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I. INTRODUCTION

The nonlinear Schrödinger equation (NLSE) and a variety
of its extensions have been among the most studied evolution
equations. These equations and their solutions have been
applied to explain experiments in many branches of physics
for more than 50 years. In physics, the applications cover
the fields of light-wave technology, plasma physics, water
waves, photonics, nonlinear optics, optical waveguide arrays,
Bose-Einstein condensation, and condensed-matter physics.
In mathematics, NLSE research themes include integrability,
various aspects of Riemann-Hilbert problems, stability theory
of solitary waves, beam dynamics, chaos, and, very recently,
extreme events.

In most cases, the NLSE deals with continuous systems, but
to handle a physical system that is discrete by nature requires an
appropriate discrete model. Ablowitz and Ladik first derived a
discrete model that is an integrable discrete counterpart of the
NLSE [1–4]. Like the NLSE itself, this discrete analog has a
number of applications. A few examples can be mentioned
in this regard: modeling a moving quasiparticle inside a
periodic crystal and its interaction with lattice vibrations [5],
temperature correlations of quantum spins [6], observing the
dynamics of Bloch oscillations in an NLSE chain in the
presence of static electric field [7] and soliton dynamics in
discrete molecular chains [8]. Additional applications of the
AL model include arrays of optical waveguides, electronic
circuits, and the dynamics of nonlinear lattices [9–11]. A more
detailed overview, applications, and relevant discretizations
have been given in the review article in Ref. [12].

The Ablowitz- Ladik equation (ALE) and the NLSE
are both integrable systems. Each can be solved using the
well-known inverse scattering technique [13]. As the ALE
is an integrable discretization of the NLSE, their solutions
are also linked to each other. The most studied common
solutions are soliton solutions on a zero background [1,14]
or dark solitons [15], depending on the sign of the coefficients
in the equation. Numerous techniques have been used to
derive exact solutions of the ALE with reference to its
related continuous (NLSE) partner solutions [16–18]. The
explicit connection between the exact solutions of the ALE
and NLSE has been given in a recently published paper
[19]. The latest new solutions of the ALE are rogue waves.
Their nature, mathematical interpretation, and occurrences
have been discussed in Refs. [20,21]. The phenomena of
modulation instability, Fermi-Pasta-Ulam recurrence, rogue
waves, nonlinear phase shift, and the corresponding exact
solutions of the Ablowitz-Ladik equation have been discussed

in [19]. A convenient approach to first-order exact solutions of
the ALE has been presented in [22]. The second-order discrete
rogue wave solution of the Ablowitz-Ladik equation has been
given in [23].

Our aim here is to find solutions of coupled AL equations by
extending a Manakov model to a discrete case. A basic two-
component “tanh” and “sech” solution for discrete coupled
AL equations was derived in Ref. [19]. The coupled set of AL
equations for the defocusing case has been solved in terms
of Lamé and Chebyshev polynomials in [24,25]. Our present
endeavor is to find different solutions of the AL equations
using ideas from Ref. [26], where an N -coupled set of focusing
NLSEs has been solved in terms of Legendre polynomials. In
the continuous limit, these solutions converge to the solutions
of the set of Manakov equations in both the focusing and
defocusing forms.

II. DISCRETE AND CONTINUOUS COUPLED EQUATIONS

The standard normalized integrable AL equation can be
written as
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2h2

(
ψ

(1)
n−1 + ψ

(1)
n+1 − 2ψ (1)
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where n = · · · − 2, − 1,0,1,2, . . . is the discrete variable and
h is the discretization parameter. The equation in this form
includes defocusing (α = −1, where the nonlinear response
decreases with increasing intensity) and focusing (α = +1,
where the nonlinear response increases with increasing inten-
sity) cases. Equation (1) is a second-order finite-difference
approximation of the standard NLSE [Eq. (2.1) of [27]]:

i
∂ψ

∂t
+ 1

2
ψxx + α|ψ |2ψ = 0. (2)

This particular integrable discretization has been discussed in
[19,22,28,29]. Complex functions ψn(t) and ψ(t,x) in Eqs. (1)
and (2) are the wave functions for the discrete and continuous
cases, respectively. If we set n = x/h, the limit of h → 0
reduces the discrete ALE to the continuous NLSE. For both
ALE and NLSE, α = 1 means focusing and α = −1 means
a defocusing system. A detailed and systematic procedure for
lining up the ALE and NLSE and their corresponding solutions
by using standard transformations and scaling of the t and h
variables was given in [19].

