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Modular networks with delayed coupling: Synchronization and frequency control
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We study the collective dynamics of modular networks consisting of map-based neurons which generate
irregular spike sequences. Three types of intramodule topology are considered: a random Erdös-Rényi network,
a small-world Watts-Strogatz network, and a scale-free Barabási-Albert network. The interaction between the
neurons of different modules is organized by relatively sparse connections with time delay. For all the types of
the network topology considered, we found that with increasing delay two regimes of module synchronization
alternate with each other: inphase and antiphase. At the same time, the average rate of collective oscillations
decreases within each of the time-delay intervals corresponding to a particular synchronization regime. A dual
role of the time delay is thus established: controlling a synchronization mode and degree and controlling an
average network frequency. Furthermore, we investigate the influence on the modular synchronization by other
parameters: the strength of intermodule coupling and the individual firing rate.
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I. INTRODUCTION

The formation of spatiotemporal patterns of electrical
activity, their synchronization, and desynchronization is one
of the main phenomena observed in cortical brain structures
during normal cognitive functioning as well as different
pathologies [1,2]. Based on experimental data, one can usually
distinguish several spatially isolated regions that display
coordinated activity, in the simplest case, in the form of inphase
and antiphase clusters. Each of those clusters comprises
a group of neurons generating highly synchronous spikes
during certain time intervals. A global network connectivity
underlying such behavior may be presented as a set of modules
(subnetworks, populations) which consist of densely coupled
neurons and interact with each other by relatively sparse con-
nections [3–6]. Despite a significant progress in understanding
a large-scale cortico-cortical connectome, detailed information
is still lacking about coupling features at the neuronal level.
Thus, uncovering properties of the intramodule structure,
individual neuron dynamics and intermodule coupling is a
topical problem since these features have a great impact on the
coordinated behavior of different regions. Among a variety of
factors, one can highlight delayed coupling between different
modules so the joint effect of the modularity and intermodule
delayed coupling on the network dynamics is a problem of
great interest. It should be noted that most of the research
in this direction has mainly taken into account the indicated
factors separately. The studies that can be carried to the first
group are devoted to how the delayed coupling influences the
network dynamics without regard to modularity. The papers of
the second group consider the role of modularity in different
network activity regimes, but do not take into account delayed
intermodule coupling. In addition, there are some studies on
modular networks with delayed coupling, however, there are
still many problems to be solved.

The first group consists of the studies which analyze the
effect of time-delayed connections in networks. Note that
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the phenomenon of synchronization arising in networks of
active elements due to delayed interelement interaction has
recently attracted much attention, see, e.g., the surveys in
Refs. [7,8]. The analysis of networks of various nature has
revealed that the collective dynamics significantly depends on
the value of delay. It was found for a scale-free network [9]
of map-based neurons [10] interacting by electrical synapses
that, with increasing delay synchronous and asynchronous
modes alternate with each other appearing at multiples of
the oscillation frequency. Larger coupling strength results
in that the intervals of time delay corresponding to the
synchronous regime as well as the synchronization degree
increase. The same effect of alternation between synchronous
and asynchronous regimes with increasing time delay was
observed in networks with different topologies (in particular,
small-world networks) and different interaction types (electri-
cal and chemical synapses) [11–17]. The influence of the other
factors such as the coupling strength, the fraction of electrical
synapses, and a denser network structure does not significantly
change the effect of alternation although it increases the
synchronization degree and broadens the intervals of time
delay corresponding to the synchronous regime. It should be
noted that the interaction delay may affect not only a regime of
synchronization but also other features of collective network
dynamics. For example, the authors of Ref. [18] showed that in
random networks of bursting neurons the time delay influences
the synchronization degree and the average frequency of burst
network oscillations, at the same time an enhancement of
the phase synchronization is accompanied by increasing the
average burst frequency.

