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How to freely enhance or suppress synchronization of networked dynamical systems is of great importance in
many disciplines. A unified precise control method for a synchronization-desynchronization switch, called the
pull-push control method, is suggested. Namely, synchronization can be achieved when the original systems are
desynchronous by pulling (or protecting) one node or a certain subset of nodes, whereas desynchronization can
be accomplished when the systems are already synchronous by pushing (or kicking) one node or a certain subset
of nodes. With this method, the controlled nodes should be chosen by the generalized eigenvector centrality
of the critical synchronization mode of the Laplacian matrix. Compared with existing control methods for
synchronization, it displays high efficiency, flexibility, and precision as well.
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I. INTRODUCTION

Synchronization is omnipresent in nature and has been
widely used in many manmade systems [1–9]. It has attracted
many scientists and engineers from various fields to study
and utilize it with great interest. During the past decade,
the research interest has been shifted from the studies of
the structures of complex networks, such as the discovery
of small-world networks, scale-free networks, and several key
properties of complex networks with complicated topology, to
the studies of the dynamics of complex networks, including
synchronization of coupled networked nonlinear systems [3].

In many cases, synchronization has been deemed to be very
useful and necessary. Such cases include synchronous flashing
by fireflies [10], sensory processing in cortical networks [11],
and laser synchronization [12,13]. According to previous
studies, the topology of networks plays an important role
in synchronization, and the degree-heterogeneous networks
are usually difficult to synchronize [14–16]. Many methods
have been proposed to enhance network synchronizability,
such as (i) slightly modifying the network structure, including
removing nodes with maximal betweenness [17], dividing hub
nodes [18], deleting overload edges [19], rewiring network
edges [20,21], and shortening the average distance [22]; or
(ii) properly introducing weight and directionality to each
link (edge) [23–26]. In addition, the so-called pinning control,
which usually refers to a local feedback method by inputting an
external signal and stabilizing the network to a synchronous
state (or a homogeneous steady state), has been verified to
be very effective [27–31]. The original method has also been
extended to other methods such as the adaptive pining control
method [32,33] and the node-to-node pining control method
[34].
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On the other hand, synchronization may be harmful and
undesirable in some other situations. For instance, the onset
of abnormal synchronization may lead to congestion in traffic
networks [35], the collapse of constructions [35], events such
as the Millennium Bridge vibrations [36], epileptic seizures
[37], and Parkinson’s disease [38]. Several methods, such as
fighting a charismatic leader and a set of political adversaries
(contrarians) [39], have been proposed to suppress (or avoid)
undesired synchronization. Despite all this progress, it remains
unknown how to control networked dynamical systems and
achieve a low-cost switch between synchronization and desyn-
chronization under a unified framework.

For this problem, the key point is to precisely find the
most effective node as the controller [40,41]. Some ranking
strategies have been developed for node importance based
solely upon stationary topology, including degree centrality,
closeness centrality [42,43], betweenness centrality [44],
and eigenvector centrality [45]. For the synchronization
control problem, the degree-centrality-based strategy and
the betweenness-centrality-based strategy have been widely
verified as being helpful for enhancing network synchro-
nizability [29–31]. To the best of our knowledge, although
the eigenvector centrality has been widely used in many
fields for ranking, such as Google’s “PageRank” algorithm
[46], analyzing connectivity patterns in functional magnetic
resonance imaging (fMRI) data of the human brain [47], and
finding a community structure in networks [48], it has not yet
been used for any synchronization control problem.