Equations (1) and (2), when applied to light-wave technol-
ogy, usually deal with unidirectional polarized light consisting
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of a single component. More complicated systems can be
described by the multicomponent NLSEs and ALEs. The
partially coherent solitons (PCSs) are one example where
multicomponent coupled NLSEs are needed to provide a
detailed understanding of the formation of PCSs, their shape,
and collision properties [30–32]. The standard generalized
coupled ALE system, which is basically a discretized set of
NLSEs, can be written as

i
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dt
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In the case of just two sets, we can call them “discretized
Manakov equations.” Indeed, in the limit nh = x and h → 0,
the above system reduces to the continuous coupled Manakov
equations with two components [19], which, for the focusing
case (α = 1), can be written as

i
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+ 1

2
ψ (1)
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(5)
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2
ψ (2)
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ψ (2) = 0.

Higher-order sets of coupled equations describe so-called
incoherent solitons. The concept of incoherent solitons or
random-phase nonlinear waves was introduced by Hasegawa
[32–35] more than 35 years ago. The experiment carried out by
Mitchell et al. [36] extended this concept to the case of spatial
solitons. This experiment confirmed that incoherent solitons
do exist and are observable. Photorefractive materials turned
out to be ideal for experimental observations of self-trapping
of partially coherent light, due to their slow response time
[37] and low optical power requirement for the development
of strong nonlinear effects [38,39]. Christodoulides et al.
[40,41] have shown that incoherent self-trapped light inside
a photorefractive material can be represented by an infinite set
of coupled nonlinear Schrödinger equations (NLSs) [40]. The
theory of incoherent solitons within nonlinear Kerr-like media
has been developed in [32]. This theory allowed researchers to
study the shapes of incoherent solitons and their changes after
collisions. They are described by multiparameter families of
solutions, leading to arbitrary shapes of solitons in the limit
of complete incoherence [32]. We will provide approximate
solutions to Eq. (3) in Sec. VI.

The stationary solutions for incoherent solitons, their
dynamics, and collisions have also been analyzed in [42–45].
A comprehensive description of partially coherent solitons has
been given in [30]. This work, which follows [46], elucidates
soliton shapes and their collisions in terms of exact analytic
solutions. It was found that for equally spaced eigenvalues,
a symmetric solution of M coupled NLS equations can be
derived in terms of associated Legendre functions, represent-
ing symmetric partially coherent solitons on zero background.
They are based on the modes of the “sech-squared” waveguide

[31]. Here, the symmetry and “sech-squared” guide reduce
the solution families from multiparameter to single-parameter
solutions [45]. As the amplitude of partially coherent solitons
provides another parameter to the solution, finally a two-
parameter symmetric solution has been derived in [26] for
arbitrary M coupled NLSEs in terms of associated Legendre
functions; it is on a finite background. Here, we generalize
[26] presenting solutions for both defocusing (α = −1) and
focusing (α = 1) cases.

III. SELF-TRAPPED INCOHERENT SOLITONS:
DEFOCUSING (α = −1) AND FOCUSING (α = 1) CASES

Propagation of an M-component self-trapped mutually in-
coherent soliton set in photorefractive media can be expressed
in terms of the solution of a set of focusing NLSEs given by

i
∂ψj (x,t)

∂t
+ 1

2

∂2ψj (x,t)

∂x2
+ αδnψj (x,t) = 0, (6)

where ψj (x,t) is the j th component of the beam (j =
1, . . . ,M), x is the spatial dimension, t is time variable or
propagation direction, and α is a coefficient denoting the
strength of the nonlinearity. When α = 1, Eq. (6) is the
focusing NLSE, and when α = −1 it becomes the defocusing
NLSE. The total refractive index change is

δn =
M∑

j=1

|ψj |2. (7)

