = 0.15 is formed for θs = 120◦

and 135◦, whereas for fs = 0.51 liquid bridge forms for all the wetting
conditions.

the variation of the solid fraction alters the distance between
the obstacles and significantly alters the filling dynamics.
In the subsequent discussions, we will systematically observe
the influence of interesting interplay of the substrate wettability
and solid fraction on the interfacial dynamics.

In an effort to construct a regime diagram clearly indicating
the different regimes of dynamics, we try to explore the
effect of variation of governing parameters viz. surface affinity
conditions and solid fraction on the flow dynamics. In Fig. 10,
we show the variation in the interface profiles with change in
surface affinity condition of the obstacle for the two extreme
solid fractions considered in the present study, i.e., 0.15 and
0.51.

For the value of solid fraction fs = 0.15, which is the
highest permeable porous structure considered in the present
study, the complete recovery of the advancing fluid front is
possible for θs ∈ [45◦,105◦], whereas for θs = 120◦ and 135◦,
we observe the formation of a liquid bridge between two
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FIG. 11. (Color online) Interface evolution for surface wettabil-
ity (a) θs = 60◦ and (b) θs = 120◦ for four different solid fractions
considered in the present study (fS = 0.15,0.26,0.40,0.51). For
θs = 60◦, complete interface recovery is observed for fs = 0.15 and
0.26, whereas liquid bridge formation is observed for fs = 0.40 and
0.51. On the other hand, for θs = 120◦, formation of liquid bridge is
observed for all the solid fractions considered in the present study. The
shape and size of the bridge, however, varies with the solid fraction.

consecutive porous blocks. It is important to note that for
θs = 105◦, we do not observe the formation of any liquid
bridge for fs = 0.15, while for all the other solid fractions
we observe bridge formation. This can easily be explained
from the fact that with increase in the value of θs , the point
of pinning shifts toward the left. For fs = 0.15, because
of smaller dimension of the obstacle, the distance between
the points of pinning, which are toward the extreme right,
is of the order of the interface width and we observe that
the two contact lines interact with each other and merge,
recovering the advancing front. For even lower dimension of
the obstacles, the start of formation of liquid bridge will be
shifted toward even higher value of θs , and on the contrary, for
very large obstacle dimension, there are chances of bridge
formation from very low value of θs . This will be more
clear from the interface evolution for fs = 0.51, which is the
lowest permeable structure considered in the present study. For
fs = 0.51, we observe the formation of liquid bridge for all
the values of θs considered in the present study. However, with
increase in the value of θs , as the pinning point shifts toward
the left, the volume of displaced liquid trapped between the
blocks increases and so is the shape of the liquid bridge.

In order to delve deep into the combined influence of the
surface wettability and the solid fraction on the interface
evolution behavior, next we try to explore the influence of
variation of solid fraction on the filling dynamics. In Fig. 11,
we show the variation in the interface profiles with change
is solid fraction for two surface wettability conditions given
by θs = 60◦ and 120◦. We see that for relatively low-porosity
porous medium, i.e., when fs is high, liquid bridge forms even

FIG. 12. (Color online) Regime diagram clearly depicting the
regimes of interface evolution dynamics and its variation with solid
fraction and wettability.

when the θs is low, whereas for high-porosity porous media
we obtain complete interface recovery when θs is low and
formation of liquid bridge when θs is high.

From the preceding discussions, it is clear that the intricate
interplay between the surface wettability and the solid fraction
of the porous medium plays interesting role in dictating
the transport and in the resulting dynamics. In particular,
we observe two distinctive regimes, viz. complete interface
recovery and formation of liquid bridge. In Fig. 12, in a regime
diagram, we show the two regimes of operation and the role
of the governing parameters on the same.

We observe complete interface recovery when both fs or
θs are small, i.e., when the obstacle dimensions are small and
the surface has preferential affinity toward the displacing fluid.
With increase in fs or θs or both, the chances of formation of
liquid bridge increase.

