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Symbolic dynamics-based error analysis on chaos synchronization via noisy channels
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In this study, symbolic dynamics is used to research the error of chaos synchronization via noisy channels. The
theory of symbolic dynamics reduces chaos to a shift map that acts on a discrete set of symbols, each of which
contains information about the system state. Using this transformation, a coder-decoder scheme is proposed.
A model for the relationship among word length, region number of a partition, and synchronization error is
provided. According to the model, the fundamental trade-off between word length and region number can be
optimized to minimize the synchronization error. Numerical simulations provide support for our results.
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I. INTRODUCTION

Synchronization of nonlinear systems, particularly chaotic
systems, has attracted the attention of many researchers [1,2].
Many control techniques have been devised for chaos syn-
chronization [3]. Recently, the limitations of control under
constraints imposed by a finite-capacity information channel
have been investigated in detail in the literature of control
theory. (See [4–8] and the references therein.) It has been
shown that stabilization under information constraints is
possible if and only if the capacity of the information
channel exceeds the entropy production of the system at
equilibrium. However, the results of previous work on control
system analysis under information constraints do not apply
to synchronization of systems, since in a synchronization
problem the trajectories in phase space converge to a set rather
than to a point; i.e., the problem cannot be reduced to simple
stabilization. To address this problem, chaos synchronization
via a communication channel of limited information capacity
has been investigated [9,10].

Symbolic dynamics provides a rigorous way to investigate
chaotic behaviors with finite precision [11], and it can be
used in combination with information theory [12]. When using
symbolic dynamics to analyze a chaotic system, one carefully
divides its state space into small cells (regions), labels each
cell with a symbol, and records the visit of evolving states
in cells with a list of symbols (infinite word). In this way,
the drive and response states, respectively, correspond to the
drive and response infinite words. When infinite words and dy-
namical states are in one-to-one correspondence, the symbolic
dynamics is equivalent to its underlying dynamics. This result
is achieved for the so-called generating partition. However, the
generating partitions of high-dimensional chaotic systems are
difficult to build [11,13,14] if they actually exist. Therefore,
it is not easy to guide the practice of synchronizing high-
dimensional chaotic systems with these results [15–17]. To
circumvent this difficulty, chaos synchronization based on
symbolic dynamics using nongenerating partitions has been
investigated [18]. To simplify the analysis, previous work
on chaos synchronization via limited-capacity communication
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channels assumes that the observations are not corrupted
by observation noise and that the transmission delay and
transmission channel distortions may be neglected. However,
in complex real-world networked control systems, data arrival
times are often delayed, irregular, time varying, and not
precisely known. Data might arrive out of order. Moreover,
data transferred via a communication network might be
corrupted or even lost due to noise in the communication
medium, congestion of the communication network, or proto-
col malfunction [19].

In practice, synchronization error is the primary factor
that affects the performance of a synchronized system. Until
recently, most research work has focused on designing the
controller to meet synchronization. The bound of synchro-
nization error in a noisy environment is seldom considered. It
is important to evaluate synchronization error under a given
encoder-controller scheme in a noisy environment, which
provides a theoretical basis to choose suitable parameters for
optimal synchronization performance. For this purpose, we
focus this study on the error analysis on chaos synchronization
via noisy channels. Using symbolic dynamics, an efficient
coder-decoder scheme is proposed, and a model on the
relationship among synchronization error, word length, and
region number of a partition is developed. Based on the model,
we show that the trade-off between word length and region
number can be optimized to minimize the synchronization
error.

II. SYMBOLIC DYNAMICS AND CODER-DECODER

To describe our coder-decoder scheme expediently, we
consider N -dimensional discrete-time chaotic systems. Let
one of the two synchronized systems be controlled by a scalar
control function u(Y k

n+1,wn+1) implementing the coupling
between two systems. The model of the coupled systems is
as follows:

xn+1 = f (xn), xn ∈ X ⊂ RN,
(1)

yn+1 = Cxn+1,

zn+1 = f (zn) + u
(
Y k

n+1,wn+1
)
, zn ∈ X,

(2)
wn+1 = Czn+1,
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where xn and zn are N -dimensional vectors of state variables,
yn+1 and wn+1 are scalar output variables, C is a 1 × n matrix,
f is a continuous nonlinear function, and Y k

n+1 is the word
of length k describing the output yn+1 with certain precision.
Let y = {y0,y1,y2 · · · }. We name chaotic systems (1) and (2)
the drive and response systems, respectively, and assume the
trajectories of both chaotic systems to be in state space X ⊂
RN . In this study, it is sufficient to assume that the controller
can meet the needs of sustaining synchronization. The coding
procedure is described in the following.

