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We study the dynamics of inertial particles in three-dimensional incompressible maps, as representations
of volume-preserving flows. The impurity dynamics has been modeled, in the Lagrangian framework, by a
six-dimensional dissipative bailout embedding map. The fluid-parcel dynamics of the base map is embedded in
the particle dynamics governed by the map. The base map considered for the present study is the Arnold-Beltrami-
Childress (ABC) map. We consider the behavior of the system both in the aerosol regime, where the density of
the particle is larger than that of the base flow, as well as the bubble regime, where the particle density is less than
that of the base flow. The phase spaces in both the regimes show rich and complex dynamics with three types
of dynamical behaviors—chaotic structures, regular orbits, and hyperchaotic regions. In the one-action case, the
aerosol regime is found to have periodic attractors for certain values of the dissipation and inertia parameters. For
the aerosol regime of the two-action ABC map, an attractor merging and widening crisis is identified using the
bifurcation diagram and the spectrum of Lyapunov exponents. After the crisis an attractor with two parts is seen,
and trajectories hop between these parts with period 2. The bubble regime of the embedded map shows strong
hyperchaotic regions as well as crisis induced intermittency with characteristic times between bursts that scale
as a power law behavior as a function of the dissipation parameter. Furthermore, we observe a riddled basin of
attraction and unstable dimension variability in the phase space in the bubble regime. The bubble regime in the
one-action case shows similar behavior. This study of a simple model of impurity dynamics may shed light upon
the transport properties of passive scalars in three-dimensional flows. We also compare our results with those
seen earlier in two-dimensional flows.
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I. INTRODUCTION

The dynamics of inertial particles, i.e., small spherical
particles immersed in a fluid flow, has been studied extensively
over the years (see [1] and references therein). Such dynamical
systems have been considered to be the simplest models for the
study of transport and mixing properties of impurities in fluid
flows, which are of interest in a variety of practical situations.
Examples include aerosols and pollutants in the atmosphere,
microstructures suspended in fluids, bubbles in liquids, slurries
in industrial mixers, droplet formation by cloud turbulence [2],
planet formation around developing stars in the universe [3],
and many others. These systems exhibit rich and complex
behavior and demonstrate phenomena that are interesting from
the point of view of dynamical systems theory.

The Lagrangian dynamics of small spherical tracers in
nonuniform and incompressible flows is described by the
Maxey-Riley equation [4], under the assumption that the
fluid around the tracers is locally incompressible and of
uniform density. For neutrally buoyant tracers, after various
approximations [5], the Maxey-Riley equation leads to a set of
minimal equations known as the embedding equations [5,6].
The same procedure has been generalized for the case of non-
neutrally buoyant tracers when the particle density differs from
the fluid density. The fluid dynamics is actually embedded in
the particle dynamics and may be recovered under appropriate
limits. The particle motion in the flow turns out to be
compressible and thereby gives rise to regions of contraction
and expansion without affecting the incompressible nature of
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the Lagrangian fluid flow. Thus, the embedding dynamics is
dissipative in nature. Map analogs of the embedding equation,
which preserve the features of the embedding dynamics, have
also been constructed [7]. In the case where the densities of
the fluid and the particles do not match, their trajectories are
expected to differ. This can have interesting consequences. It
has been observed that in two-dimensional (2D) chaotic flows
aerosols are pushed out from the Kolomogrov-Arnold-Moser
(KAM) islands. The opposite tendency has been reported for
bubbles [8–10]. However, neutrally buoyant particles may
get detached from the fluid-parcel trajectories and settle in
the KAM islands. This behavior suggested an interesting
application, a method of targeting KAM islands in Hamiltonian
flows. The generalization of this method has been studied for
Hamiltonian maps as well and has been called the method of
bailout embedding [5,6]. It may be noted that the effects of the
Basset-Boussinesq history term have been recently considered
for the sedimentation and rising of inertial particles in a 2D
convective time-periodic cell flow [11].

Bailout embeddings of two-dimensional flows as well as
maps have been studied previously [6,12]. The study of
the bailout embeddings of two-dimensional area-preserving
maps [12] indicated that the dissipation parameter of the
system as well as the density difference play a crucial role
in the dynamical behaviors of bubbles and aerosols. It has
been demonstrated that the embedding map can target periodic
orbits and chaotic behavior in both the aerosol and bubble
regimes depending on values of the dissipation parameter γ

and the mass ratio parameter α. Moreover, an attractor merging
and widening crisis was observed in a certain parameter region
for the aerosol. Crisis induced intermittency was also found at
some points in the parameter space. Here we study the bailout
embedding of a three-dimensional (3D) volume-preserving
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map. It is expected that the presence of an extra dimension
in the phase space will have important contributions to the
clustering and transport properties seen in the phase space.