The second group consists of studies which take into
account the modularity, i.e., the presence of distinguished
groups of neurons which can have a considerable impact on
the collective dynamics, in particular, clusters of synchronous
activity can appear [19]. What type of behavior (synchronous
or asynchronous) is observed in this case significantly depends
on the parameters of intermodule and intramodule coupling.
In Ref. [20] a network of several small-world modules was
considered which consists of map-based neurons displaying
burst oscillations at the individual level. It was shown that
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the phase synchronization in such a modular network appears
for a high-enough probability of intermodule coupling and
for the coupling strength larger than some critical value
which was found by the reduction to a network of phase
oscillators. In Ref. [21] an opposite problem was solved: how
to suppress burst synchronization in a modular network. The
authors showed that if the modules have scale-free topology,
an effective method of suppression is the deactivation of a
specially selected neuron.

One can naturally expect that the time delay in modular
networks leads to new effects of collective dynamics and
synchronization. The dynamics of modular networks was
considered in Refs. [22,23] with time delays which were taken
the same for the intramodule and intermodule connections.
Increasing the time delay results in the phenomenon of
alternation between synchronous and asynchronous regimes
described above. However, in real networks the interaction
between neurons belonging to different regions can occur
with a larger time delay compared to that within the modules,
and this can lead to a variety of new regimes of collective
dynamics. Interesting results in this direction are presented
in a series of papers [24–27] where the authors studied the
role of intermodule delay in cluster synchronization. One
of the striking conclusions is about a nonlocal mechanism
which underlies cluster formation and is based on the greatest
common divisor (GCD) of circuit delay loops. For example,
if a neural network is a set of modules interacting with delay
and connected into several closed loops then the maximum
number of clusters of synchronized neurons is equal to the
GCD of these loops when some module is stimulated. If the
network is simulated by a complex stimulus, i.e., when several
modules receive input signals the number of clusters can be
any common divisor of delay loops. The theoretical results
were supported by experimental in vitro investigations [28,29].

In this paper, we consider a modular network where in-
tramodule coupling is instantaneous while the elements of dif-
ferent modules interact with time delay. Such a model reflects
the property of cortical networks that are spatially remote from
each other and thus they interact with time delay. As a module,
we use complex networks with three different topologies (see,
e.g., Ref. [30]): a random Erdös-Rényi network, a small-world
Watts-Strogatz network, and a scale-free Barabási-Albert
network; each of them more or less reproduces the structure
properties of real neural networks. The interaction between the
modules is performed by relatively sparse connections with
time delay. Individual neural dynamics in our model are de-
scribed by the discrete-time model [31,32] which mimics irreg-
ular spiking sequences. For the intramodule topologies indi-
cated we show that with increasing time delay, the inphase and
antiphase regimes of modular synchronization alternate with
each other. Moreover, with increasing time delay the network
oscillations change their frequency, namely, within every delay
interval corresponding to a certain synchronization regime the
frequency decreases on the average. Also we study how the
collective activity is influenced by the intermodule coupling
strength and the average spike rate of individual neurons.

The paper is organized as follows. In Sec. II we briefly
describe the algorithms for creating a modular network and
discuss the main properties of individual dynamics displayed
by map-based neurons. Then, in Sec. III we consider regimes

of synchronous activity depending on intermodule delayed
coupling as well as other parameters. Finally, in Sec. IV we
draw conclusions and discuss the main results.

II. MODEL

A. Network structure

Consider a network which is constituted by two interacting
subnetworks-modules schematically shown in Fig. 1. Each
module consists of N active nodes coupled with each other by
directed links which model the chemical synapses. Following
the experimental observations [33], we set 80% of the total
number of neurons sending excitatory connections while
the remaining 20% of the neurons were set as inhibitory.
We consider three different algorithms for generating an
intramodule connection topology: a random Erdös-Rényi
network, a small-world Watts-Strogatz network, and a scale-
free Barabási-Albert network, in every case with directed
links. The connections between the modules are random and
relatively sparse: 5% of nodes in one module send directed
excitatory links to random nodes of another module (note that
the nodes are chosen from those 80% which send excitatory
connections inside their module to which they belong). In the
following we are mainly interested in the impact of the strength
of intermodule coupling go and its time delay τ .