Here we introduce the basic idea of symbolic dynamics,
which can efficiently describe dynamical behaviors with
finite precision [15,17,18]. First, we divide y into a set of
m disjoint regions {Bi |0 � i � m − 1} and assign a unique
symbol i ∈ M = {0,1,2, . . . ,m − 1} to region Bi . The set
β= {Bi |0 � i � m − 1} is a partition. Recording the jump of
the state among regions with symbols, we can get an infinite
word Y∞

0 = Y0Y1Y2 · · · , where Yj ∈ M,j = 0,1,2, · · · . The
j th symbol Yj of the infinite word implies that the output is
yj , which lies in region BYj

.
Denote the mapping between a state and an infinite word

with μβ , then μβ(y0) = Y∞
0 . Symbolic dynamics turns chaotic

system iterations into infinite word shifts; i.e., if μβ(y0) =
Y0Y1Y2Y3 · · · then μβ[Cf (x0)] = μβ(y1) = Y1Y2Y3 · · · . This
simple fact plays an important role in symbolic dynamics.
Note that the μβ mapping is not necessarily one to one. In
most cases, one infinite word Y∞

0 corresponds to more than
one state although one state can only be mapped to one infinite
word. If different states are mapped to different infinite words,
except possibly for a subset of y of measure zero, then β is a
generating partition. Otherwise it is a nongenerating partition.

A finite symbol sequence Y k
0 = Y0Y1Y2 · · · Yk−1 is a word

of length k. A fixed-length word shifts one symbol to its
left in each iteration: Y k

0 = Y0Y1Y2 · · · Yk−1 shifts to Y k
1 =

Y1Y2Y3 · · ·Yk , and so on. In this study, a word of length k is the
output of the coder. A word Y k

0 corresponds to a subset of y,
which is BYk

0
. The word Y k

0 = Y0Y1Y2 · · ·Yk−1 will be obtained
if and only if the chaotic system iterates from BYk

0
. Note that

BYk
0

is a subset of BY0 because the first symbol of Y k
0 is Y0. If we

denote {BYk
0
|Y k

0 ∈ Mk,Y k
0 is admissible} as βk , then βk is also

a partition of y and is finer than β; that is, diam(βk) � diam(β),
where diam() is the maximum diameter of all regions of the
partition. In symbolic dynamics, βk is called the partition
refinement of partition β at stage k. In fact, with the increase
in k, diam(βk) is monotonically nonincreasing. Furthermore
lim

k→∞
diam(βk) = 0 if β is a generating partition, otherwise

lim
k→∞

diam(βk) > 0.

Symbolic dynamics is used to represent the continuous
trajectory of a chaotic system using discrete samples with
finite precision. To generate a symbolic representation of
a trajectory, the state space containing the chaotic attractor
is partitioned into regions, each of which is labeled with a
symbol such as “0”, “1”, etc. Whenever the state enters a
new region, the corresponding symbol is generated. For flows
represented by a return map, a new symbol is generated for
each return. With regard to synchronization, the symbolic
dynamics representation immediately shows that the channel
only has to transmit one symbol per cycle to maintain
synchronization under the controller u(Y k

n+1,wn+1) between

FIG. 1. Block diagram for drive-response controlled
synchronization.

drive and response systems to any level of precision. The block
diagram for drive-response controlled synchronization is given
in Fig. 1. To illustrate the algorithm of the decoder, the flow
chart of the decoder algorithm is shown in Fig. 2.

III. SYNCHRONIZATION ERROR ANALYSIS

We now find a relationship among synchronization error
e, word length k, and region number m of a partition.

FIG. 2. Flow chart of the decoder algorithm.
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As discussed above, a chaotic system provides a sequence
of information bits, which are to be transmitted through
a communication channel. The information bits occur at a
uniform rate of R bits per cycle. The reciprocal of R is the
bit interval Tb. The modulator takes q bits at a time and maps
them into one of m = 2q signal wave forms. Each block of q

bits is a symbol. The time interval available to transmit each
symbol is T = qTb. Hence, T is the symbol interval.