In this paper we investigate the behavior of the bailout
embedding of a volume-preserving 3D map, the Arnold-
Beltrami-Childress (ABC) map [13]. ABC flows [14] are
important models in the context of magnetohydrodynamics
and can sustain the dynamo effect; i.e., a magnetic field can
be generated and maintained by the motion of an electrically
conducting fluid. The flows can show streamlines and periodic
behavior as well as chaotic regimes accessed by a series of
bifurcations [15]. The spatial structure of the magnetic field
is influenced by the velocity field. The map analog of the
ABC flow [16] demonstrates similar effects. The velocity
field of the ABC map has been studied both analytically
and numerically in detail by Dombre et al. [13]. The bailout
embedding of this volume-preserving map has also been
studied by Cartwright et al. [6] for neutral particles and
demonstrates the accumulation of impurities in tubular vortical
structures, the detachment of particles from fluid parcels
near hyperbolic invariant lines, and the formation of 3D
structures. Our study of the ABC map examines spherical
tracers whose densities are different from that of the fluid.
We discuss both the two-action and one-action cases of the
map but concentrate on the two-action case here. For this
case, as in the 2D case, the aerosols and bubbles show
distinctly different behaviors. The system has a rich phase
diagram wherein periodic structures, hyperchaotic regimes,
and chaotic behavior are seen, depending on the dissipation
parameter, and buoyancy effects. We also observe unstable
dimension variability (UDV) leading to crisis in this system
in the aerosol regime, for certain values of the dissipation and
buoyancy parameters. The system also shows a riddled basin
of attraction and UDV in the bubble regime. This behavior can
have interesting practical consequences.

The paper is organized in the following way. The bailout
embedding method is outlined in Sec. II. The embedded
version of the base ABC map is constructed in Sec. III.
The aerosol and bubble regimes in the two-action case are
investigated in Sec. IV. The phase diagram of the two-action
case is discussed in Sec. V and compared with the phase
diagram of the 2D standard map case studied earlier. We
discuss the one-action case briefly in Sec. VI. The conclusions
are summarized in Sec. VII.

II. THE BAILOUT EMBEDDING MAP

The transport of passive point particle tracers in the fluids
is usually studied using the Lagrangian framework, wherein

ẋ = ux(x,y,z,t),

ẏ = uy(x,y,z,t), (1)

ż = uz(x,y,z,t).

Here ẋ, ẏ, and ż are the particle velocities, and ux , uy ,
and uz are the components of the fluid velocity field u.
The obvious advantage of working in this framework is that
the particle advection problem is now expressed as a finite-
dimensional dynamical system. If the density of the particle
tracers is different from that of the fluid, then the problem

needs to be tackled using the Maxey-Riley framework. In the
Lagrangian description, the advection of spherical particles
in an incompressible fluid is given by the Maxey-Riley
equation [4], which has the form
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Here v represents the particle velocity; u represents the
fluid velocity; ρp represents the density of the particle; ρf

represents the density of the fluid; and ν, a, and g represent
the kinematic viscosity of the fluid, the radius of the particle,
and the acceleration due to gravity, respectively. The first term
on the right of Eq. (2) represents the force exerted by the
undisturbed flow on the particle, the second term represents
the buoyancy, the third term represents the Stokes drag, the
fourth term represents the added mass, and the last term is
the Basset-Boussinesq history force term. The derivative Du

dt

where Du
Dt

= ∂u
∂t

+ (u · ∇)u is taken along the path of the fluid
element, and the derivative du

dt
= ∂u

∂t
+ (v · ∇)u is taken along

the trajectory of the particle. The Maxey-Riley equation is
derived under the assumption that the particle radius and the
Reynolds number are small, and so are the velocity gradients
around the particle. It is also assumed that the initial velocities
of the particle and fluid are the same. A full review of the
problem is found in [17].

Under the low Reynolds number approximation, with
negligible buoyancy effects, and retaining only the Bernoulli,
Stokes drag, and Taylor added terms, we arrive at the following
simplified equation of motion for the motion of a spherical
particle immersed in the fluid [5]:

ρp

dv
dt

= ρf

du
dt

− 9νρf

2a2
(v − u) − ρf

2

(
dv
dt

− du
dt

)
. (3)

This equation has been derived under approximation that
Du
Dt

= du
dt

. Expressing the equation in a nondimensional form
by proper rescaling of length, time, and velocity by scale
factors L, T = L/U , and U , we obtain

dv
dt

− α
du
dt

= −2

3

(
9α

2a2Re

)
(v − u). (4)

Here, the parameter α gives the mass ratio, α = 3ρf /(ρf +
2ρp). Hence, values of α < 1 correspond to the aerosol case
and the values α > 1, α = 1 correspond to the bubble case
and the neutrally buoyant cases. Defining the particle Stokes
number St = 2

9a2Re and defining the dissipation parameter to
be γ = 2α

3St
, the equation takes the form [5]

dv
dt

− α
du
dt

= −γ (v − u). (5)

Let the base flow be represented by an area or volume-
preserving map, with the map evolution equation xn+1 =
T (xn). A general bailout embedding for this map which
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FIG. 1. (Color online) The x-y-z phase space of the ABC map in (a) the one-action case for the parameter values (A,B,C) = (1.5,0.08,0.16)
and (b) the two-action case for the parameter values (A,B,C) = (2.0,1.5,0.08).