The three topologies indicated are well known in the
network science and with good accuracy describe the structure
of local connections in neural circuits. Note that in all cases
we use directed network modifications because we consider
chemical interactions between neurons. The directed network
is characterized by the parameter pdir, a probability of a
mutual (bidirectional) connection to appear between a pair of
nodes. The main difference between the algorithms of building
directed and undirected networks is the following. Suppose,
according to a certain rule of network creation it is necessary
to attach the j th node to the ith node. With probability pdir a
bidirectional link is created between them, in the opposite

(a) (b) (с)

FIG. 1. (Color online) Structure of a modular network consisting
of two interacting subnetworks. The nodes within each module are
coupled by directed links into a network with a certain topology:
(a) a random Erdös-Rényi network, (b) a small-world Watts-Strogatz
network, and (c) a scale-free Barabási-Albert network. Intermodule
interaction is organized by a relatively small number of random
excitatory connections.
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case, a link directed from node i to node j is created as
well as a link from a randomly chosen node h to node i

(for details, see Ref. [30]). In all the cases we use pdir = 0.5,
however, the results remain qualitatively unchanged for other
values of pdir as our calculations show. We briefly describe
the algorithms for creating complex networks we used as
modules not emphasizing whether the connections are directed
or indirected.

1. Random Erdös-Rényi network

The only parameter characterizing the network of N nodes
with this topology is the probability pER. We look over all
possible pairs of nodes in the network, and with probability
pER a new connection between them appears. The average
number of connection per one node (the average degree of
nodes) is equal to k = NpER [34].

2. Small-world Watts-Strogatz network

The parameters characterizing a network of N nodes with a
small-world topology is a number of neighboring nodes kedge

(taken to be even) in the initial network and the rewiring
probability Prew. First, a regular ringlike network is created
where each node is connected with kedge nearest neighboring
nodes (kedge/2 from both sides) by bidirectional links. Then
we look over all existing links and with probability Prew the
connection directed from node i to node j breaks and a new
connection is created from node i to another randomly chosen
node h [4].

3. Scale-free Barabási-Albert network

A scale-free network of N nodes is created in several stages.
First, an initial network of m0 coupled nodes is created, then
the rest of the N − m0 nodes are added to the network one
at a time and connected to m � m0 already existing nodes
according to the rule of preferential attachment: m nodes which
receive connections from a node newly added are chosen with
probability equal to ki/

∑
kj . Here ki is the degree of the ith

node from m existing nodes at the current moment, and the
sum

∑
kj is taken over the degrees of all m already existing

nodes [35].
In the following we consider modular networks whose

modules have the same topology of one of the described
types. The connections between the modules are created
by the same principle as in random Erdös-Rényi networks.
We look over all possible pairs of nodes which belong to
different modules and with probability 5% create a link. In
addition, we impose a restriction that only excitatory neurons
can send directed connections to another module. All the
numerical results presented in the paper were obtained for the
networks of 2N = 200 neurons, however, we also considered
larger modular networks and they gave qualitatively the same
characteristics.

B. Dynamics of nodes

Nodal dynamics in our model are described by the following
system of maps [31,32] which allow us to take into account

basic properties of individual neuron dynamics:

xn+1 = xn + F (xn) − βH (xn − d) − yn + I syn
n ,

(1)
yn+1 = yn + ε(xn − J ).

Here n = 0,1,2, . . . , is discrete time, the variable x

qualitatively describes the dynamics of the neural membrane
potential, and y is responsible for a total action of ionic currents
(the recovery variable). The positive parameter ε defines a rate
for the recovery variable; the parameters β, d, and J control
the shape of a signal generated. Note that the model is based
on a discrete version of the FitzHugh-Nagumo system well
known in neurodynamics with a cubic nonlinearity F (x) and
the additionally introduced Heaviside step function H (x):

F (x) = x(x − a)(1 − x), (2)

H (x) =
{

1, x � 0,

0, x < 0.
(3)

The term I
syn
i defines the synaptic current and consists of

three parts

I
syn
i = I rand

i + I in
i + I out

i , (4)

where I rand
i takes into consideration small random fluctuations:

a sequence I rand
i,n , n = 0,1, . . . , is a white Gaussian noise with

zero mean and a standard deviation σcur. The meaning of the
other terms in Eq. (4) will be explained below.

