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Transmission of linear regression patterns between time series: From relationship
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The linear regression parameters between two time series can be different under different lengths of observation
period. If we study the whole period by the sliding window of a short period, the change of the linear regression
parameters is a process of dynamic transmission over time. We tackle fundamental research that presents a simple
and efficient computational scheme: a linear regression patterns transmission algorithm, which transforms linear
regression patterns into directed and weighted networks. The linear regression patterns (nodes) are defined
by the combination of intervals of the linear regression parameters and the results of the significance testing
under different sizes of the sliding window. The transmissions between adjacent patterns are defined as edges,
and the weights of the edges are the frequency of the transmissions. The major patterns, the distance, and the
medium in the process of the transmission can be captured. The statistical results of weighted out-degree and
betweenness centrality are mapped on timelines, which shows the features of the distribution of the results.
Many measurements in different areas that involve two related time series variables could take advantage of this
algorithm to characterize the dynamic relationships between the time series from a new perspective.
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I. INTRODUCTION

In the real world there exist linear or nonlinear relationships
between variables in many fields. We can probe the changes in
one variable in terms of the changes in another variable using a
linear regression model, which is one of the most widely used
methods. Although the relationships between some variables
are nonlinear, the newly created variables that result from
some appropriate mathematical transformations have linear or
approximately linear relationships. The cointegration theory
that was proposed by Engle and Granger has been the most
important approach to analyze the long-term equilibrium
relationships between time series [1]. Most of the linear
regression models are good at indicating the correlations
using functions, and they provide information about the linear
relationship between two time series for a period of time.
However, at this point, we should focus on the issue that
variables are fluctuating over time; thus, the relationships
between them are also changing at the same time. The Granger
representation theorem has proved that there exists a process
that the short-term fluctuation adjusts toward to the long-term
equilibrium [1,2]. However, there are few of studies on the
specific dynamic mechanism of the adjustment.

Although scholars can denote the relationship by means of
piecewise functions or dynamic linear regression models [3,4],
these models cannot contain the integrated information of the
evolution of the linear regression in the whole period. The
time series is continuous and so is the relationship between
variables; these models were also limited in demonstrating the
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transmission of the dynamic relationship between variables.
If we build linear equations by sliding windows, the linear
relationship between two time series can be characterized
more accurately. However, this process will produce a very
large equation set. It is difficult to find the solution of the
equation set, and also difficult to capture the transmission
features of the linear relationship and the dynamic processes
of the transmission.

In order to study the dynamic characteristics in time series,
with the development of complex network theory [5–7],
some studies have transformed time series into networks.
Zhang, Small, and Xu introduced a method to address the
pseudoperiodic time series and found that the structure of the
corresponding network depended on the dynamics of the series
[8,9]. Li et al. presented a scheme to extract a multiscale state
space network from a single-molecule time series [10]. Some
researchers transformed a linear model containing terms with
different time delays into complex networks [11]. The time
series was divided into fragments that have fixed sizes [12–14].
Lacasa et al. proposed the visibility graph algorithm, which
can map all types of time series into networks [15]. Then, the
Hurst exponent of fractional Brownian motion is studied by
means of the visibility algorithm [16]. Thus far, the visibility
algorithm has been diversely used in many areas [17,18]. In
this sense, complex network theory is effective in analyzing
the nonlinear dynamic characteristics [19].

Most recent studies mainly focus on describing the linear
relationships by establishing various linear regression models,
but they ignore the fact that the evolution of linear regression
of time series is a process of dynamic transmission. Moreover,
there are different linear regression patterns in different
fragments of the whole period. These patterns change and
transform into each other over time. Thus, it is necessary
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to introduce an approach to capture the inner transmission
mechanism so as to help us to understand the fluctuation of
relationships between two variables over time.