In most of this study, we use m = 2q multidimensional
orthogonal signal wave forms to transmit information through
an additive white Gaussian noise (AWGN) channel. Then, the
probability of symbol error is given by [20]

Pm = 1√
2π

∫ ∞

−∞
{1 − [1 − Q(w)]m−1}e−(w−

√
2qEb/N0)2/2dw,

(3)

where Q(w) = 1
2π

∫ ∞
w

e−v2/2dv, Eb is the energy per bit,
and the white Gaussian noise has a spectral power density
of N0/2 W/Hz. Note that for m = 2q , q bits are required
for the representation of each level. This means that if the
bandwidth of the analog signal is W and if sampling is
done at the Nyquist rate, the required bandwidth for the
transmission of the pulse-code modulation (PCM) signal is
qW . However, in practice a bandwidth of 1.5qW is closer
to reality. In an example described in Sec. IV B, we also
use m = 2q carrier-phase modulation signal wave forms to
transmit information through an AWGN channel. Then, the
probability of symbol error is given by [20]

Pm ≈ 2Q

(√
2qEb

N0
sin

π

m

)
, (4)

where Q(w) = 1
2π

∫ ∞
w

e−v2/2dv, Eb is the energy per bit, and
the white Gaussian noise has a spectral power density of N0/2
W/Hz.

According to the coder-decoder pair, the error that limits
the accuracy of synchronization in the absence of noise is

eideal = �mSk, (5)

where �m = (ymax − ymin)/m and Sk = 1/2k; �m denotes the
interval length and Sk denotes the step length, which is applied
in the decoder algorithm; ymax and ymin are the maximum
and minimum of y, respectively. The error eideal is intrinsic;
for a generating partition, lim

k→∞
eideal = 0. In practice, when

transmitting q bits per cycle via a noisy channel, the probability
of symbol error is given by Eq. (3). (A symbol consists of
q bits.) In this study, we assume that the distance between
two incorrect symbols is larger than k; i.e., there are at least
k + 1 symbols between two consecutive incorrect symbols.
For a word of length k, which is composed of k symbols,
an incorrect symbol leads to k words being incorrect. For
example, when a word Y k

n−1 = Yn−1Yn · · ·Yn+k−2 is correct and
a word Y k

n = YnYn+1 · · · Yn+k−1 is incorrect, the symbol Yn+k−1

is incorrect; then the word Y k
n+1 = Yn+1Yn+2 · · ·Yn+k−1Yn+k is

also incorrect, and so on. Here we assume that each symbol
has the same probability of error. According to the above
discussion and the decoder algorithm, the synchronization

error via a noisy channel is modeled as

enoise = Pm

�m

2
(k − 1) + Pm

(m − 1)�m

2
. (6)

The first term on the right-hand side of Eq. (6) denotes the
synchronization error when the first symbol in a word of length
k is correct; the second term denotes the synchronization error
when the first symbol in a word of length k is incorrect. Thus,
the total synchronization error is modeled as

e = g(k,m) = Pm

�m

2
(k − 1) + Pm

(m − 1)�m

2
+ �mSk.

(7)

From Eq. (7), we can obtain the optimal word length k∗
such that the synchronization error is minimized:

k∗ = − log2 [Pm/ (2 ln 2)] . (8)

By communication theory, the symbol error probability Pm

is determined by the signal-to-noise ratio (SNR) and the region
number m of a partition. Therefore, the optimal word length
k∗ is determined by the SNR and the region number m of
a partition. From Eq. (8), we find that lim

Pm→0
k∗ = ∞, which

implies that lim
k→∞

eideal = 0 for a generating partition. Note that

the synchronization error e is the mean absolute error (MAE).
For a given chaotic system, the range of output y is certain.
Proper region number m of a partition and word length k are
chosen to meet synchronization. As seen in Eqs. (3) and (4), the
symbol error probability Pm depends on the wave forms used
to transmit information. For any digital transmission approach,
it is only necessary to change the symbol error probability Pm.
Therefore, this error model is general for symbolic dynamics-
based error analysis on chaos synchronization.

IV. SIMULATION RESULTS

To verify the above model of synchronization error, we
choose some chaotic systems as examples. Here we use the
controller [10,17]

u
(
Y k

n+1,wn+1
) = K

[
wn+1 − η

(
Y k

n+1

)]
, (9)

where K ∈ R is the coupling coefficient and the function η

denotes the decoder output, which is used to estimate yn+1.
The decoder algorithm chart is shown in Fig. 2.