Very recently, some of the authors and co-workers studied
the desynchronous pattern of networked dynamics in detail
[49,50]. We took a closer look at the nonzero time-averaged
synchronization errors for each node and found that they
are linearly related to the absolute value of the eigenvector
element of the Laplacian matrix with the corresponding critical
mode of the coupled systems. This indicates that although the
desynchronous pattern is highly irregular and intermittent as
time evolves, in the long-time period the average deviation
away from the synchronization state for each node shows a
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regular behavior, i.e., a linear dependence on the corresponding
eigenvector element. Therefore, the instability strength of
the nodes is exactly characterized by the strength of the
eigenvector centrality of the Laplacian matrix. Here it is
notable that the traditional eigenvector centrality relies on
the eigenvector corresponding to the largest eigenvalue of the
adjacency matrix, and it can be guaranteed to be non-negative
by the Perron-Frobenius theorem. Here we use a slightly
different form of the eigenvector centrality, relying on the
absolute value of the eigenvector elements from the Laplacian
matrix. The other key observation is that all of these first
several unstable nodes are isolated and unconnected directly
on the network.

In this paper, just relying on these interesting findings, we
would like to study further the synchronization control prob-
lem, i.e., how to realize synchronization when the original sys-
tems are desynchronous and to realize desynchronization when
the systems are already synchronous. The idea is simple: if the
system stays at around the synchronization-desynchronization
parameter region, we may pull the most unstable node with
the aid of its neighbors to realize the synchronization of
the whole system, and push the exact same node (the least
stable node now) to destroy the synchronization. As a result,
we may accomplish the synchronization-desynchronization
switch precisely and efficiently with the help of the internal
connection of the nodes.

II. MODEL AND METHOD

Consider the following paradigmatic model of diffusively
coupled map lattices on complex networks [49]:

xi(n + 1) = F (xi(n)) + ε

di

N∑
j=1

Aij [H (xj (n)) − H (xi(n))],

i,j = 1, . . . ,N, (1)

where N represents the size of the network and ε is the
uniform coupling strength. A is the adjacency matrix, and
the elements Aij = Aji = 1 if nodes i and j are connected
by a link, and Aij = Aji = 0 otherwise; self-connection is not
allowed: Aii = 0. di = ∑N

j=1 Aij denotes the degree of the
ith node. Without losing generality, we employ the chaotic
logistic map, F (x) = 4x(1 − x), as the local node dynamics,
and using H (x) = F (x) as the coupling function between
them. According to the analytic method of the master stability
function (MSF) for the synchronous manifold [51,52], the
network is synchronizable within the regime ε ∈ (ε1,ε2) with
ε1 = 0.5/λ2 and ε2 = 1.5/λN , where λ2 and λN are the
corresponding second and largest eigenvalues of the Laplacian
matrix L, where

Lij =
{− 1

di
Aij if i �= j,

1 if i = j,
(2)

and 0 = λ1 � λ2 � · · · � λN .
When the coupling strength falls outside of the synchroniza-

tion parameter regime, the network is desynchronized and the
synchronization errors of all nodes, δx ′

i(n) = |xi(n) − x̄(n)|,

where x̄(n) = ∑N
i=1 xi(n)/N , should be nonzero. In this

situation, we should intentionally protect the most unstable
node, whose synchronization error is the largest. A proper
strategy is pulling its amplitude with the average level of its
neighbors, whose synchronization errors are not very large,
namely

xi(n + 1) = 1

di

N∑
j=1

Aijxj (n + 1) if i ∈ J, (3)

where J is the set of nodes that should be controlled for
every time step. We assume that all nodes can be chosen as
controls. As we will see, such a slight management could have
a significant impact on the synchronization stability of the
whole system.

On the other hand, consider the other side of the coupling
parameter when the system is already synchronized, i.e., the
coupling strength within the region ε ∈ (ε1,ε2). Although all of
the nodes are now synchronous, the synchronization stability
of these nodes is heterogeneous, and their strength can be
easily signaled by the eigenvector centrality of the Laplacian
matrix. In this situation, we should intentionally push or kick
the same worst node, which is nevertheless still stable, away
from the synchronization state. Namely, we add a sufficiently
large perturbation δ on it,

xi(n + 1) = xi(n + 1) + δ if i ∈ J, (4)

where 0 < δ < 0.5 if xi(n + 1) � 0.5 and −0.5 < δ < 0 if
xi(n + 1) > 0.5 to make sure that 0 < xi(n + 1) < 1 for the
system stability.