represents the motion of the particle and encapsulates the
essential features of Eq. (5) may be constructed [6]:

xn+2 − T (xn+1) = K(xn)[xn+1 − T (xn)]. (6)

In the case of inertial particles, the bailout embedding function
K(x) may be chosen such that the embedding map takes the
form [7]

xn+2 − T (xn+1) = e−γ [αxn+1 − T (xn)]. (7)

This can be expressed as

xn+1 = T (xn) + δn,

δn+1 = e−γ [αxn+1 − T (xn)]. (8)

This is the bailout embedding map. The dissipation parameter
γ is a measure of contraction or expansion in the phase space
of the particle’s dynamics. The particle is said to have bailed
out of the fluid trajectory when δ �= 0, where the new variable
δ is defined to be the detachment of the particle from the local
fluid parcel. The fluid dynamics is recovered under the limits
δ → 0, α = 1, and γ → ∞. In this sense, the fluid dynamics
is said to be embedded in the particle’s equation. This map
is dissipative with a phase space contraction rate which is

e−γ . The configuration space contraction rate is proportional
to e−γ (α − 1) for e−γ (α − 1) � 1 [7]. We will use this version
of the bailout embedding map in all subsequent analysis.

III. THE EMBEDDED ARNOLD-BELTRAMI-CHILDRESS
(ABC) MAP

We consider the Arnold-Beltrami-Childress (ABC)
map [13,16] as the base map for the present study. The
ABC map exhibits almost all the basic features of interest
in the evolution of a typical three-dimensional time-periodic
volume-preserving flow, the ABC flow. This class of simple
nonturbulent flows, first introduced by Arnold, is known to
possess KAM-like surfaces and generate chaotic streamlines.
In the chaotic regions, the flow has the Beltrami property; i.e.,
the vorticity is parallel to the fluid velocity. The passive scalars
immersed in such streamlines display chaotic advection, which
considerably enhances the mixing and transport properties of
passive scalars, as shown in the two-dimensional case of the
blinking vortex model introduced by Aref [18]. Moreover,
Childress [19] demonstrated that the presence of chaotic
streamlines in the flow is responsible for the growth of the
magnetic field in the model of the kinematic dynamo effect.
We use the following version of the ABC map [13] for our

FIG. 2. (Color online) The x-y-z phase space of the embedded two-action ABC map in (a) the aerosol regime for the parameter values
(A,B,C) = (2.0,1.5,0.08) and (α,γ ) = (0.7,3.6) and (b) the bubble regime for the parameter values (A,B,C) = (2.0,1.5,0.08) and (α,γ ) =
(2.0,2.2).
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FIG. 3. (Color online) The bifurcation diagram for the embedded
two-action ABC map in the aerosol regime for the parameter values
(A,B,C) = (2.0,1.5,0.16) and α = 0.7.

purpose:

xn+1 = xn + A sin(zn) + C cos(yn)
yn+1 = yn + B sin(xn+1) + A cos(zn)

zn+1 = zn + C sin(yn+1) + B cos(xn+1)

⎫⎬
⎭ mod 2 π. (9)

The map is implemented modulo 2π with real parameters
(A,B,C). There are two quasi-integrable cases of the ABC
map [20]. However, it is the presence of the chaotic streamlines
seen in the nonintegrable case that makes it an interesting
prototype to be used for fluid dynamical studies in three
dimensions. The map is referred to as the one-action map
if one of the parameters exceeds 1 and as the two-action
version if two of the parameters (A,B,C) are larger than 1.
The one-action ABC map shows KAM-like invariant surfaces,
parts of which break down under small perturbations, but the
trajectories remain bounded within the invariant surfaces that
are intact [see Fig. 1(a)]. In the two-action ABC map, however,
unbounded diffusive motion through the invariant surfaces is
found [see Fig. 1(b)]. Consequently, the trajectory fills up
all the accessible phase space. This phenomenon is known

as resonance-induced diffusion. Figures 1(a) and 1(b) show
the 3D phase space of the ABC map for the one-action and
the two-action cases for the parameter values A = 1.5,B =
0.08,C = 0.16 (the one-action case) and for the parameter
values A = 2,B = 1.5,C = 0.08 (the two-action case). In
Fig. 1(a), at the parameter values (A,B,C)=(1.5,0.08,0.16),
we see a tubelike KAM surface typical of those seen for
one-action maps [13], whereas Fig. 1(b) at the parameter
values (A,B,C)=(2.0,1.5,0.16) clearly shows chaotic regions
and KAM tubes separated by invariant surfaces that prohibit
any transport. The phase diagram of the embedded system in
the α-γ space for the two-action case shows many interesting
regimes which will be discussed in a subsequent section.

The bailout embedded version of the ABC map is given by
the following six-dimensional map:

xn+1 = xn + A sin(zn) + C cos(yn) + δx
n

yn+1 = yn + B sin(xn+1) + A cos(zn) + δ
y
n

zn+1 = zn + C sin(yn+1) + B cos(xn+1) + δz
n

δx
n+1 = e−γ

[
αxn+1 − (

xn+1 − δx
n

)]
δ

y

n+1 = e−γ
[
αyn+1 − (

yn+1 − δ
y
n

)]
δz
n+1 = e−γ

[
αzn+1 − (

zn+1 − δz
n

)]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

mod 2 π.