II. ALGORITHM DESCRIPTION

In this article we present a simple and efficient algorithm
based on econophysics to capture the inner transmission
mechanism and dynamic characteristics of the evolution of
linear regression. It can help us to understand the adjustment
process (the short-term fluctuation adjusts toward the long-
term equilibrium). The linear regression patterns transmission
algorithm (LRPTA) we proposed maps the transmission of
the linear regression patterns between two time series into
a network. Although the LRPTA also encodes the time
series into a network, it is fundamentally different from
other methods [8,16]. The previous algorithms focus on
characterizing a univariate time series, but there remains a
challenging issue to define the relation patterns between two
time series and the corresponding transmission networks of
the relation patterns. This article focuses on the transmission
of the evolution of linear regression instead of the fluctuation
of the variables. We propose the scheme for the algorithm in
Fig. 1.

Step 1. Defining the size of the sliding window ω and
dividing the whole period into fragments. We divide the
whole time series set (x and y) into fragments by the sliding
windows with the sliding step length of 1 based on the idea of
the phase space reconstruction theory [20]. Each fragment
contains ω pairs of values of x and y. The advantage of
utilizing the method is that the fragments have the feature
of memory and transitivity [21]. The value of ω is the length
of the fragments; thus, the number of fragments is n − ω + 1.
Moreover, we can set different ω depending on different needs
of analysis. If you want to study the features of the transmission
of the linear regression patterns based on short periods, you
can set a smaller value of ω. If you want to understand the
features of the transmission based on long periods, you can set
a larger value of ω.

Step 2. Estimating the values of the parameters α and
β in the linear regression equation of each fragment. In

fact, the linear regression model is simple and is based on the
straightforward functional form y = β + αx, but it is effective
in revealing the linear relationships between variables. In a
linear regression model, the values of the parameters α and β

can reflect the patterns of the linear relationship between the
independent variable x and the dependent variable y. It means
that the dependent variable y will change the α unit when the
independent variable x changes 1 unit and the parameter β

is the intercept. The parameters estimation plays an important
role in the process of constructing the linear regression models.
The most basic and effective method of ordinary least square
(OLS) is utilized for estimating the two parameter values.
Hence, we can obtain a series of values for the parameters α and
β {α1,α2,α3, . . . ,αn−ω+1

β1,β2,β3, . . . ,βn−ω+1
}. Each combination of the two parameters

means a linear regression equation, which describes the linear
relationship between the two time series in a fragment of the
whole period under the sliding window size of ω.

Step 3. Significance test of the parameters α of the
linear regression equation of each fragment. The parameter
α indicates the regression level between two time series. Thus,
this step is necessary because passing the test means that
the independent variable x has a significant impact on the
dependent variable y and the linear regression equation is
effective. Whether the significance test is passed depends on
the P value through Student’s t test. Specifically, if the P value
is less than 5%, then the result of the significance is acceptable.
In Fig. 1 the symbol P denotes that the linear regression of the
fragment passes the significance test; otherwise, if the linear
regression of the corresponding fragment does not pass the
significance test, we use N as a mark.

Step 4. Building the linear regression patterns. In this
step we first allocate the parameters α and β to the different
intervals. We define 0.1 as the interval extent of the parameters
α and 5 as the interval extent of the parameters β. Thus,
the combination of α and β can be allocated into different
intervals. Then, the combination of intervals of the parameters
α and β is defined as linear regression patterns. In addition, if
the fragment does not pass the significance test, then we mark
N at the end of the patterns. For example, in Fig. 1, in the first
fragment (i.e., fragment1), the parameters are α1 = 0.95,β1 =
4.2 and the parameter α passes the significance test. Thus, the

FIG. 1. (Color online) The process of building patterns.
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FIG. 2. (Color online) The linear regression between the West
Texas Intermediate crude oil future price series and the Daqing
China crude oil spot price series The fitting linear equation is
y = −9.1012 + 1.15x, the goodness of fit R2 = 0.9311, and the
P value p � 1%, which passes the significance test.

linear regression pattern of this fragment is α(0.9,1]β(0,5].
The purpose of this step is that we utilize the limited patterns
to show the intrinsic features of the transmission between the
continuous patterns. At the same time, the interzone patterns
are necessary for constructing the transmission networks.