In this paper, for comparison, the set J has been tested for
several different centralities, such as the eigenvector centrality
of the Laplacian matrix, the degree centrality, the closeness
centrality, and the betweenness centrality. Here the eigenvector
centrality of a node i is defined as ec(i) = |e2,i | or |eN,i |, where
e2 = (e2,1,e2,2, . . . ,e2,N ) and eN = (eN,1,eN,2, . . . ,eN,N ) are
the eigenvectors of the Laplacian matrix L associated with
the corresponding critical modes, λ2 and λN , respectively. The
closeness centrality of a node i is defined as cc(i) = N−1∑

j∈N,j �=i lij
,

where lij is the shortest path length (distance) between nodes
i and j . The betweenness centrality of node i is defined as
bc(i) = ∑

i �=j �=k

σjk(i)
σjk

, where σjk is the total number of shortest
paths from node j to k, and σjk(i) is the number of shortest
paths from node j to k going through node i.

Meanwhile, we consider three typical models of a complex
network: the Barabási-Albert (BA) scale-free network [53],
the small-world network [54], and the Erdös-Rényi (ER)
random network [55]. All these networks are generated
with the standard algorithms; the network size N = 100
considered is fixed. The node or the network is believed to be
synchronous when the time-averaged synchronization error of
node i, δxi,T = ∑T

n=1 δx ′
i(n)/T , with T = 105, or the averaged

synchronization error of the system, δxnet,T = ∑N
i=1 δxi,T /N ,

is smaller than 10−8 after a sufficiently transient time n =
4 × 105.
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FIG. 1. (Color online) Controlling results for switch from desynchronization to synchronization. (a) The time-averaged synchronization
error of all nodes, δxi,T , at the coupling strength ε = 0.86 < ε1 (ε1 � 0.871) under the desynchronization state. (b) δxi,T as a function of the
eigenvector element, |e2,i |, indicative of a monotonic linear relation. The three leading nodes (73,59,90) with the largest δxi,T correspond
to the three largest eigenvector element. (c) and (d) The time evolution of the trajectory error δxi(n) = xi(n) − x̄(n) for ε = 0.86 and 0.84,
respectively, with the pull control added on the 73rd node after n = 4 × 105. Here a BA scale-free network with N = 100 and 〈k〉 = 16 is
exemplified.

III. NUMERICAL RESULTS

A. Pull control for the desynchronization-synchronization
switch

First let us test whether the desynchronized system can
be switched to synchronization by controlling only one
node with our pull control method. As an example, a
scale-free network with N = 100 and 〈k〉 = 16 is treated,
whose synchronization regime of the networked system stays
at (ε1,ε2) � (0.871,1.040). When ε = 0.86 < ε1 is chosen
without controlling, the time-averaged synchronization error
for each node i, δxi,T , is shown in Fig. 1(a), and it is also
plotted as a function of eigenvector element |e2,i | in Fig. 1(b).
Now λ2 corresponds to the critical mode for synchronization.
From these plots, we can see that the networked system is
truly desynchronized but shows different strengths for different
nodes (δxi,T > 0), and their synchronization errors are linearly
correlated with the absolute values of the corresponding
eigenvector element (δxi,T ∝ |e2,i |). Clearly in Fig. 1(a) the
73rd node is the most unstable. This reconfirms the findings
of our recent work [49]. Figure 1(c) shows the time evolution
of the trajectory error of the system, δxi(n) = xi(n) − x̄(n),
when the pull control is added to the 73rd node [namely
J = {73} in Eq. (4)] after n = 4 × 105, where we can see that
δxi quickly damps and vanishes after a very short transient,
indicative of a successful control by using only one single
node. However, when the coupling strength is farther away
from the critical parameter ε1, say, e.g., ε = 0.84, the pull
control method does not work either, as shown in Fig. 1(d),

although the amplitude of desynchronous behavior has been
greatly repressed (comparing the different amplitudes before
and after the controller is added). This indicates that our control
method also has its own application limitation.