(10)

This is a dissipative and invertible map implemented modulo
2π . The case of neutrally buoyant particles in ABC maps
and flows has been studied previously [6]. Here, it was
seen that in the one-action case particles were expelled from
the chaotic regions to finally settle into the tubular KAM
structures. In the two-action case, the neutral particles and the
fluid parcels followed exponentially convergent trajectories
and small fluctuations could be induced by the presence of
noise. Here, we consider the case where the particles and
the fluid have different densities. As mentioned earlier, the
parameters α and γ are the inertia and dissipation parameters,
respectively. We consider the aerosol regime (α < 1) and
bubble regime (1 < α < 3) in detail in the following sections.
We first discuss the two-action ABC map case. The one-action
case is addressed in a later section.

FIG. 4. (Color online) The precrisis scenario for the embedded two-action ABC map in the aerosol regime for the parameter values
(A,B,C) = (2.0,1.5,0.16) and (α,γ ) = (0.7,2.2) for (a) the attractor in x-y-z phase space (500 transients discarded) and (b) the time series.
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FIG. 5. (Color online) The postcrisis scenario for the embedded ABC map in the aerosol regime for the parameter values (A,B,C) =
(2.0,1.5,0.16) and (α,γ ) = (0.7,2.3) for (a) the attractor in x-y-z phase space (500 transients discarded) and (b) the time series.

IV. THE TWO-ACTION CASE

The embedded two-action ABC map contains five pa-
rameters, A,B,C,α, and γ , and shows many different kinds
of behaviors depending on the parameter values. Here, we
examine the behavior of the embedded two-action map at
two parameter sets where interesting structures are seen.
Figure 2(a) shows the behavior of the particles in the fluid for
the parameter values A = 2,B = 1.5,C = 0.08, α = 0.5, and
γ = 3.6. This is the aerosol regime, and the aerosols evolve to
form a pair of ringlike structures. The trajectory points which
do not lie on the rings constitute the transient to the asymptote
seen in Fig. 2(a). This is a regime with strong dissipation. On
the other hand, in the bubble regime, with α = 2.0, γ = 2.2,
the bubbles end up on two raftlike structures. There is also
a random distribution of points in between. We note that
many other structures are possible at other parameter values.
This will be discussed in detail when we discuss the phase
diagram.

A. The aerosol regime: interior crisis and unstable
dimension variability

The aerosol regime of the embedding map shows rich
structure. The major features of this regime can be identified by
examining the bifurcation diagram (Fig. 3). In this bifurcation
diagram, we plot the entire set of values accessed by the
variable x

2π
at a given value of the dissipation parameter γ

for the entire range where γ takes values 2.1 � γ � 2.5 [21].
Here, the phenomenon of crisis is clearly visible at γ = 2.235
where the attractor, which initially covers the full available
range of x, suddenly shrinks to a set of two points. In fact,
there are several windows of crisis (at γ = 2.27 and 2.35)
as the parameter γ is increased to higher values. This crisis
can be identified as an attractor merging and widening or
interior crisis. The precrisis attractor can be seen in Fig. 4
and the postcrisis attractor can be seen in Fig. 5. Figure 6
shows the largest Lyapunov exponent (LE) of the system,
plotted for the range γ = 0.0 to 6.0. We note that unstable
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FIG. 6. (Color online) The Lyapunov exponents for the embedded two-action ABC map in the aerosol regime for the parameter values
(A,B,C) = (2.0,1.5,0.16) and α = 0.7 for (a) the largest Lyapunov exponent and (b) the full spectrum (λ1 > λ2 > λ3 > λ4 > λ5 > λ6).
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FIG. 7. (Color online) Plot of the fraction of positive time-50
Lyapunov exponents vs time, in the aerosol regime for the parameter
values (A,B,C) = (2.0,1.5,0.16) and (α,γ ) = (0.7,2.2). UDV is
clearly seen.

dimension variability, the consequence of a strong form of
nonhyperbolicity, is seen in the neighborhood of the crisis.
The signature of the UDV is seen in the fact that the
Lyapunov exponent clearly fluctuates around zero in the
range γ = 1.9 to 3.0. In addition to the asymptotic Lyapunov
exponent, we calculate the finite time Lyapunov exponents
(FTLEs) of the system, as they sample the local stretching and
contracting rates. The fraction of positive finite time Lyapunov
exponents, i.e., Lyapunov exponents, calculated fluctuates as
a function of time, confirming that the number of stretching
and contracting directions are changing as a function of time
(i.e., the trajectory samples different numbers of stretching
and contracting directions at different points in the attractor),
indicating the existence of unstable dimension variability in
this regime (Fig. 7). A similar form of UDV is also seen in
the bubble regime, which we will discuss in further detail.
Figure 6(b) plots the full Lyapunov spectrum, i.e., all the six
Lyapunov exponents of the embedded map in the γ = 0.0
to 3.0 regime. Here, it is seen that the first and second largest
Lyapunov exponents fluctuate around zero in the neighborhood
of γ = 0.5, after which they separate, with the largest taking