A. Logistic map

The drive system is

xn+1 = f (xn) = 4xn(1 − xn), xn ∈ [0,1],
(10)

yn+1 = xn+1.

The controlled response system is

zn+1 = f (zn) = 4zn(1 − zn) + u
(
Y k

n+1,wn+1
)
,

(11)
zn ∈ [0,1], wn+1 = zn+1.

In the following, two different partitions are used for compar-
ison.

First, we choose the partition as β = {B0,B1,B2,B3}, where
B0 = [0,0.25), B1 = [0.25,0.5), B2 = [0.5,0.75), and B3 =
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FIG. 3. Synchronization error of a logistic map with m = 4 as
a function of word length for a SNR of (a) γSNR = 4 dB and (b)
γSNR = 6 dB. The solid curves represent simulation results, and the
dashed curves represent the exact theoretical solutions of Eq. (7).

[0.75,1]; thus, the region number of the partition is m = 4,
ymax = 1, ymin = 0, and �m = (ymax − ymin)/m = 1/4. The
coupling coefficient is chosen to be K = 0.8. We use m = 4
multidimensional orthogonal signal wave forms to transmit
information through an AWGN channel so that Pm is given by
Eq. (3). The relationship between the synchronization error e

and the word length k is plotted in Fig. 3. Here, we choose two
different SNR values of γSNR = Eb/N0 = 4 dB and γSNR =
Eb/N0 = 6 dB as simulation parameters for the data shown
in Figs. 3(a) and 3(b), respectively. To obtain the simulation
results, we run 10 000 times at each word length k, and compute
the MAE. The simulation results (solid curves) are compared
to the exact theoretical solutions (dashed curves) of Eq. (7)
using Pm given by Eq. (3).

Next, we choose the partitions as β = {B0,B1}, where
B0 = [0,0.5) and B1 = [0.5,1]; thus, the region number
of the partition is m = 2, ymax = 1, ymin = 0, and �m =
(ymax − ymin)/m = 1/2. The coupling coefficient is chosen
to be K = 0.8. We use m = 2 multidimensional orthogonal
signal wave forms to transmit information through an AWGN
channel so that Pm is given by Eq. (3). The relationship
between the synchronization error e and the word length
k is plotted in Fig. 4. Here, we choose two different SNR

FIG. 4. Synchronization error of a logistic map with m = 2 as
a function of word length for a SNR of (a) γSNR = 4 dB and (b)
γSNR = 6 dB. The solid curves represent simulation results, and the
dashed curves represent the exact theoretical solutions of Eq. (7).

values of γSNR = Eb/N0 = 4 dB and γSNR = Eb/N0 = 6 dB
as simulation parameters for the data shown in Figs. 4(a)
and 4(b), respectively. To obtain the simulation results, we run
10 000 times at each word length k, and compute the MAE.
The simulation results (solid curves) are compared to the exact
theoretical solutions (dashed curves) of Eq. (7) using Pm given
by Eq. (3).

B. Chua system

The drive system is given by

ẋ1 = a1[−x1 + ϕ(x1) + x2],

ẋ2 = x1 − x2 + x3,
(12)

ẋ3 = −a2x2,

y = x1,

where −5 � y � 5 is the drive system output; a1 and a2 are
known parameters; ϕ(x1) is a piecewise-linear function, having
the form

ϕ(x1) = b0x1 + b1(|x1 + 1| − |x1 − 1|), (13)
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FIG. 5. Synchronization error of a Chua system with m = 16 as
a function of word length for a SNR of (a) γSNR = 3 dB and (b)
γSNR = 4 dB. The solid curves represent the simulation results, and
the dashed curves represent the exact theoretical solutions of Eq. (7).

where b0 and b1 are given parameters. The controlled response
system is given by

ż1 = a1
[−z1 + ϕ(z1) + z2 + u

(
Y k

n+1,wn+1
)]

,

ż2 = z1 − z2 + z3,
(14)

ż3 = −a2z2,

w = z1,

where ϕ(z1) is defined by the function in Eq. (13).
Here, the output y is equally divided into 16 disjoint regions.