Step 5. Constructing the transmission network. We
therefore obtain the sequence of the linear regression patterns
{α(0.9,1]β(0,5], α(1.1,1.2]β(−10, − 5], α(−0.6, − 0.7]
β(50,55]N, . . . ,α(0.5,0.6]β(55,60]} from step 4. The linear
regression patterns evolve over time {α(0.9,1]β(0,5] →
α(1.1,1.2]β(−10, − 5] → α(−0.6,0.7]β(50,55]N → · · · →
α(0.5,0.6]β(55,60]}. There are n − ω + 1 patterns in the
sequence. However, after allocating the values of the
parameters to the different intervals, there are not many types
of patterns. For example, we can obtain 2721 patterns when
ω = 20. However, there are only 327 types of patterns in the
2721 patterns. Thus, 327 types of linear regression patterns
transform into each other and then form a transmission

matrix [

w1,1 w1,2 . . . w1,327
w2,1 w2,2 . . . w2,327

.

.

.
.
.
.

. . .
.
.
.

w327,1 w327,2 . . . w327,327

] (wi,j is the frequency of

the transmission from the ith pattern to j th pattern). Then,
we define the 327 types of linear regression patterns as nodes
and the transformations as edges. The weight of an edge
is the frequency of the transmission between the two types
of patterns. Thereby, we obtain a directed and weighted
transmission network.

III. RESULTS

A. Statistical characteristics

In the economic area, there exist cross correlations between
economic time series [22–24] and the long-term equilibrium
relationship between future prices and spot prices have been
proven in many studies [25–27]. The relationship between
future prices and spot prices is an important issue that people
arbitrage based on the fluctuation of the relationship. Thus, we
need to understand the relationship structure by mathematic
form. For example, there exists a linear relationship between
the West Texas Intermediate crude oil future price series (x)
and Daqing China crude oil spot price series (y) on a large
scale. We selected 2740 sets of data from 2002 to 2013 (see
Fig. 2).

From Fig. 2 we find that the relationship between future
and spot prices exhibits good linear regression over the entire
series. The fitting linear regression equation shows a high
level of the goodness of fit and passes the significance test.
There is a long-term equilibrium relationship between two
variables. However, in fact, the linear regression relationship
not always follows this fitting equation. As shown in Fig. 3
there are different linear regression patterns in different periods
following different fitting equations (if we just divide the
time series data into four periods based on the trend of
fluctuations). When we divide the whole time series into
different smaller-scale fragments by sliding windows, we can
obtain the linear regression pattern of each fragment.

Then, we can estimate the corresponding values of α and
β for each fragment. A series of the values of α and β can be
gained for different sizes of sliding window. We took ω = 20

FIG. 3. (Color online) Different linear regression patterns in different periods.
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FIG. 4. (Color online) The frequencies and scatter diagram of the values of the parameters α and β (ω = 20). (a) The frequencies of
the values of the parameters α. (b) The frequencies of the values of the parameters β. (c) The scatter diagram of the values of the parameters α

and β.

as an example. The distributions of the values of α and β are
shown in Figs. 4(a) and 4(b), respectively. We find that the
values of α mainly distribute between 0.6 and 0.9 instead of
1.15, and the values of β mainly distribute between 10 and 20
rather than −9.1012 in the fitting linear equation. In Fig. 4(c)
the scatter diagram of α and β shows that there are many types
of linear regression patterns.

B. Identifying the major patterns (weighted out-degree
distribution)

According to the above steps, we can obtain n − ω + 1 =
2721 fragments when n = 2740 and ω = 20, in which 2234 of
these fragments pass the significance test (account for 82.1%)
and the leftover 487 patterns are marked with “N” (account
for 17.9%). However, only 327 types of patterns appear in the
transmission network.

In Fig. 5 we plot the behavior of the transmission of the
linear regression patterns over time by weighted out-degree:

wout
i =

∑

j∈Ni

wi,j , (1)

where Ni is the set of neighbors of node i and wij is the weight
of the edge from node i to node j . The higher weighted out-
degree a node has, the more important it is in the transmission
network.