FIG. 8. (Color online) The hopping in the aerosol regime for the
parameter values (A,B,C) = (2.0,1.3,0.16) and (α,γ ) = (0.7,2.89).

positive values and the second largest taking negative values
until about γ = 1.3, where they start fluctuating around
zero, together with the third largest LE, which comes up
from below and fluctuates around zero in the same regime.
The next three Lyapunov exponents remain in the negative
regime, indicating the existence of three stable directions in
the six-dimensional space. Similar behavior is observed in
the bubble regime. Postcrisis, interestingly, at the parameter
values (A,B,C) = (2.0,1.3,0.16) and (α,γ ) = (0.7,2.82), an
attractor with two symmetric loops appears in the phase space
and the asymptotic trajectory continuously hops between the
loops with period 2 (Fig. 8). The size and location of the loops
changes with initial conditions. This phenomenon occurs in
one of the windows of crisis.

However, the transient before the asymptote is reached
shows interesting behavior. The transient tends to stick around
the two rings before finally locking onto the two rings and
the period 2 orbit. In this process, it spends some time in the
neighborhood of the rings before hopping away to another
region of the phase space. The distribution of the time spent
by the transients in the region of the rings is plotted in Fig. 9(a),
and the corresponding log-log plot of the reverse cumulative
distribution [22] is shown in Fig. 9(b). A power law can be
seen in the reverse cumulative distribution over a short regime
ranging from 0.0 to 2.6 with the exponent β = 2.93. The plots
shown in Fig. 9 are for the transients for 500 random initial
conditions and the maximum time scale here is τ = 16, after
which the ring attractors are reached. A similar power law
distribution has been seen in the time spent by a particle
in the vicinity of a vortex in the case of Rayleigh-Benárd
convection [23].

B. The bubble regime: unstable dimension variability
and a riddled basin of attraction

We now discuss the bubble regime, where the density of the
particles is less than the density of the fluid. The phenomena
of crisis and unstable dimension variability seen in the aerosol
regime are also observed in the bubble regime. The bifurcation
diagram for the bubble regime is shown in Fig. 10 for the set
of parameter values (A,B,C) = (2.0,1.3,0.05) and α = 1.1.
In this case, the phenomenon of crisis induced intermittency is
seen. From the bifurcation diagram, we identify the parameter
value at which crisis is seen to be γc = 0.415. The precrisis
and postcrisis situations are shown in Figs. 11 and 12, together
with the corresponding time series. We further observe that
the average characteristic time τavg for the orbit to stay in the
precrisis attractor before a burst shows a power law of the form

τavg ∼ (γc − γ )−β. (11)

Here, we find that the exponent β = 0.40. The log-log plot
for the scaling behavior is shown in Fig. 13(a). Figure 13(b)
shows the full Lyapunov spectrum. Here a small jump can
also be observed in the variation of the maximum Lyapunov
exponent for the system [Fig. 13(b)]. We also observe that
the three largest exponents come close together near the zero
level in the window 1.5 < γ < 3. The other three also begin to
overlap and fall off with almost the same slope as γ increases.

Furthermore, the Lyapunov spectrum also shows that the
second largest Lyapunov exponent λ2 fluctuates near zero in
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FIG. 9. (Color online) Statistics of the transients before the hopping in the aerosol regime for the parameter values (A,B,C) = (2.0,1.3,0.16)
and (α,γ ) = (0.7,2.89) for (a) the probability distribution and (b) the corresponding log-log plot of the reverse cumulative distribution [22].

the window of interest. As in the aerosol case, this signals the
presence of unstable dimension variability (UDV). Calcula-
tions of finite time Lyapunov exponents (FTLEs) confirm the
presence of UDV. We compute time-50 Lyapunov exponents
and plot the fraction of positive FTLEs as a function of time.
This plot shows continuous fluctuations (Fig. 14) indicating
that the number of expanding and contracting directions is
changing at different points in the attractor, a clear signature
of unstable dimension variability, as seen before.

The basin of attraction of the system in the window 2.5 <

γ < 3 is also of some interest. A given random initial condition
asymptotes to the attractor shown in Fig. 15(a), where three
patches of closely clustered points can be seen. However,
another initial condition in an arbitrarily close neighborhood of
the previous initial condition asymptotes to a different attractor
[Fig. 15(c)] with two sets of three stripes each. This is further
supported by the time series of x, which shows one-band and
two-band structures for nearby initial conditions [Fig. 15(d)].
The black dots in Figs. 15(a) and 15(c) indicate the positions
of the initial conditions (the first 500 iterates are discarded as

FIG. 10. (Color online) The bifurcation diagram for the embed-
ded ABC map in the bubble regime for the parameter values
(A,B,C) = (2.0,1.3,0.05) and α = 1.1.

transients). This clearly indicates the existence of a riddled
basin of attraction. The riddled basin of attraction is shown in
Fig. 16 for 500 random initial conditions. It may be noted that
the number of initial conditions that leads to the attractor with
patches is about half of that to the attractor with strips. Such
riddled basins have been seen before in the neighborhood of
the crisis in other systems [24] but have not been observed
before in the bailout embeddings of maps. We note that in
this particular case the two sets of initial conditions, viz., the
conditions that lead to each type of attractor, are randomly
distributed in the phase space. This can have interesting
consequences for impurity dynamics, including the question
of the coexistence of the two attractors. We plan to explore
this in further work.