To quantitatively characterize the application region of the
pull control method, in Fig. 2(a) the averaged synchronization
errors, δxnet,T , in both the uncontrolled system and the
system adding control on the 73rd node are compared. Both
curves decrease monotonically and vanish at certain critical
values: ε1 (ε1 � 0.871) for the uncontrolled system and εc ≈
0.854(εc < ε1) for the controlled system. This comparison
clearly demonstrates that the synchronization region has been
extended to include ε ∈ (εc,ε1) for the original desynchronous
parameter region. We may call ε ∈ (εc,ε1) the controllable
region.

In Fig. 2(b), we further test the efficiency of the pull
method by calculating the critical values εc for controlling
on different nodes. We also calculate the degree centrality
(di), the closeness centrality [cc(i)], the betweenness centrality
[bc(i)], and the eigenvector centrality [ec(i)] for all nodes of
the network, and we mark their corresponding nodes with
the largest values in Fig. 2(b), e.g., the 17th node for di , the
17th node for cc(i), the 16th node for bc(i), and the 73rd
node for ec(i). It can be seen that the smallest value εc for
the largest controllable region corresponds to the node with
the largest eigenvector centrality. Furthermore, the critical
coupling values in Fig. 2(c) are rearranged in decreasing order
for the value of |e2,i | from large to small, where the node with
a larger value of |e2,i | corresponds roughly to smaller εc. This
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FIG. 2. (Color online) (a) The averaged synchronization error δxnet,T vs the coupling strength ε for the uncontrolled system and the system
with the node 73 controlled, showing an extended coupling parameter region for the synchronization from ε1 to εc. (b) The critical value εc for
each node as the controller. The nodes with the largest degree (17th node), the largest closeness centrality (17th node), the largest betweenness
centrality (16th node), and the largest value of |e2,i | (73rd node) are marked. (c) The numerical (blue dotted line) and theoretical (pink open
circles) results of the critical value εc after all nodes are rearranged according to their eigenvector element, |e2,i |, from large to small, showing
a roughly monotonic relation. (d) The critical value εc vs the ratio f for different control strategies, including the random strategy (green
diamond line), the degree centrality strategy (wine square line), the closeness centrality strategy (navy star line), the betweenness centrality
strategy (pink triangle line), and the eigenvector centrality strategy (blue dotted line). Among all these strategies, the eigenvector centrality
method exhibits the highest efficiency.

confirms that the network should be easier to be controlled to
synchronization if the node with a larger synchronization error
is targeted.

In addition, the efficiency of the pull method has also
been tested when several (not only one) nodes are controlled.
Figure 2(d) plots the critical value εc versus the ratio of
nodes f that are controlled, for different control strategies,
including the random, degree-centrality, closeness-centrality,
betweenness-centrality, and eigenvector-centrality ones. From
these curves, we know that (i) no matter which strategy is
chosen, the networked system can always be synchronized by
controlling more nodes; (ii) the eigenvector-centrality-based
strategy is always the most effective one among all these
strategies, as the critical value εc is always the smallest
(f < 0.5); and (iii) for all other strategies, we cannot see much
of a difference.

To proceed further, we test the efficiency of the pull method
on the other side of the coupling parameter region ε > ε2. In
Fig. 3, we perform similar simulations to those in Fig. 2. Here
the largest controllable region has been found to be extended to
the critical coupling strength εc when the node with the largest
value of |eN,i | is chosen, as shown in Figs. 3(a)–3(c). Again
the eigenvector-centrality-based strategy, relying on ec(i) =
|eN,i | here, is still the most effective strategy, even when nodes
with the centrality degree in descending order are selected
successively, as shown in Fig. 3(d).

To test the generality of this control method for other
kinds of complex networks, we perform extensive simulations
on the small-world network and the ER random network,
and we find that the qualitative results are nearly the same.
See, for example, the small-world network in Figs. 4(a) and
4(b) and the ER network in Figs. 4(c) and 4(d), exhibiting
only a little mismatch in Fig. 4(c), where controlling on the
node with the highest eigenvector centrality does not exactly
induce the largest controllable region. A possible reason for
this is that because the random network with comparatively
homogeneous degrees is now considered, the first several worst
nodes may not be unconnected completely.