The following parameter values are taken for the simulation:
The Chua system parameters are a1 = 10, a2 = 15.6, b0 =
0.33, and b1 = 0.945; region number m = 16 of the partition,
ymax = 5, ymin = −5, �m = (ymax − ymin)/m = 10/16. The
coupling coefficient is chosen to be K = 1. We use m = 16
multidimensional orthogonal signal wave forms to transmit
information through an AWGN channel so that Pm is given
by Eq. (3). The relationships between synchronization error e

and word length k are plotted in Fig. 5. Here, we choose two
different SNR values of γSNR = Eb/N0 = 3 dB and γSNR =
Eb/N0 = 4 dB as simulation parameters for the data shown

FIG. 6. Synchronization error of a Chua system with m = 16 as
a function of word length for a SNR of (a) γSNR = 15 dB and (b)
γSNR = 17 dB. The solid curves represent the simulation results, and
the dashed curves represent the exact theoretical solutions of Eq. (7).

in Figs. 5(a) and 5(b), respectively. To obtain the simulation
results, we run 10 000 times at each word length k, and compute
the MAE. The simulation results (solid curves) are compared
to the exact theoretical solutions (dashed curves) of Eq. (7)
using Pm given by Eq. (3).

To further verify the above model of synchronization error,
we use m = 16 carrier-phase modulation signal wave forms
to transmit information through an AWGN channel so that
Pm is given by Eq. (4). The following parameter values
are taken for the simulation: The Chua system parameters
are a1 = 10, a2 = 15.6, b0 = 0.33, and b1 = 0.945; region
number m = 16 of the partition, ymax = 5, ymin = −5, �m =
(ymax − ymin)/m = 10/16. The coupling coefficient is chosen
to be K = 1. The relationships between synchronization error
e and word length k are plotted in Fig. 6. Here, we choose
two different SNR values of γSNR = Eb/N0 = 15 dB and
γSNR = Eb/N0 = 17 dB as simulation parameters for the data
shown in Figs. 6(a) and 6(b), respectively. To obtain the
simulation results, we run 10 000 times at each word length k,
and compute the MAE. The simulation results (solid curves)
are compared to the exact theoretical solutions (dashed curves)
of Eq. (7) using Pm given by Eq. (4).
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FIG. 7. Optimal word length with 10−5 � Pm � 0.1 as a function
of symbol error probability for (a) logistic map and (b) Chua system.
The dots represent the simulation results, and the solid curves
represent the exact theoretical solutions of Eq. (8).

C. Optimal word length

Consider a given chaotic system; there exists a proper region
number m of a partition for a given communication system.
Thus, the symbol error probability Pm can be obtained from
the SNR for a given digital transmission approach. For this
reason, the optimal word length k∗ can be evaluated using
Eq. (8), which is shown in Fig. 7 as a function of symbol error
probability Pm. The simulation results make it possible to
choose the optimal word length k∗ for a given chaotic system.
Here, we use a logistic map and a Chua system as examples
for the data shown in Figs. 7(a) and 7(b), respectively.

From the simulation results, we can see that for symbolic
dynamics-based synchronization there exists an optimal word

length k∗ for a given combination of SNR and region
number m such that the synchronization error is minimized.
Furthermore, for a given SNR, the synchronization error
monotonically decreases with increasing region number m

of the partition; for a given partition region number m, the
synchronization error monotonically decreases with increasing
SNR. By communication theory, with the increase in the
region number m of a partition, the required bandwidth also
increases. In general, the supplied bandwidth is constant
for a given communication system, which implies that the
maximum of the required partition region number m is constant
for a given communication system. Therefore, for symbolic
dynamics-based synchronization there exists a proper partition
region number m for a given communication system. When a
proper region number m of a partition is chosen, the symbol
error probability Pm is determined by the SNR for a given
digital transmission approach.

Based on the above discussion, the synchronization error
e is determined by the symbol error probability Pm and the
word length k. In practice, one can use Eq. (8) to select the
optimal word length k∗ to minimize the synchronization error
for a given symbol error probability Pm once Pm is found from
the given SNR and partition region number m.

V. CONCLUSIONS

In this study, we propose a coder-decoder scheme based on
symbolic dynamics and provide a model for the relationship
among word length, region number of a partition, and
synchronization error. From the statistics viewpoint, the model
is general and can be used to optimize the trade-off among
the region number of a partition, the word length, and the
synchronization error via noisy channels. This general model
is independent of the particular system. In practice, Eq. (8)
can be used to effectively select the optimal word length k∗ to
meet synchronization performance. The lower bound of error
is also given by the model, which is important for estimating
the synchronization performance of a system.
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