The phase portrait illustrating trajectories corresponding to
the regime of spiking oscillations is shown in Fig. 2(a). The
system in this case has a unique stable fixed point O [the
intersection of the curve y = F (x) and the line x = J ]. When
a relatively small noise I rand

i is applied, phase trajectories move
in the vicinity of the fixed point O, and this corresponds to
the subthreshold activity of a neuron. With increasing noise
intensity the trajectories move to the right in the phase plane,
pass the excitation threshold, reach the discontinuity line
x = d, and return to the vicinity of the stable fixed point. Such
a motion in the phase plane corresponds to the generation of
an action potential, or spike.

By varying the values of the excitation parameter J and
noise intensity σcur, one can change the average rate of
spiking oscillations in the sequences generated. Figures 2(b)
and 2(c) show the waveforms for two values of J and the
same noise intensity, and one can see that for higher levels
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FIG. 2. (Color online) Phase portrait of the map (1) for a = 0.1,
ε = 10−4, β = 0.5, d = 0.4, J = 0.04, and σcur = 10−3. Waveforms
of the map (1) for different excitation levels (b) J = 0.04 and
(c) J = 0.044.
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FIG. 3. (Color online) Average spiking rate 〈R〉 (a) as a function
of the excitation parameter J for different noise intensities σcur and
(b) as a function of σcur for different values of J .

of excitation, spiking oscillations of larger frequency are
generated. An analogous effect is observed when increasing
the noise intensity σcur: the average spiking frequency also
rises.

Oscillatory properties of the system (1) are summarized in
Fig. 3 where the average spiking rate 〈R〉 as a function of J is
plotted for several values of the noise intensity σcur [Fig. 3(a)]
and as a function of σcur for several values of J [Fig. 3(b)]. Note
that in a purely deterministic case (σcur = 0) a sharp transition
is observed from the rest state to the spiking activity due to
the threshold properties of the model. When small noise is
applied the monotonically increasing function 〈R〉(J ) becomes
smoother [Fig. 3(a)]. The effect of noise on the system (1)
for different values of J can be different as it follows from
Fig. 3(b). We are interested in the case where with increasing
σcur the spiking rate 〈R〉 rises (J = 0.04; 0.045; 0.047) and we
use this particular regime of the system (1) when studying the
network activity in this paper.

Consider the meaning of the second and the third terms in
Eq. (4). The second part of the synaptic current describes the
intramodule interaction

I in
i = −gin

N∑
j=1

ci,j S[xj ,θ )(xi − ν)], (5)

where ci,j is the adjacency matrix with elements equal to 1,
if the presynaptic neuron j effects the postsynaptic one i, and
equal to 0 in the opposite case. If the presynaptic neuron j

sends excitatory (inhibitory) connections then the coupling
strength is gin = gexc (gin = ginh) and the reversal potential is

ν = νexc (ν = νinh). Note that each module is characterized
by its own adjacency matrix, i.e., there are two (intramodule)
matrices in the system, however, we do not introduce any extra
notations, for brevity.

The function S(x,θ ) has a sigmoidal form and determines
threshold properties of the connections. In the simplest case,
we use S(x,θ ) = H (x − θ ) and θ = d. When the presynaptic
neuron j displays some activity below the threshold (xj < θ ),
the postsynaptic neuron i does not receive input current from
that neuron. In the opposite case, when the presynaptic neuron
generates signals above the threshold (xj > θ ), i.e., generates
action potentials, then the synapse becomes active and affects
the postsynaptic neuron i.

The third part of the synaptic current in Eq. (4) describes
intermodule interaction

I o
i = −go

N∑
j=1

di,j S(xj ,θ )(xi − νexc), (6)

where di,j is an adjacency matrix defined as ci,j , except that
it describes the influence of a presynaptic neuron j from one
module on a postsynaptic neuron i from another one. Note
that there are actually two matrices di,j , one describing the in-
fluence of the neurons from the first module on those of the
second one and another describing the opposite influence. The
parameter go determines the strength of intermodule coupling,
and the reversal potential is always chosen equal to νexc because
the intermodule interaction is performed only by excitatory
connections.

To take into account the variety of dynamical regimes
observed in real neuron structures, the values of J are chosen
randomly and normally distributed in the interval around the
value J0 and the standard deviation �J = 0.01. In such a
mode, different neurons have different intrinsic oscillatory
properties: some of them display only subthreshold activity,
others generate irregular spikes with different rates.