Consequently, based on the above extensive simulations,
we may conclude that the pull control method is highly
effective, and it is capable of switching the desynchronized
network to a synchronized one with the help of the system
self-organized behavior. Next, we will examine the results for
the synchronization-desynchronization switch.

B. Push control for the synchronization-desynchronization
switch

We still start from the same BA scale-free network used in
Fig. 1, but we consider the case for the coupling strength ε =
0.93 being a little larger than ε1 (ε1 � 0.871). In the absence
of control, the system is synchronous. We set δ = 0.3 if xi(n +
1) � 0.5 and δ = −0.3 if xi(n + 1) > 0.5 in Eq. (4), and we
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FIG. 3. (Color online) Similar to Fig. 2 but for the other side of the parameter region, ε � ε2. The network used here is the same as the one
used in Fig. 2 but with the critical eigenvector element |eN,i | instead.

show the time evolutions of the trajectory errors of all nodes,
δxi(n) = xi(n) − x̄(n), in Fig. 5(a). Before n = 4 × 105, the
system is free, exhibiting perfect synchronization. When one
node is pushed at the time n = 4 × 105, the system becomes
desynchronous immediately and damps gradually back to the

synchronous state for a sufficiently long time. Hence for a
better control efficiency, we would choose the node having the
longer transient time.

To find out which node has the longest transient period, we
calculate the transient periods for different nodes for different

FIG. 4. (Color online) (a) and (b) Similar to Figs. 2(c) and 2(d) but for a small world network with N = 100, 〈k〉 = 40, and p = 0.3; the
synchronization regime is within (ε1,ε2) � (0.913,1.224). (c) and (d) An ER random network with N = 100 and 〈k〉 = 16 is considered; the
synchronization regime is within (ε1,ε2) � (0.876,1.042). Qualitative results are the same for different types of complex networks.
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FIG. 5. (Color online) Controlling results for the switch from synchronization to desynchronization. (a) The time evolution of the trajectory
error δxi with the 73rd node controlled after n = 4 × 105; ε = 0.93 < ε2 (ε2 � 1.040). (b), (c), and (d) The averaged transient period, 
ti , over
1000-time realizations as a function of the eigenvector element, |e2,i |, in a BA scale-free network, a small-world network, and an ER random
network, respectively. The insets of each subfigure with a semilogarithmic plot indicate the exponential relation e
ti ∝ |e2,i |.

types of networks. In Figs. 5(b)–5(d), the transient periods
for the ith node controlled, 
ti , have been averaged over 1000
realizations with different initial conditions. Their dependence
on the eigenvector element, |e2,i |, in the BA scale-free network,
the small-world network, and the ER random network are
shown in Figs. 5(b), 5(c), and 5(d), respectively. Based on
these plots, one can easily see that a larger value of |e2,i |
corresponds roughly to a longer transient period. With the
semilogarithmic plots in the insets of these subfigures, we
even find an exponential relationship between 
ti and |e2,i |,
i.e., e
ti ∝ |e2,i |. Thus as with the pull control method, the
push control method would be more effective by controlling
the node with a larger value of |e2,i | (or larger eigenvector
centrality [ec(i) = |e2,i |]). The underlying mechanism is the
same.

In addition, we have tested the case in which the coupling
strength ε is a little smaller than ε2 for different kinds of
networks, and we found similar results (not shown here). We
have also observed that if the node is pushed periodically with
the control period less than the transient period, then the system
can stay at the desynchronization state all the time. Thus
we can conclude that the synchronization-desynchronization
switch activated by the simple push control method is also
very efficient.

C. Some other systems

So far, we have mainly presented the numerical results for
the coupled logistic map systems. In this subsection, we will
give more examples to justify the validity and efficiency of our
control method, including the Rulkov map system [56] and the
time-continuous Rössler system [57].