First, there are major patterns in the trajectory of the pattern
transmissions. From Fig. 5(a), the image is mainly filled with
the colors white and yellow. This arrangement means that
few types of patterns play a major role in the transmission.
Additionally, the condition can also be proved in the first
subgraph of Fig. 6 that the weighted out-degree distribution
follows a power law p(w) ∼ w−λ with λ = 1.09 ± 0.01. It
means that a few types of patterns play a major role in the
time series. The most important two linear regression patterns

FIG. 5. (Color online) The transmission of the linear regression patterns and the weighted out-degree distribution over time (ω = 20).
(a) The distribution of the weighted out-degree of the 327 types of patterns over time. There are 327 types of colors, which indicate the 327
types of patterns, respectively. The higher the weighted out-degree of the patterns, the higher the value of the color bar. (b) An example of
the distribution of a pattern with the highest weighted out-degree in the time series (the color bar value is 327). (c) The distribution of the
weighted out-degree distribution over time. There are 95 types of colors, which indicate the 95 values of the weighted out-degree. The higher
the weighted out-degree, the higher the value of the color bar.
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FIG. 6. (Color online) The weighted out-degree distributions under the different sizes of sliding window. (R2 is goodness of fit of linear
regression under the double logarithmic coordinates.)

are α(0.8,0.9]β(5,10] and α(0.7,0.8]β(10,15]. Thus, when
we identify the relationship between two variables in a short
period (20 days), we should refer to these major patterns but
not y = −9.1012 + 1.15x.

Second, the process of the transmission is a mutational
form. The colors in Fig. 5(a) are neither gradient changing
nor stable. They are obviously split, which indicates that a
linear regression pattern stays for a period and then leaps
and transfers into another pattern that could be very different
from the previous linear regression pattern. Additionally, the
appearance of each pattern can be isolated from the whole
transmission process [see Fig. 5(b)]. This approach can help
us to understand the time distribution when a certain pattern
appears or to identify which pattern is a major pattern during
a period.

Third, the transmission between patterns becomes more
variegated over time. As shown in Fig. 5(c), we find that
the patterns that have a larger weighted out-degree are
mainly concentrated at the earlier part of the time span.
The distribution of the weighted out-degree on the timeline
is uneven; i.e., a few major patterns appear during a short
period of time, from approximately time 500 to time 1000.
Notably, after time 2000, the image fills with patterns that
have a lower weighted out-degree, which means that there
are a variety of patterns during this period. This finding also
proves that the linear regression is a dynamic and fluctuating
process.

Based on the results described above, we can identify the
major linear regression patterns. This method not only can
capture the character of the distributions in the transmission

of the linear regression patterns over time but also can help
us to identify the significant period or the key area in a
sequence.

We also plot the weighted out-degree distribution of the
different transmission networks for the different sizes of
sliding window, as shown in Fig. 6. All of the weighted out-
degree distributions follow the power law p(wout) ∼ wout−λ.
This result implies that a natural feature of the transmission
networks is that there exist only a few patterns that play a
major role during the process of the transmission under the
different sizes of sliding window. Different sizes of sliding
window exhibit different major linear regression patterns. For
example, the primary pattern is α(0.8,0.9]β(5,10] when the
size is 30 days. But when the size is 100 days the primary
pattern is α(0.9,1]β(0,5]. Thus, when we observe the linear
relationships under a certain length of time, we could refer
to the major patterns under the size of sliding window of the
same length.

C. Identifying inflection points and the distance
of the transmission

With an increase in the sizes of sliding window, the number
of nodes N in the transmission networks decreases [the types of
linear regression patterns become fewer as shown in Fig. 7(a)].
Moreover, we find that the number of nodes decays quickly
at small sizes of sliding windows. There are inflection points
in the curve at the large scale shown in Fig. 7(a) which are
barely discernible. We can gain only a macroscopic linear
regression equation (similar to Fig. 2) when the sizes of
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FIG. 7. (Color online) The numbers of nodes N , the average path length L, and the network diameter D, for different scales.

sliding windows are larger than the inflection points. It will
hide the characteristics of fluctuation of the linear regression
because the linear regression equations of the fragments are
more similar to that of the whole period. The inflection points
can tell us the certain threshold value when we study the long
term equilibrium. If we want to understand more exactly the
fluctuation of the linear regression, we would better analyze a
shorter period according to the inflection points.