Other parameters of the nodal dynamics as well as of the
synaptic connections are fixed at the following values: a = 0.1,
β = 0.5, d = 0.45, ε = 0.002, θ = 0.3, ginh = 0.04, νinh =
−0.2, gexc = 0.01, and νexc = 0.6.

III. NETWORK DYNAMICS

A. Impact of delay

We analyze the influence of network modularity on the
collective dynamics so first we are interested in a role
of the parameters of intermodule interaction: the coupling
strength and delay. The parameters of intramodule coupling
and individual dynamics are chosen in such a way that
each module separately displays incoherent activity [see
the collective dynamics of noninteracting WS modules in
Figs. 4(a) and 4(b)], which is achieved by relatively weak
intramodule connections and different J values for network
nodes (J0 = 0.045,�J = 0.01).

Adding intermodule connections (so far without delay),
as it was described above, leads to the fact that the average
module activity becomes synchronous rhythmic oscillations
when the coupling strength go exceeds some critical value
[Figs. 4(c) and 4(d)]. In what follows these oscillations are
called bursts of average activity, or group bursts, and we
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FIG. 4. (Color online) Spike rastrograms (left) and the average module activity (right). (a,b) Two uncoupled modules. (c,d) Coupled
modules for go = 0.02 and in the absence of time delay. (e,f) The same coupling strength, the delay is τ = 30. (g,h) The same coupling
strength, the delay is τ = 50.

distinguish in them active phases: time intervals during which
the averaged module activity is above x = J0, and passive
phases in between the active ones. At the nodal level, spike
events mainly happen during the active phases of group bursts,
however, the irregularity of the individual dynamics remains
and there is no strict periodicity of the individual oscillations.

If a small time delay is introduced into the intermodule
coupling then the regime of synchronous group bursts remains
almost unchanged. For some critical value of the time delay,
the neuronal dynamics becomes incoherent [see Figs. 4(e)
and 4(f)] as it was in the case of uncoupled modules, but in
long enough time series one can find short intervals during
which synchronous group bursts appear. A further increase
in the time delay leads to a regime of rhythmic oscillations
[Figs. 4(g) and 4(h)], however, in the form of antiphase group
bursts whose average frequency is markedly higher than that
of the inphase bursts at small delays [Figs. 4(c) and 4(d)].
Thus, with increasing time delay in the intermodule coupling,
the inphase group activity is replaced by the antiphase one
as well as one observes the change in the frequency of group
oscillations.

To characterize the module synchronization degree, we
use a relatively simple method proposed by the authors of
Refs. [36,37] for quantifying synchronization of bursting
oscillations. For a long time series of the network dynamics,
we calculate time intervals T

j

1 (see Fig. 5) during which the
average activity of the first module X(1) = 1/N

∑N
i=1 x(i,1)

is above some threshold value xth (we set it equal to J0).
The total sum of these intervals gives T1. Analogously, for
the second group, intervals T

j

2 are computed and they give
T2. Then we measure time intervals T k

12 during which both
the group activities are simultaneously above the threshold:

{X(1) > xth} ∩ {X(2) > xth}. Summing them up we obtain T12,
the total time of group burst overlapping. The quantity σ

defined as

σ = 1

2

(
T12

T1
+ T12

T2

)
, (7)

gives an averaged fraction of overlapping bursts in the total
time of superthreshold activity of one module. The values
of σ close to unity correspond to the inphase intermodule
synchronization, and those close to zero indicate the antiphase
intermodule synchronization.

We have analyzed the spectra of group activity and the
regimes of modular synchronization depending on the time
delay for the three intramodule topologies considered, the
results are shown in Fig. 6. Despite the difference in the intra-
module connectivity, the impact of the delayed coupling is
qualitatively similar for all three cases. One can distinguish
in Fig. 6 the delay intervals labeled by the Roman numerals
corresponding to different types of collective dynamics. In the
intervals I and V where the values of σ are close to 1, there is the

n

X 1
,2

T1
j

T12
k

FIG. 5. (Color online) Definition of the synchronization degree σ .