We are looking for solutions of Eq. (6) with α = ±1 in the
form

ψj (x,t) = uj (x)eikj t , (8)

where j = 1, . . . ,M . Propagation constants kj are different
for each j ; this makes the components mutually incoherent.
This ansatz reduces Eq. (6) to the set of ordinary differential
equations (ODEs):

u′′
j (x) + 2αuj (x)

M∑
i=1

u2
i (x) = 2kjuj (x) (9)

for j = 1, . . . ,M . The two- and three-component cases of
Eq. (6) have been considered in [47]. In particular, Hioe
[47] derived a dark-bright soliton solution of Eq. (6). The
higher-order solution sets for arbitrary M have been found
in [26]. However, only the focusing case, α = 1, has been
considered so far. The solutions comprise families with the
eigenvalues arranged in decreasing order. We now generalize
these solutions, allowing both positive and negative coeffi-
cients, i.e., α = ±1. Even for positive α = +1, we present
these solutions in a simpler form that involves two arbitrary
parameters.

Namely, the solution of Eq. (9) can be presented in terms
of associated Legendre polynomials with the total intensity in
Eq. (9) set to

δn =
M∑
i=1

u2
i (x) = b1(M) a1

−α (M − 1)p2

[
M − 1 − M

2
sech2(p x)

]
, (10)
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where b1(M) = 1
30 (4 + 15M − M2) and a1 and p are two

arbitrary parameters. Clearly, the first term in (10) has to be
positive, i.e., we need b1(M) a1 > 0. If we assume that M is an
arbitrary integer, change the variable y = px, and rearrange
Eq. (9) to the form

p2 d2uj

dy2
+ 2αδnuj = 2kjuj , (11)

then the solution of (11) can be expressed in terms of associated
Legendre polynomials:

uj (y) = ±√
cM,jP

M−j

M−1 tanh(y) (12)

for j = 1, . . . ,M . The coefficients of the polynomial cM,j

must be chosen in such a way that (12) is a solution of (11).
This happens when

cM,j = 2(j − 1)!

(2M − j − 2)!(δj,M + 1)

×
[

a1 b1(M)

2M − j − 1
− α(j − 1)p2

]
, (13)

where the Kronecker delta function is δj,M = 0 for M �= j and
1 for M = j . The propagation constants in (11) that correspond
to the above solutions are

kj = α a1 b1(M) − p2

[
(M − 1)2 − 1

2
(M − j )2

]
. (14)

The expressions under the square root in (12) must not
be negative, starting with the higher-order one, j = M , i.e.,
cM,M � 0. This means that

a1(4 + 15M − M2) � 30α(M − 1)2p2. (15)

This ensures that all lower-order coefficients with j =
1,2, . . . ,M − 1 are also non-negative cM,j � 0. For example,
if α = +1 and M � 16, then b1(M) < 0 and we need to
choose a1 < 0.

The number of components, M, controls the overall profile
of the solution. For the lowest-order nontrivial case M = 2,
the general solution is

u1(x) = −√
a1sech(px),

(16)
u2(x) =

√
a1 − p2α tanh(px),

while the total intensity δn is given by

2∑
i=1

u2
i (x) = a1 − α p2tanh2(px). (17)

For M = 3, the general solution can be written as

u1(x) = √
a1sech2(px),

u2(x) = −
√

4a1 − 9p2α tanh(px)sech(px), (18)

u3(x) = 1√
3

√
a1 − 3p2α tanh(px)[3 tanh2(px) − 1],

while the intensity for this case is

3∑
i=1

u2
i (x) = 4a1

3
− αp2[4 − 3 sech2(px)]. (19)

FIG. 1. (Color online) An example of an incoherent soliton for
M = 5 in the (a) focusing (α = +1) and (b) defocusing (α = −1)
cases. Parameters are chosen as follows: for the focusing case
a1 = 9,p = 1 while for the defocusing case a1 = 1, p = 1. The
overall intensity profiles δn are shown by the solid (blue) curves.
The five modes of the solution are shown by the thin colored curves
with the legends presented on the right-hand side of each figure.