The Rulkov map system is important in neuroscience as it
can properly describe the neuron’s irregular bursting behavior.
The coupled Rulkov map system on the complex networks can
be described as follows:

xi(n + 1) = F (xi(n),yi(n)) + ε

di

N∑
j=1

Aij [H (xj (n),yj (n))

−H (xi(n),yi(n))],

yi(n + 1) = yi(n) − σxi(n) − β, (5)

where F (x,y) = α
1+x2 + y, and without losing generality, we

use H (x,y) = F (x,y) as the coupling function between nodes.
Here xi(n) and yi(n) represent the fast and slow dynamical
variables of the ith node, respectively. The slow evolution
of yi(n) appears due to the small values of the two positive
parameters σ and β, say, e.g., σ = β = 0.001. If α > 4.0, the
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FIG. 6. (Color online) (a) Comparison of the averaged synchronization error δxnet,T vs the coupling strength ε for the uncontrolled
Rulkov map system and the controlled system on the 88th node, showing an extended coupling parameter region for the synchronization from
ε2 = 0.8470 to εc = 0.8495 (see details in the inset). (b) The divergent, desynchronous time series of yi for the uncontrolled system; ε = 0.8490.
(c) and (d) The synchronous time series of xi and yi , respectively, with the pull control added on the 88th node after n = 6.886 37 × 106

(arrow); ε = 0.8490. (e) and (f) The corresponding time evolutions of the trajectory error δxi and δyi . A BA scale-free network with N = 100
and 〈k〉 = 60 is considered here.

individual node is capable of exhibiting chaotic oscillation; in
this paper, we choose α = 4.1. To test the effectiveness of the
pull control method, a scale-free network with N = 100 and
〈k〉 = 60 is constructed, whose synchronization regime of the
networked system is found to stay at (ε1,ε2) � (0.560,0.8470)
[Fig. 6(a)]. Figure 6(b) clearly shows that the uncontrolled
system is divergent when the coupling strength is chosen
outside of the synchronization regime; ε = 0.8490. In contrast,
the system dynamics changes and becomes quickly converged
after only one controller is added on the 88th node on both
x88(n) and y88(n) variables in Eqs. (5); all these system
variables and the trajectory errors are shown in Figs. 6(c), 6(d),
6(e), and 6(f), respectively. The method for choosing the 88th
node is still based on our eigenvalue and eigenvector analysis
of the critical spatial modes of the network relying on the
master stability function theory. In addition, the controllable

region is slightly enlarged based on our numerics: (ε2,εc) �
(0.8470,0.8495); see Fig. 6(a) and its inset for the zoomed-in
view.

As another example, the model of coupled classical chaotic
Rössler oscillators on complex networks is studied,

ẋi = −yi − zi + ε

di

N∑
j=1

Aij [H (xj ) − H (xi)],

ẏi = xi + 0.2yi, żi = 0.2 + (xi − 5.7)zi, (6)

with the connecting function H (x) = x and the classical
parameter set for the chaotic Rössler oscillator chosen for
simplicity. A scale-free network with N = 100 and 〈k〉 = 8 has
been generated. For this network, in the absence of the control,
the synchronization of the coupled systems appears within
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FIG. 7. (Color online) (a) Comparison of the averaged synchronization error δxnet,T vs the coupling strength ε for the uncontrolled Rössler
system and the controlled system on the 98th node, showing an extended coupling parameter region for the synchronization from ε1 = 0.417 to
εc = 0.410. (b), (c), and (d) The time evolutions of the trajectory error δxi for the desynchronization-synchronization switch under ε = 0.412
with the pull control added on the 98th node, ε = 0.405 with the pull control added on the five leading (least stable) nodes, and ε = 0.395
with the pull control added on the ten leading nodes after t = 240 000, respectively. The controller is added with a very small time step
�τ = 0.0005. (e) The average transient period, 
ti , over 600-time realizations as a function of the eigenvector element, |e2,i |; ε = 0.5 (ε � ε1).
(f) The semilogarithmic plot of (e), indicative of the same exponential relation: e
ti ∝ |e2,i |. Here a BA scale-free network with N = 100 and
〈k〉 = 8 is exemplified.