012901-5



OLEG V. MASLENNIKOV AND VLADIMIR I. NEKORKIN PHYSICAL REVIEW E 90, 012901 (2014)

0 50 100 150 2000

0.2

0.4

0.6

0.8

1

τ

σ

0 50 100 150 200
τ

0 50 100 150 200
τ

-140

-100

-60

P
(d

B
)

0.01

0.02

0.03

F

(a)

(b)

(с)

(d)

(e)

(f)

I II III IV V VI I II III IV V VI VII I II III IV V VI VII

FIG. 6. (Color online) (a), (c), and (e) Spectrogram of the average module activity depending on the intermodule coupling delay τ .
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(pER = 0.2), (c,d) small-world Watts-Strogatz (kedge = 10, Prew = 0.1), and (e,f) scale-free Barabási-Albert (m0 = m = 2).

inphase regime of modular synchronization. In the intervals III
and VI where σ is close to zero, there is the antiphase regime.
The intervals II, IV, and VI correspond to transient regimes
where the modules display incoherent activity without any
pronounced rhythm. Note that in the intervals of the inphase
and antiphase regimes, the frequency of lower harmonic as
well as its multiples decreases with increasing delay. At the
transition from one regime (e.g., antiphase in the interval III)
to another (inphase in the interval V), the frequency abruptly
rises, and the magnitude of the jump is higher for smaller time
delays. It is interesting to note that the width of the interval
I corresponding to the inphase group bursts at a small delay,
is always less than that of other intervals, in particular, the
interval V where there is also the inphase regime.

B. Impact of other parameters

Consider how the collective dynamics described depends
on the intermodule coupling strength go and the average
nodal excitation level J0. For brevity, we discuss further the
modular network consisting of small-world Watts-Strogatz
subnetworks. The other two types of intramodule topology
give qualitatively similar results; thus what is said below
equally refers to all three intramodule topologies considered
in this paper.

For three typical regimes (inphase, antiphase, and transient)
we plotted spectrograms for different time delays and calcu-
lated the synchronization degree σ depending on go and J0. In
delay intervals corresponding to the inphase regime at small go

not exceeding some threshold value there are no pronounced
rhythmic module oscillations so one cannot speak of group
burst synchronization in this case. For τ = 10 in Fig. 7(a)
this threshold is approximately equal to go = 0.01. The same
result follows from the function σ (go) at go < 0.01: the values
of σ do not exceed 0.8 [Fig. 8(a), τ = 10)]. By increasing the
intermodule coupling strength go, one observes a decrease in
the average frequency of the collective oscillations [Fig. 7(a)],

and the value of σ approaches unity [Fig. 8(a)]. It should
be noted that the burst frequency decreasing with the coupling
strength is characteristic only for the first interval of time delay
corresponding to the inphase regime. As we show below, in
the inphase regimes for greater time delays the frequency of
group bursts rises with increasing go.

The parameter J0 affects the collective behavior as follows.
Below some threshold value J0, spike events in the network
are relatively rare, and these individual oscillations are not
enough for the average group bursts to be generated. For the
case shown in Figs. 7(b) and 8(b) (τ = 10), this threshold
value is about J0 = 0.04, so below it one does not observe
pronounced harmonics in the spectrum [Fig. 7(b)] and the
values of σ are less than 1 [Fig. 8(b) (τ = 10)].

In the intervals of time delay corresponding to the antiphase
regime, the emergence and synchronization of group bursts
depend on the coupling strength go also in a threshold fashion.
In Figs. 7(e) and 8(a) (τ = 50) this threshold value is equal
approximately go = 0.01 for the intermodule coupling delay
τ = 50. The value of σ decreases to zero which means that
the group bursts are antiphase [Fig. 8(a) (τ = 50)], and their
average frequency gradually rises with increasing coupling
strength go [Fig. 7(e)].