The solutions for higher values of M can be written in a similar
way. They all contain two arbitrary real parameters a1 and p.
A particular soliton with M = 5 is illustrated in Fig. 1(b) for
both focusing and defocusing cases.

IV. REDUCTION TO THE ZERO-BACKGROUND SET
OF ORDER M − 1

In the general case, the solution has a nonzero background.
The background level of the whole intensity is defined by the
last component of the solution in Eq. (13). The background
intensity can be set to zero if we set the last component
coefficient, cM,M , to be zero, i.e.,

a1b1(M) − αp2(M − 1)2 = 0. (20)

This can only be done for the focusing case (α = 1), as
√

cM,j

remains real for all M whether b1(M) is positive or negative.
By solving (20) for the focusing case, we get

a1 = 30(M − 1)2p2

4 + 15M − M2
. (21)

Inserting this value of a1 into Eqs. (12) and (13), we obtain
each real-valued component uM,j forming the solution set.
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Then, the last component is zero and so the overall background
is also zero. For example, in order to obtain the solution with
zero background for M = 3, we find a1 = 3p2 from Eq. (21)
and substitute it into Eq. (13). The result is

u1(x) =
√

3p sech2(px),
(22)

u2(x) =
√

3p tanh(px)sech(px).

Clearly, this is the solution set from [30] given by Eqs. (29)
and (30). The coefficient of the j th component of the zero
background solution for any M is then given by

√
cM,j from

Eq. (13). It now takes this simpler form,

cM,j = 2
(j − 1)!(M − j )2

(2M − j − 1)!
p2, (23)

where j = 1,2,3, . . . ,M . This expression is always � 0, as
required. The propagation constant (14) of the j th component
of the solution set is now given by

kj = 1
2 (M − j )2p2. (24)

For any M , the total intensity is given by

M∑
j=1

u2
j = M

2
(M − 1)p2 sech2(px).

For example, the zero-background solution set for M = 6 and
α = 1 is

u1(x) = −15

4

√
7p sech5(px),

u2(x) = 3

2
p
√

35 sech4(px) tanh(px),

u3(x) = −3

8

√
35

2
p sech(px)sech4(px) [4 cosh(2px) − 5] ,

u4(x) = 1

4

√
105p sech5(px) [sinh(3px) − 5 sinh(px)] ,

FIG. 2. (Color online) An example of an incoherent soliton for
M = 6 in the focusing (α = +1) case. The parameter p = 1. The
overall intensity profile δn is shown by the solid (blue) curve. The
individual intensities of the components of the solution are shown by
the thin colored curves with the legends presented on the right-hand
side of the figure.

u5(x) = −1

8

√
15p sech(px)[21 tanh4(px)

−14 tanh2(px) + 1],

u6(x) = 0.

This solution is presented in Fig. 2.
The total intensity background (i.e., δn at x = ±∞) equals

the background intensity of the last component, since all other
components approach zero as x =→ ±∞. So, setting the
background part of the total intensity to zero by using the
condition (21) also makes the last component of the solution
set zero and provides the full set with M − 1 zero-background
components.

V. HIGHER-ORDER SOLUTIONS OF THE
ABLOWITZ-LADIK FOCUSING EQUATIONS

The Ablowitz-Ladik model (h = 1) presented in [24,25]
is slightly different from the set of equations (3) considered
here. A solution of this coupled defocusing AL set has
been expressed in [25] using Chebyshev polynomials of the
first and second kinds and making a connection with Lamé
polynomials. Generally, the solution of Eq. (3) for arbitrary
h,p can be written as a pair:

ψ (1)
n = 1

h
F (hnp)eit/h2

, (25)

ψ (2)
n = 1

h

√
1 − F 2(hnp)eit/h2

(26)

for an arbitrary real function F (hnp). The Chebyshev polyno-
mials fit this form. However, any other function can also be
used.

The solution of the order M = 3 admits two arbitrary
functions:

ψ (1)
n = 1

h
F (hnp)eit/h2

,

ψ (2)
n = 1

h
G(hnp)eit/h2

, (27)

ψ (3)
n = 1

h

√
1 − F 2(hnp) − G2(hnp)eit/h2

.