V. THE PHASE DIAGRAM OF THE TWO-ACTION CASE

In order to get the full picture of the dynamical behavior
of the two-action case, we plot the full phase diagram in the
parameter space (Fig. 17). The calculation of all six Lyapunov
exponents of the embedded map in the parameter space helps
us to visualize the three kinds of dynamical behavior, viz.,
periodic orbits, chaotic orbits, and hyperchaotic orbits. We
classify the behavior as (a) periodic if λ1,λ2 < 0, (b) chaotic if
λ1 > 0,λ2 � 0, and (c) hyperchaotic if λ1 > 0,λ2 > 0. The
regimes with λ1 > 0,λ2 � 0 show chaotic behavior as in
Fig. 18(a), whereas the regimes with λ1 > 0,λ2 > 0 show
hyperchaotic behavior [Fig. 18(b)] due to the presence of two
diverging directions, which may result in a higher efficiency
of mixing and transport in the fluid flow. The phase diagram is
shown in Fig. 17, in which the regions marked with P, C, and
H indicate periodic, chaotic, and hyperchaotic behavior in the
system, respectively. The aerosol region shows periodic and
chaotic and hyperchaotic behavior, whereas the bubble region
is completely hyperchaotic. We note that the phase diagram is
plotted after a very long asymptote, and other kinds of behavior
are seen in the bubble region in the transient.

We compare our results with earlier work [12] in which
the dynamics of inertial particles on the surface of a fluid is
modeled by four-dimensional dissipative bailout embedding
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FIG. 11. (Color online) The precrisis scenario for the embedded two-action ABC map in the bubble regime at the parameter values
(A,B,C) = (2.0,1.3,0.05) and (α,γ ) = (1.1,.405) for (a) the attractor in x-y-z phase space (500 transients discarded) and (b) the time series.

maps. Here, the 2D standard map is used as the base flow,
leading to the following map equations for the embedded
map [12]:

xn+1 = xn + K
2π

sin(2πyn) + δx
n

yn+1 = yn + K
2π

sin(2πyn) + δ
y
n

δx
n+1 = e−γ

[
αxn+1 − (

xn+1 − δx
n

)]
δ

y

n+1 = e−γ
[
αyn+1 − (

yn+1 − δ
y
n

)]

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

mod 2 π. (12)

The parameter K controls the chaoticity of the map and α

and γ are the usual mass ratio and dissipation parameters,
respectively. This map exhibits crisis induced intermittency
in the aerosol regime with characteristic times τ between the
bursts which show power law scaling, where τ ≈ (γc − γ )−β

where the exponent β = 0.35, and γc is the critical value at
which the crisis occurs. Moreover, the crisis seen here is of the
interior type, similar to what we find in the present study for
the 3D case. However, in contrast, the embedded ABC map we
have studied does not show intermittency and associated power
law behavior in the aerosol regime. Prior to the study of [12],
it was believed that only bubbles are capable of breaching
the elliptical islands in the phase space and targeting periodic

structures. However, both the study of the 2D standard map
carried out in [12] as well as the 3D ABC map studied here
show that such a dynamics is demonstrated by aerosols as well,
at certain values of the dissipation parameter. Therefore, it is
clear that the dissipation parameter γ has a crucial role to play
in the preferential concentration of inertial particles and in the
targeting of periodic structures.

The bubble regimes of the embedded standard map and
the embedded ABC map also differ in crucial ways. No
crisis is seen in the bubble regime of the embedded standard
map. In contrast, the 3D ABC map case shows crisis induced
intermittency in the bubble regime with power law behavior as
a function of γ -γc in the characteristic times between bursts.
It may be noted that this situation is similar to that seen in the
aerosol regime in the 2D standard map case. In addition, we
also observe that the riddled basin and UDV are seen in the
bubble regime in the present 3D ABC map case but were not
seen in the standard map case.

The phase diagram for the embedded standard map shows
periodic behavior, chaotic structures, as well as mixing [26]
in the bubble regime [12]. The phase diagram of the embed-
ded ABC map (Fig. 17) shows fully hyperchaotic regions.

FIG. 12. (Color online) The postcrisis scenario for the embedded two-action ABC map in the bubble regime for the parameter values
(A,B,C) = (2.0,1.3,0.05) and (α,γ ) = (1.1,.425) for (a) the attractor in x-y-z phase space (500 transients discarded) and (b) the time series.
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FIG. 13. (Color online) Plots of phenomena observed in the bubble regime at the parameter values (A,B,C) = (2.0,1.3,0.05) and α = 1.1
for (a) the power law for crisis induced intermittency (the number of initial conditions equals 500, and γ varies from 0.26 to γc = 0.415) and
(b) the Lyapunov spectrum (λ1 > λ2 > λ3 > λ4 > λ5 > λ6).