The transient regime is characterized by diffuse spectro-
grams [Figs. 7(c) and 7(d)] and by values of σ greater than
zero but smaller than 1 [Figs. 8(a) and 8(b) (τ = 30)], which
indicates the absence of coherent module activity. However,
for large enough values of go and J0, the spectrograms in
Figs. 7(c) and 7(d) are mixes of the spectrograms shown
in Figs. 7(a) and 7(b) and 7(e) and 7(f). For example,
in Fig. 7(c) one can distinguish a low-frequency harmonic
decreasing with go and another (high-frequency) one increas-
ing with go. These intervals of go and J0 correspond to
a bistable regime where in a long enough time series one
can find almost synchronous low-frequency group bursts,
high-frequency antiphase bursts, and periods of incoherent
activity.
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FIG. 7. (Color online) Spectrograms of the average module activity depending on (a,c,e) the intermodule coupling strength go (for J0 =
0.045) and (b,d,f) the average excitation level J0 (for go = 0.02) in different regimes of the group activity: (a,b) inphase (τ = 10), (c,d) transient
(τ = 30), and (e,f) antiphase (τ = 50).

The impact of the intermodule coupling delay and strength
on a synchronization regime and the frequency of bursts gen-
erated is summarized in Fig. 9. The two-parameter diagrams
show the alternation of the inphase and antiphase regimes
[Fig. 9(a)], as well as the decrease in the frequency of the first
harmonic Fb of group bursts within each of these regimes with
increasing τ [Fig. 9(b)]. Note that an unobvious result follows
from Fig. 9(b): with increasing intermodule coupling strength
go, the frequency of group bursts increases for a fixed delay,
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FIG. 8. (Color online) Synchronization degree σ versus (a) go

and (b) J0 for different time delays τ of intermodule coupling.

while in the first zone of inphase regime the opposite case
takes place, a decrease in the frequency with increasing go.

To understand how the indicated features of collective
network dynamics are connected to individual nodal oscil-
lations, we consider the average spiking rate for different
parameters. We define the average spiking rate 〈R〉 as a total
number of spikes generated by all the network nodes during
a long enough time interval T over this interval T and a
total number 2N of nodes in the network. Figure 10 shows
〈R〉 as a function of the coupling strength and the excitation
level for delays corresponding to three different regimes of
modular synchronization. Note that in all the cases the spiking
rate rises on the average with increasing go as well as J0.
The rate 〈R〉 in the antiphase regime (τ = 50) exceeds almost
twice 〈R〉 in the inphase regime (τ = 10) starting from some
coupling strength go [Fig. 10(a)]. To some extent, this result
correlates with the spectra of group bursts where the frequency
of collective oscillations rises with increasing go [Figs. 8(a)
and 9(b)], however, for the first interval of time delays the
functions Fb(go) and 〈R〉(go) behave differently. While the
frequency of group bursts is a decreasing function of the
intermodule coupling strength, the spiking rate is an increasing
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FIG. 9. (Color online) (a) Dependence of the synchronization
degree σ and (b) the frequency of the first harmonic of group bursts
Fb on τ and go.

function of go [cf. Figs. 7(a) and 10(a)]. Thus one concludes
that the observed collective phenomena cannot be reduced to
the dynamical properties of individual nodes but emerge as a
result of their interaction.

Now consider in what range changes the amplitude of
collective oscillations depending on go and J0 in different
regimes of modular synchronization. By an amplitude we
understand here the difference between the maximum and
minimum values of the mean field for one module [Var(X1)] or
the whole network [Var(X12)]. Note that all the characteristics
shown in Fig. 11 are on the average increasing functions of
go and J0, so with increasing these parameters not only the
spiking rate increases [Fig. 10(a)] but also the amplitude. From
Figs. 11(a) and 11(c) with functions Var(X1) and Var(X12) it
follows that averaging the activity in the inphase regime (I)
over one module as well as over the whole network leads to
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FIG. 10. (Color online) Average spiking rate 〈R〉 depending on
(a) go and (b) J0 for different time delays τ .
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time delays τ .

the same result which means the coherent behavior of the two
modules. In contrast, in the antiphase and transient regimes the
values of Var(X12) are almost two times lower than Var(X1),
i.e., one module compensates another. Analogous conclusions
can be made from the comparison between Figs. 11(b)
and 11(d).