These arbitrary functions are F (hnp),G(hnp).
The common property of these solutions is that the total

intensity is always 1. Clearly we can have a solution with an
arbitrary number of components of the general form

ψ (j )
n = 1

h
Fj (hnp)eit/h2

,

where j = 1,2, . . . ,k − 1, and with the last component

ψ (k)
n = 1

h

√√√√1 −
k−1∑
j=1

F 2
j (hnp)eit/h2

. (28)

The phase factor eit/h2
shows that we cannot have a continuous

limit h → 0 for this defocusing case.
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VI. EXPANSION

In the continuous example (6), solutions of the focusing
case, when α = 1, differ significantly from the defocusing one,
α = −1. In the work [30], exact solutions have been given
in terms of Legendre polynomials for N coupled Manakov
equations. This solution describes partially coherent solitons
(PCSs) with zero background in a Kerr medium. Now, if we
turn to the discretized version of Eq. (6) from [30] for N = 2,
we obtain a coupled AL system, Eq. (3).

The recent work [19] makes it clear that there is a
correspondence between the solutions of the integrable ALE
system and the NLSE. Based on this newly established
principle, we assume that, for the focusing case, there may
be some solution set for the ALE system which has its h → 0
limit in Eqs. (29) and (30) of [30], given as Eq. (22) in this
present paper:

ψ (1) =
√

3 sech2(x) exp(2it),
(29)

ψ (2) =
√

3 sech(x)tanh(x) exp(it/2),

where x is the transverse spatial variable, t is the propagation
variable, and we have taken k1 = 2 and k2 = 1/2.

In the Introduction, we mentioned general optical and
electrical applications of the ALE. In Sec. II, we explained
the application of this Manakov-type formalism to incoherent
light propagation in photorefractive media. Another physical
application can be a set of two arrays of optical waveguides
located one above the other. Then the overall solution has
two component sets, one for the lower array and one for the
upper. For sufficiently close arrays, there will be coupling
between them. As another example, this particular coupled
ALE set can be used to model sophisticated soliton dynamics
and energy exchange between two ladder lattices [48–50] in the
presence of intersite impurities. This application may require
an investigation of energy transfer in the “exciton-vibron”
system [51].

Now we represent the corresponding coupled ALE so-
lution of Eq. (3) with an associated multiplying function
as

�(1)
n =

√
3u1(n,h)sech2(nh) exp(ik1t),

(30)
�(2)

n =
√

3u2(n,h)sech(nh)tanh(nh) exp(ik2t).

Here the unknown functions u1(n,h), u2(n,h), and the con-
stants in the exponent, k1 and k2, have to be determined so
that the set will solve Eq. (3). So we require u1(n,0) = 1,
u2(n,0) = 1. When h = 0, we need k1 = 2 and k2 = 1/2. We
expand the functions as

u1(n,h) = 1 + h2y1(n) + h4y2(n) + h6y3(n) + · · · ,
(31)

u2(n,h) = 1 + h2z1(n) + h4z2(n) + h6z3(n) + · · · ,

and the constants as

k1 = 2 + h2a1 + h4a2 + h6a3 + h8a4 + · · · ,
(32)

k2 = 1/2 + h2b1 + h4b2 + h6b3 + h8b4 + · · · .

Now, substituting Eqs. (31) and (32) into Eq. (3), taking an
expansion in terms of h up to high order, and solving for
the undetermined coefficients, we find that k1 and k2 turn out

to be

k1 = 2 sinh2(h)

h2
, (33)

k2 = 2 sinh2
(

h
2

)
h2

. (34)

VII. APPROXIMATE SOLUTION

Generally, the functions u1(n,h) and u2(n,h) are infinite
even-order polynomials in h and tanh(nh). The contribution
terms become smaller with increasing order of h, so we can
ignore terms that are of very high order in h. These infinite
polynomials can be approximated in a simpler form in terms
of a finite specific function, which we call D(n). We find
that a convenient, yet simple, approximation to the solution
of the pair of ALEs can be written in terms of this function,
D(n) = H/(1 − H ), where H = h2 tanh2(hn):

u1(n,h)

1 + D(n)
≈ 3

3 + 2h2D(n)
+ f (h) + D(n)u(h), (35)

u2(n,h)

1 + D(n)
≈ 3

3 + 2h2D(n)
+ g(h) + D(n)y(h). (36)

The cumbersome functions f (h), u(h), g(h), and y(h), which
are polynomials in h, are given in the Appendix. Thus, we have
the complete form of the approximate solution:

�(1)
n ≈

√
3u1(n,h)sech2(hn) exp

(
2it sinh2(h)

h2

)
,

�(2)
n ≈

√
3u2(n,h)tanh(hn)sech(hn) exp

(
2it sinh2

(
h
2

)
h2

)
.