the regime ε ∈ (ε1,ε2), ε1 = 0.155/λ2 � 0.417, and ε2 =
4.512/λN � 2.781, where λ2 and λN are the corresponding
second and largest eigenvalues of the Laplacian matrix L in
Eq. (2). For the pull control, one controller is added on all
three variables xi,yi,zi of the 98th node with a very small
time step �τ (�τ = 0.0005). Again the controlled node,
namely the least stable node, should correspond exactly to the
node with the largest absolute eigenvector element of |e2,i |.
In this situation, it is found that its controllable region has
been extended from εc � 0.410 to ε1 � 0.417 [Fig. 7(a)]. The
time evolution of trajectory error δxi at ε = 0.412 with only
one controller is shown in Fig. 7(b), where the systems are
desynchronous first and then become synchronized when the
control is switched on after t = 240 000. In fact, the systems
can also become synchronous under a much smaller coupling
strength ε by controlling more nodes. Two examples are the

controls on the first five leading nodes at ε = 0.405 [Fig. 7(c)]
and the first ten leading nodes at ε = 0.395 [Fig. 7(d)]; both
are successful. This is quite similar to what we have found for
the coupled logistic maps in Figs. 4(b) and 4(d). We have also
tested the push control method at ε = 0.5 when the systems are
originally synchronous. We can push one node of the network
by zi(t0) = zi(t0) + δ and δ = 20. Similarly, we calculated the
averaged transient periods for the ith node controlled, �ti ,
over 600 realizations with different initial conditions. We plot
their values as a function of the eigenvector element, |e2,i |,
in Fig. 7(e) and we show its semilogarithmic plot in
Fig. 7(f). From these patterns, we can again easily find that
the exponential relationship e�ti ∝ |e2,i | persists.

Therefore, we may conclude that the control method is very
generic and can work for many different coupled dynamical
systems.
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IV. MATHEMATICAL ANALYSIS

We have given some simulation results of the pull-push
control for the synchronization-desynchronization switch for
several classical chaotic systems. It might be easy to under-
stand the impact of the push control method, as one node of the
coupled systems has been kicked away from the synchronous
manifold. But how does the pull control method with the action
on the precisely selected node also work? It still requires proof
by theoretical analysis, which is shown as follows.

Below, we consider the simplest case for only one node
being controlled, i.e., J = {i0}, with i0 denoting the controlled
node. The analytical result can easily be extended to more
complicated cases. Then Eq. (3) can be written as

xi0 (n + 1) = 1

di0

N∑
j=1

Ai0j xj (n + 1). (7)

Inserting it into Eq. (1), we obtain

xi0 (n + 1) = F (xi0 (n)) + ε

di0

∑
j �=i0

Ai0j

⎡
⎣H (xj (n))

−H

⎛
⎝ 1

di0

N∑
j=1

Ai0j xj (n)

⎞
⎠

⎤
⎦ (8)

and

xi(n + 1) = F (xi(n)) + ε

di

∑
j �=i0

Aij [H (xj (n)) − H (xi(n))]

+ ε

di

Aii0

⎡
⎣H

⎛
⎝ 1

di0

N∑
j=1

Ai0j xj (n)

⎞
⎠ − H (xi(n))

⎤
⎦

if i �= i0. (9)

For the connecting function H (x), if H (γ x) � γH (x)
holds (here γ is a constant), then the following approximation
holds:

H

⎛
⎝ 1

di0

N∑
j=1

Ai0j xj (n)

⎞
⎠ � 1

di0

N∑
j=1

Ai0jH (xj (n)), (10)

which yields

xi0 (n + 1) = F
(
xi0 (n)

)
, (11)

xi(n + 1) = F (xi(n)) + ε

di

∑
j �=i0

(
Aij + 1

di0

Aii0Ai0j

)

× [H (xj (n)) − H (xi(n))] if i �= i0. (12)

Together with Eqs. (7), (11), and (12), the new Laplacian
matrix L′ can be expressed as

L′
ij =

⎧⎨
⎩

− 1
di

(
Aij + 1

di0
Aii0Ai0j

)
if i,j �= i0 and i �= j,

1 if i,j �= i0 and i = j,

0 if i = i0 or j = i0.