Before we conclude, we would like to point out that the
bridge formation highlighted in the preceding sections is not

FIG. 13. (Color online) Time sequence plot of the interface of
two immiscible fluids moving through porous medium, forfs = 0.40
and θs = 60◦. The snapshots obtained at different times show the
interface breaking phenomenon and the dynamic evolution of the
pinched-off portion.
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the only mechanism of fluid trapping. We have also observed
a second mechanism of trapping. This happens even after
the interface has completely recovered after confronting one
obstacle, when the curvature of the recovered interface at the
line of symmetry is very small. In this case, it is possible that
the two ends of the moving interface will touch the downstream
obstacle after it travels for a while and we observe formation
of two contact lines and a trapped liquid phase upstream of the
obstacle. This will be more clear from the interface evolution
structure shown in Fig. 13, where we show the time evolution
of the interface for the case when the solid fraction fs = 0.40
and θs = 60◦. The snapshots taken at different instants of time
clearly portray how the interface breaks as it moves over the
porous structures. Depending upon the affinity condition of the
obstacle and the amount of the displaced phase fluid trapped
behind the obstacle, its shape will evolve with time owing to
dynamic adjustment of contact angle with the solid surface.

IV. CONCLUSIONS

In the present study, we address the interfacial dynamics
of two immiscible fluids in a porous medium, which strongly
depends on two important factors: the solid fraction of the
medium and the surface wettability of the porous structure.
We employ phase-field formalism to capture the underlying
effects. We show how the substrate wettability–solid fraction
combination alters the interfacial dynamics significantly and
leads to several interesting events as the interface moves
from one RVE to the other. Before concluding, we would
like to highlight several interesting insights, which have been
carefully observed from our study as given below:

(1) The velocity of the contact line, formed over the solid
substrate, keeps on changing as the interface progresses over
the porous blocks. Such alterations of contact line velocity,
tuned by the interplay of the substrate wettability and pore
fraction eventually leads to the stalling of the interface
following the pinning of contact line. The phenomenon of
interface stalling has important consequences as reflected
either through the formation of liquid bridge by trapping a
small amount of displaced phase fluid between two consecutive
porous blocks or a complete recovery of the displaced phase
fluid.

(2) We show existence of bridge formation when the
surface wetting conditions preferentially like the displaced

phase fluid and the tendency of bridge formation increases
with the increase in substrate wetting strength. We also show
that with increase in permeability of the porous media, the
location of the interface stalling shifts toward the downstream
direction eventually leading to a decreasing tendency of bridge
formation with increase in porosity.

(3) We argue that the interesting interplay of the porosity of
the media and the substrate wettability do have an interesting
role to play on the pore-scale transport and, essentially, on
the resulting core-scale imbibition dynamics. We identify
the suitable combination of above two important parameters,
i.e.,fs and θs , for which either a complete recovery of the
displaced phase fluid or a formation of liquid bridge owing to
trapping of the displaced phase fluid between two consecutive
porous block is possible. In particular, we show existence of
two distinctive regimes of dynamics, and in a regime diagram,
we portray the influence of the key governing parameters
viz. substrate wettability and pore fraction on the operating
condition.

(4) We also observe a second mechanism of fluid trapping
that can occur even after the interface has completely recovered
after confronting one obstacle. This mechanism of fluid
trapping essentially occurs when the curvature of the recovered
interface at the line of symmetry is very small. In such cases,
it is possible that the two ends of the moving interface touch
the downstream obstacle after it travels for a while leading to
formation of a trapped liquid bridge.

(5) We show that the size and shape of the liquid bridge
formed between two consecutive porous blocks does not alter
once it attains a steady-state situation. We further demonstrate
that no flow can cross the surface of the bridge, primarily
attributable to the location of the bridge where it forms at a
downstream of two consecutive blocks.

The inferences obtained from the presnt study can be
far-reaching, as far as the technological implications are
concerned. We believe that the present study may enhance
the understanding of imbibiton dynamics from a fundamental
perspective of contact-line motion at the pore scale. We also
believe that the systematic interrogation of several interesting
insights as delineated in the present study will bridge an
important gap in the lietrature, and the regime diagram may
guide the practicing professionals to engineer and control
transport through porous structures, which may bear far-
reaching consequences in several areas of application.
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