(37)

The factors u1(n,h) and u2(n,h) can be approximated with
simple functions,

u1(n,h) ≈ cosh2/3(h) cosh(h2)(n h),
(38)

u2(n,h) ≈ cosh(h2/2)(n h).

This means that

�(1)
n ≈

√
3 cosh2/3(h) sech(2−h2)(n h) exp(ik1t),

(39)
�(2)

n ≈
√

3 tanh(n h) sech(1−h2/2)(n h) exp(ik2t),

with k1,k2 given by Eqs. (33) and (34) above. Of course,
Eqs. (38) and (39) provide the shapes but are not as accurate
as Eqs. (35) and (36). The functions (39) are approximations
of Eq. (37).

The solutions are accurate within the limits 0 < h < 3
4 .

The expansion is correct up to the order h13. In Fig. 3, the
perturbation curves have their minima slightly above and
below 1, respectively. In effect, these alter the amplitude of the
total solution to some extent. For example, �(1)

n increases from
an unperturbed value 1.73 to 2.12, while the other component
�(2)

n maximum increases from an unperturbed value 0.87 to 1.
Another important observation is that if we want to increase
the accuracy of the solution, we have to take into account the
higher-order terms in h. However, we find that there is very

012902-5



A. CHOWDURY, A. ANKIEWICZ, AND N. AKHMEDIEV PHYSICAL REVIEW E 90, 012902 (2014)

FIG. 3. (Color online) Profiles of the solution for coupled AL
with h = 0.75. Perturbed and unperturbed (h → 0) forms of the
solution are presented separately with different color profiles. Here,
real functions � (1)

n and � (2)
n (with t = 0), shown with blue and

green, represent the total solution. From the figure, the scaling of
the transverse variable n with interlattice spacing h is also clear. For
clarity, we have taken the total range between n/h = −4 and 4. The
full solution profile deviates from that of the unperturbed (h → 0)
solution profiles φ(1)

n and φ(2)
n (with t = 0), which are shown in black

and orange, respectively. Red [u1(n,h)] and pink [u2(n,h)] curves
show the perturbation factors (38) applied to the total solution.

little contribution to the solution profile from high-order terms
in h. As an example, the contribution is of the order of 10−6

for h = 0.75 for terms of the order of h13.
Now, if we set n = x/h and take the limit h → 0, the

perturbed functions u1(n,h) and u2(n,h) both reduce to 1, and
for the phase factors in the solution, we have k1 = 2 sinh2(h)

h2 →
2 and k2 = 2 sinh2( h

2 )
h2 → 1

2 . Hence, the approximate solution
of Eq. (37) will approach the solution set for the continuous
coupled NLSEs, which is the coupled Manakov set. In the
limit h → 0, it reduces to the solution given in Eq. (29). Our
plots of the solutions give an idea of how much the solution
of the coupled ALE set deviates from that of the continuous
Manakov set for small value of h.

VIII. NUMERICS AND APPROXIMATIONS

To justify the analytical theory of our solution, we used
numerical calculations. In the numerics, the solution repre-
sented by Eq. (37) has been used as the initial condition in the
beam propagation scheme. The propagation was coupled and
consistent, and the results have been verified from different
prospectives. Values for the variable n, which is the discrete
lattice point, are chosen between −12 and 12. The distance
between two consecutive lattice points has been scaled with
the interlattice distance variable, h, so that we can see how
each component of the solution actually scales with h. The
pattern evolves with t, which is the propagation variable,
ranging from 0 to 100. We have checked that the propagation
profile is intact for even longer propagation distances. If we
look at the propagation profile of the solution in Figs. 4(a)
and 4(b) with h = 0.75, then for both components of the
solution, it becomes obvious that the soliton profiles are intact,
as predicted in the theoretical explanation above. The lower
profiles in Figs. 4(c) and 4(d) show the same solution profile