Prominent tongues corresponding to periodic regimes are seen
in the phase diagram for the 2D standard map case but are
absent in the 3D case. The phase diagram of the 2D case is
characterized by sharp boundaries, whereas the boundaries in
the 3D case are not sharply defined.

In the case of the embedded standard map, it was shown
that the transport and diffusive properties of the system were
strongly correlated with the phase diagram. Here, for the
3D embedded ABC map as well, the most important effects
of dimensionality are expected to be seen in the transport
properties where the detailed structure of the phase diagram
is expected to influence diffusivity. We plan to explore the
transport and diffusivity of the embedded ABC map, explore
the effects of the barriers in phase space, and compare these
with the phase diagram and the effects seen in the 2D case in
subsequent work.

As mentioned in the introduction, the one-action case of
the ABC map shows transport properties which are quite

FIG. 14. (Color online) Plot of the number of positive time-50
Lyapunov exponents as a fraction of the total number, vs time, in the
bubble regime for the parameter values (A,B,C) = (2.0,1.3,0.05)
and (α,γ ) = (1,2.82). The presence of unstable dimension variability
is very clear.

distinct from the two-action case. Given the relation between
transport and dynamics seen in the case of the standard map,
we carry out a brief study of the dynamical behaviors of
the one-action case of the embedded ABC map in the next
section.

VI. THE ONE-ACTION CASE

Here, we study the one-action embedded ABC map at
the parameter values (A,B,C) = (1.5,0.08,0.16) and examine
both the aerosol and the bubble regimes. Figure 19 shows the
phase space portraits of the system at α = 0.2 [in Fig. 19(a)]
and α = 1.2 [in Fig. 19(b)]. We find periodic behavior in the
aerosol regime, whereas the bubble regime shows hyperchaotic
regions as discussed below.

A. The aerosol regime: periodic behavior

The most striking feature observed here for the one-
action map in the aerosol regime is that for the parameter
values (A,B,C) = (1.5,0.08,0.16), α = 0.2, and γ � 0.8 the
trajectories evolve rapidly toward attractors where all points
belong to fixed periods. We note that distinct initial conditions
settle onto distinct trajectories, however several distinct trajec-
tories have the same period. This periodic behavior is sensitive
to the values of the inertial and dissipation parameters, α and
γ , respectively. With increase in the value of α, we find that the
periodicity of points in a given attractor also increases. Also,
the number of distinct periodic trajectories of the same period
increases with γ . Interestingly, all the periods observed here
have been even.

The x-y-z phase space of the system for parameter values
(A,B,C) = (1.5,0.08,0.16) and (α,γ ) = (0.2,2.9) is shown
in Fig. 19(a). We observe five different periodic attractors in
this case, with periods 14,26,50,104,and150. We also plot
the bifurcation diagram (z vs γ ) in Fig. 20(a), which shows
windows of crisis for γ > 2.5 for parameter values (A,B,C) =
(1.5,0.08,0.16) and α = 0.2. Furthermore, the behavior of the
largest Lyapunov exponent in Fig. 20(b) confirms the existence
of regular orbits for almost the entire range 0 < γ < 4.
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FIG. 15. (Color online) The riddling of the basin of attraction in the bubble regime for the parameter values (A,B,C) = (2.0,1.3,0.05) and
(α,γ ) = (1.1,2.82) for (a) the attractor with patches [the black dot indicates the initial condition (0.1724, 0.9116, 0.3947)], (b) the corresponding
time series points, (c) the attractor with stripes [the black dot indicates the initial condition (0.6003, 0.6661, 0.9543)], and (d) the corresponding
time series points.

B. The bubble regime: crisis and hyperchaotic regions

The phenomenon of crisis is also visible in the bubble
regime of the one-action case. The bifurcation diagram [see

FIG. 16. (Color online) The riddled basin of attraction in the
bubble regime for the parameter values (A,B,C) = (2.0,1.3,0.05)
and (α,γ ) = 1,2.82). Initial conditions marked with plus signs (+)
evolve to the attractor with stripes, and those marked with asterisks
(∗) evolve to the attractor with patches.

Fig. 21(a)] identifies the γ value at crisis to be γc = 2.59,
where we anticipate a sudden change in the size of the attractor.
However, in contrast to the two-action bubble regime (see
Sec. IVB), we do not see any intermittent behavior induced by
crisis. The bubble regimes are found to be highly hyperchaotic.
Here, hyperchaos is observed for 0 < γ � 4 [see Fig. 21(b)].
We plan to explore the full phase diagram of the system
in future work and also to carry out diffusion and transport
studies and correlate the two. It is expected that the one-action
and two-action cases will show significant differences for the
dynamics and diffusion studies.