(13)

Comparing this new Laplacian matrix L′ with the original
matrix L in Eq. (2), we find that the control gives rise to

FIG. 8. Schematic show for the equivalent effect under the pull
control: the controlled node (the i0th node) removed from the network
and an identical weighted interaction 1/di0 added between all of the
neighbors of the controlled node i0. See text for more details.

two key changes: (i) The controlled node has been completely
isolated from the network as L′

i0j
= L′

ii0
= 0 for all j = i0

or i = i0, and (ii) the interactions between its neighbors have
been strengthened by an identical weight 1

di0
; see the first line

of L′
ij in Eq. (13), which implies that the synchronization

stability of the remaining nodes should have been improved.
For a schematic representation of these changes, see Fig. 8.
Therefore, it is now easy to understand why the pull control
method is so effective and also why it can only work for the
slightly unstable synchronous state.

To test the validity of the above mathematical results, we
also calculate the critical value εc of the controlled system on
the basis of the master stability function method with the new
Laplacian matrix L′ in Eq. (13); the analytical results with the
pink open circle lines are superimposed in Figs. 2(c) and 3(c),
showing a perfect fit with the numerical results by black filled
circles in the same panel.

V. CONCLUSION

In conclusion, we have proposed a precise pull-push control
method for the synchronization-desynchronization switch on
complex networks under a unified framework. For the pull
control method, the synchronization region can be enlarged
for both ε < ε1 and ε > ε2 by controlling only one node or
a subset of nodes. Meanwhile, for the push control method,
the desynchronization can be achieved by kicking one node
or a subset of nodes. Based on the generalized eigenvector
centrality from the Laplacian matrix, the pull-push control
method has been found to be very effective. In addition, we
have also tested whether the control method can be applied to
some other nonlinear systems, such as the Rulkov map system
and the time-continuous Rössler system, and we showed that
it is indeed very efficient.

Finally, it is worth mentioning the following: (i) The
pull control method, which uses the internal signals of
the neighbors of the bad node, is essentially different from the
pinning control method, which uses the external signal. Hence
our method is a precise manipulation, which is achieved by
changing the synchronization stability of the whole system
but leaving the network structure unchanged. (ii) The pull-
push method, which is concerned with the control of the
synchronization or desynchronization state around the critical
coupling strength, is also fundamentally different from the
existing synchronization enhancement methods, which mainly
address the relationship between the network structures and
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the synchronization ability. (iii) The pull-push control method
for the synchronization-desynchronization switch provides a
unified framework for the stability change of the coupled
systems with only a slight change of the controlled node;
the generalized eigenvector centrality provides common in-
formation for the selection of the nodes. (iv) In this paper,
we only considered the cases for instantly coupled elements
and without time delays. It might be very interesting to study
the delay effect on our control method in the future [6–9].
(v) Last but not least, since the control of both synchro-

nization and desynchronization of complex networks is of
importance and significance in various fields, we hope that the
insights and method presented here may enhance our under-
standing of collective behaviors in coupled complex systems
in general, and that this simple, self-organized, effective, and
precise control method may have applications in these fields.
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[34] M. Porfiri and F. Fiorilli, CHAOS 19, 013122 (2009).
[35] S. Floyd and V. Jacobson, IEEE/ACM Trans. Netw. 1, 397

(1993).
[36] S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and

E. Ott, Nature (London) 438, 43 (2005).
[37] K. Lehnertz and C. E. Elger, Phys. Rev. Lett. 80, 5019 (1998).
[38] L. Glass, Nature (London) 410, 277 (2001).
[39] V. H. P. Louzada, N. A. M. Araújo, J. S. Andrade, Jr., and H. J.
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