FIG. 4. (Color online) Soliton propagation for |�1(n)| and
|�2(n)|. Here at the top, (a) and (b) show the first and second
components of the solution for h = 0.75, while (c) and (d) show
the propagation for h = 0.85.

with h = 0.85. In that case, we observe that solitons actually
are not in their steady-state condition, and they start to scatter
with propagation. This verifies that our approximate solutions
are valid up to h = 0.75.

To verify the analytic approximate solution of the coupled
AL set, we have extended our numerical investigation further.
The phase parameters of the solution [see Eq. (19)], viz.,
k1 and k2, for components �(1)

n and �(2)
n , respectively, are

functions of h only. We have compared the numerically
determined variations of k1,k2 with the analytical expressions

k1 = 2 sinh2(h)
h2 and k2 = 2 sinh2( h

2 )
h2 . In principle, k1 and k2 should

be independent of n and t. Now, if we look at Fig. 5(a), the
red line represents the analytic expression for the phase of the
first component, k1, as a function of h and the blue dots are
the numeric values. It can be seen that the blue dots start to
deviate from the analytic line around h = 0.75, which is our
estimated maximum value for which our coupled approximate
solution is valid. In the same way, Fig. 5(b) shows the phase

FIG. 5. (Color online) Comparison of phase parameters (a) k1

and (b) k2, found numerically (dots) with their analytic forms (curves).
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profile for the second component, k2, where the blue dots start
to deviate from the analytic line at h = 0.75.

IX. CONCLUSION

In this work, we have shown that the solution of the coupled
Manakov system, with any number of modes, can be expressed
in terms of Legendre polynomials. This can be done for both
focusing and defocusing systems. Remarkably, the rational
coefficients of the polynomials can be expressed using just a
single function in each case.

We have also derived an approximate solution for the two-
component ALE. We have shown that, in the limit h → 0,
the solution of the two-component ALE becomes the solution
of the two-component Manakov system. By using numerical
simulations, we have verified that the approximate solution is
valid for a wide range of the parameter values, viz., 0 < h <

0.75.
The main idea behind this work is that, since the ALE

reduces to the NLSE in the limit h → 0, the solutions should
also show the same correspondence. For various cases, we
have seen that this particular procedure is useful, following on
from our previous work [19]. Using this analogy here, we have
worked to find a related solution of the Manakov system of the
coupled ALEs, and we have provided an approximate solution.
It remains a computational challenge to find a systematic way
to derive exact solutions for infinite-component coupled ALEs,
and we look forward to a resolution of this challenge in the
future.
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APPENDIX

The functions used in Eqs. (35) and (36) are

f (h) = 2h2

3!
− 2

(2h)4

3 × 5!
+ 61(2h)6

3 × 4 × 7!
− 59(2h)8

9!

+ 3 × 19 × 431
(2h)10

4 × 11!
+ 35 119 923h12

112 × 13!

+ 28 325 524 731 57h14

21 × 15!
+ · · · , (A1)

u(h) = 8h4

(
7

3 × 5!
− 2

11h2

3 × 7!

− 7 × 24 8 × 11 × 19h4

5 × 9!
− 3

99 509(2h)6

4 × 7 × 11!

− 25 260 300 197 79h8

3 × 5 × 72 × 13!

)
+ · · · , (A2)

g(h) = −h2

3!
− 17h4

3 × 5!
+ 1417h6

3 × 7!
− 31 319h8

9!

− 3
384 318 7h10

11!
+ 3

195 725 086 3h12

13!

− 399 548 591 494 3h14

3 × 15!
+ · · · , (A3)

y(h) = 4 h4

(
4

11

3 × 5!
− 863h2

3 × 7!

− 24 67 × 89h4

5 × 9!
− 395 035 43h6

7 × 11!

+ 22 × 11
159 397 189 01h8

3 × 5 × 72 × 13!

)
+ · · · . (A4)
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