VII. CONCLUSION

The present work studies the advection of finite sized
passive scalar particles in an incompressible three-dimensional
flow for cases where the particle density differs from the fluid
density. The motion of the advected particles is represented
in Lagrangian description by an embedding map with the
volume-preserving Arnold-Beltrami-Childress (ABC) map as
the base map. The resulting embedded ABC map is invertible
and dissipative with two sets of parameters, namely, A,B,C,
which belong to the base map and the mass ratio and dissipation
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FIG. 17. (Color online) The phase diagram of the embedded
two-action ABC map for parameter values (A,B,C) = (2.0,1.3,0.05)
(periodic orbits are marked with the label P, chaotic behaviors are
marked with the label C, and hyperchaotic regions are marked with
the label H). The α-γ space is covered by a 400 × 800 mesh, each
of size 0.005 × 0.005. A total of 25 000 iterates have been calculated
in each case. The phase diagram has been plotted for 15 000 iterates
discarding the first 10 000 iterates as transients.

parameters (α,γ ) which enter due to the embedding. The
two-action case of the map has been studied in both the
regimes, aerosol and bubble, depending upon whether the mass
ratio parameter α < 1 or α > 1.

In the two-action case, the phase diagram for the system in
the α-γ parameter space shows rich structures with complex
dynamics. Three types of dynamical behaviors—periodic
orbits, chaotic structures, and hyperchaotic regions—are found
to be present. The bubble regime is mostly hyperchaotic, but
the aerosol regime also contains a tongue of hyperchaoticity
at low values of dissipation. Crisis induced intermittency in
this region and power law behavior for the characteristic
times between bursts are seen in the neighborhood of the
crisis. Unstable dimension variability is also seen in this
neighborhood. The bubble regime also shows the existence of

multiple coexisting attractors and a riddled basin of attraction.
The observed riddling may be a consequence of a bubbling
bifurcation, similar to that seen in the bailout embeddings
of Hamiltonian dynamical systems [25]. This needs to be
explored further, and the consequences of the riddling for
clustering and the preferential concentration of particles also
need to be examined. We hope to do this in future work.

The aerosol regime of the two-action case exhibits a
bifurcation diagram with rich structure. An interior crisis is
seen in the system, and in fact a number of windows of crisis
are seen. A two ring attractor is seen in the postcrisis setting,
with trajectories which hop between the rings with period 2.
The transient to the two ring attractor shows scaling behavior.
Thus, our toy model shows a variety of phenomena which
could lead to consequences for transport and pattern formation.
Clustering and concentration phenomena and their dependence
on initial conditions have been insufficiently explored so far,
even in model contexts. The present system constitutes an
excellent toy model for exploring such phenomena. We hope
to explore these phenomena as well as the drift and diffusive
properties of this system in future work.

A preliminary study has also been carried out for the
one-action case of the ABC map, using the parameter values
A = 1.5,B = 0.08,C = 0.16. Here, in the aerosol regime
with α = 0.2, the largest LE is negative for most of the
range 0 � γ � 4. Here, periodic attractors with even periods
were seen. The bubble regime with α = 1.25 showed fully
hyperchaotic behavior where the two largest LEs were always
positive in the range 0 � γ � 4, and some of the phase space
plots showed patched structure. However, a detailed study of
the one-action case remains to be carried out. It is expected
that the presence of invariant surfaces in this case will lend
interesting features to the drift and diffusion properties.

It would also be interesting to connect the present method
to other approaches, e.g., that of Lagrangian coherent structure
analysis [27,28]. In addition to the fact that the system studied
here exhibits dynamical phenomena which are of theoretical
interest, our observations may have implications in a variety
of application contexts such as the dispersion of pollutants
in the atmosphere and oceans, catalytic chemical reactions,
coagulation of material particles in flows, and plankton

FIG. 18. (Color online) Phase space plot for the chaotic and hyperchaotic regimes for the two-action case for the parameter values
(A,B,C) = (2.0,1.3,0.05) and γ = 1.5 for (a) the aerosol regime (α = 0.7) and (b) the bubble regime (α = 1.1). The last 1000 points of the
10 000 iterates are plotted. See Fig. 17 for the complete phase diagram of the two-action case.
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FIG. 19. (Color online) The x-y-z phase space of the embedded one-action ABC map for parameter values (A,B,C) = (1.5,0.08,0.16) in
(a) the aerosol regime for (α,γ ) = (0.2,2.9) and (b) the bubble regime for (α,γ ) = (1.2,2.8).

FIG. 20. (Color online) One-action map case (A,B,C) = (1.5,0.08,0.16) and α = 0.2 for (a) the bifurcation diagram and (b) the largest
Lyapunov exponent variation.

FIG. 21. (Color online) One-action map case (A,B,C) = (1.5,0.08,0.16) and α = 1.25 for (a) the bifurcation diagram and (b) the variation
of the two largest Lyapunov exponents.
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population in oceans. We also note that the transport properties
and physical behavior of impurities in three dimensions are
little understood at present. Finally, given that the ABC flow
and map constitute models for magnetohydrodynamics, their

dynamics and transport properties may have implications for
magnetohydrodynamic properties like the dynamo effect. We
hope to analyze these aspects and their consequences for
applications in future work.
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