The observations presented above allow us understand
possible dynamic mechanisms underlying the impact of the
delayed coupling in the collective activity of modular neural
networks. For small time delays starting from some critical
coupling strength, the neurons of both modules generate spikes
mostly during the same time periods, thus producing inphase
bursts of the average modular activity. Increasing the coupling
delay results in that the information about the activation of
one module comes later to another module and vice versa,
therefore the group bursts become wider and the frequency
of modular inphase oscillations becomes smaller. With a
further increase of delay, the time needed for information
propagation from one module to another becomes insufficient
for simultaneous activation of the both modules and a new
regime appears: antiphase group burst oscillations with a
period about twice greater than the current coupling delay.
The coupling with larger delays produces antiphase module
oscillations with a larger period which is still about two times
greater than the delay. After that the inphase regime appears
with a period equal approximately to the coupling delay, and
with a further increase of delay the frequency decreases due
to the described mechanism. The same mechanisms take place
at larger coupling delays for transitions between different
synchronization regimes and for the frequency decrease within
delay intervals corresponding to particular regimes.

IV. CONCLUSION

In this paper, we considered modular networks of inter-
acting neuron-like elements which generate irregular spike
sequences. The connections between the elements within one
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module reproduce directed excitatory or inhibitory influence
through chemical synapses. The connection topology of
intramodule coupling is chosen from one of the three types:
random Erdös-Rényi, small-world Watts-Strogatz, or scale-
free Barabási-Albert network; the intermodule connections are
organized in the form of relatively sparse directed excitatory
links. We found a dual role of the intermodule coupling delay
in the collective network dynamics. First, with increasing time
delay, inphase and antiphase regimes, where individual spikes
form rhythmic modular burst-like oscillations, alternate with
each other. Second, the average frequency of the collective
oscillations in each of these regimes decreases with increasing

intermodule coupling delay. An increase in the intermodule
coupling strength and the network excitation level leads to
an enhancement of synchronization in the inphase as well as
antiphase regimes. The frequency of group bursts rises with
increasing intermodule coupling strength for all delay intervals
except the first one: for a small time delay in the inphase regime
the frequency decreases with increasing coupling strength.
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T. Pereira, G. Zamora-López, J. Kurths, and R. L. Viana, Phys.
Rev. E 86, 016211 (2012).

[21] E. L. Lameu, C. A. S. Batista, A. M. Batista, K. Iarosz, R. L.
Viana, S. R. Lopes, and J. Kurths, Chaos 22, 043149 (2012).

[22] C. Liu, J. Wang, H. Yu, B. Deng, X. Wei, K. Tsang, and W. Chan,
Chaos 23, 033121 (2013).

[23] C. Liu, J. Wang, H. Yu, B. Deng, X. Wei, J. Sun, and Y. Chen,
Chaos, Solitons & Fractals 47, 54 (2013).

[24] I. Kanter, E. Kopelowitz, R. Vardi, M. Zigzag, W. Kinzel,
M. Abeles, and D. Cohen, Europhys. Lett. 93, 66001 (2011).

[25] R. Vardi, R. Timor, S. Marom, M. Abeles, and I. Kanter,
Europhys. Lett. 93, 60003 (2011).

[26] E. Kopelowitz, M. Abeles, D. Cohen, and I. Kanter, Phys. Rev.
E 85, 051902 (2012).

[27] R. Vardi, R. Timor, S. Marom, M. Abeles, and I. Kanter,
Europhys. Lett. 100, 48003 (2012).

[28] R. Vardi, R. Timor, S. Marom, M. Abeles, and I. Kanter, Phys.
Rev. E 87, 012724 (2013).

[29] R. Vardi, A. Goldental, S. Guberman, A. Kalmanovich,
H. Marmari, and I. Kanter, Front. Neural Circuits 7, 176
(2013).

[30] B. J. Prettejohn, M. J. Berryman, and M. D. McDonnell, Front.
Comput. Neurosci. 5, 11 (2011).

[31] V. I. Nekorkin and L. V. Vdovin, Izv. Vyssh. Uchebn. Zaved.
Prikladn. Nelinejn. Din. 15, 36 (2007).

[32] M. Courbage, V. I. Nekorkin, and L. V. Vdovin, Chaos 17,
043109 (2007).

[33] M. L. Feldman, Cellular Components of the Cerebral Cortex
(Plenum, New York, 1984).
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