The distance of the transmission between the two patterns
can help us understand the transmission path. The transmission
network has different average path length L and network
diameter D under different sizes of sliding windows. The
changes of L and D describe the process of the fluctuant decay
upon the increase in the size of sliding window. The average
path length L is calculated as follows:

L = 1

N (N − 1)

∑

i �=j

lij , (2)

where N is the number of nodes in the transmission complex
network and lij is the distance between node i and j . The
network diameter D is the maximum L.

Thus, the method can identify the average transmission
distance for different sizes of sliding windows. As shown in

Fig. 7(a), if a type of pattern transforms into another, it will
basically convert via few types of patterns. Because the major
patterns in different sizes of sliding windows appear in the
transmission process with high frequency, then if the current
pattern is not a major pattern, it will not take a long time for
the current pattern to transform into a major pattern.

On the other hand, according to the network diameter D,
we find that although there are hundreds of linear regression
patterns, the maximum transmission scope is not large. The
change of the network diameter D has the same trend
as the change of the average path length L upon an increase in
the size of sliding window [see Figs. 7(b) and 7(c)].

D. Identifying the transmission medium

If a linear regression pattern stands in the short path between
two patterns, it plays the role of transmission medium in the
transmission process. The media capabilities of each pattern
can be denoted by the normalized betweenness centrality BCi :

BCi =
∑n

j

∑n
k gjk(i)/gjk

n2 − 3n + 2
, j �= k �= i,j < k, (3)

where gjk(i) is the number of shortest paths between node
j and k which pass the node i. gjk is the total number of

FIG. 8. (Color online) The distribution of the normalized betweenness centrality over time for different sizes of sliding windows.
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shortest paths between node j and k. The higher normalized
betweenness centrality, the stronger media capability the
pattern has.

The transition period of the linear regression can be
identified by the distribution of the media capabilities on the
timeline (see Fig. 8). For example, for the sizes of sliding
windows from 20 to 100, the value of betweenness centrality
becomes larger, which means that the transmission-controlling
capabilities of some patterns become stronger. We can iden-
tify the transitional period by finding the linear regression
patterns with high normalized betweenness centrality. The
linear regression patterns of the next period will change
when the current period is a transitional period and we
cannot evaluate the linear regression parameters by previous
regression equations directly.

IV. CONCLUSIONS

In this article we have focused on the linear regression
between two time series from the viewpoint of econophysics.
Previously, a natural bridge between complex network theory
and time series analysis had been built by Lacasa et al. [15].
Now, we have designed an algorithm to transform linear
regression patterns between two time series into directed and
weighted networks. With this method we need to ensure the
two variables have the correlation. If the pass rate of the
significances of the fragments is acceptable, the method is
feasible. Different sizes of sliding windows can be set for
multiscale research. The mapping of the statistical results
on the timelines shows the distribution of the results over
time. The major patterns, the distance, and the medium in the
process of the transmission can be revealed. Thus, some direct
applications of the algorithm can be proposed.

Different lengths of observation periods can provide dif-
ferent results of linear regression. People should refer to

different regressive parameters according to their terms of
decision. If one wants to study the short-term relationship
between two variables, one cannot refer to the long-term linear
regression equation. For example, when we make short-term
policies (30 days) on crude oil price, α(0.8,0.9]β(5,10] is
the most important linear regression pattern. α(0.9,1]β(0,5] is
the best reference for long-term polices (100 days). It means
that variable y changes 0.8 to 0.9 unit instead of 0.9 to
1.0 units when variable x changes 1 unit under the scale of
30 days. We can identify the distances of the transmission and
the transmission mediums to develop strategies for different
lengths of time.

The algorithm can be applied to a large number of
areas related to time series variables or series data (e.g.,
probably, seismic wave time series data, protein series, or
gene series). The important or effective information can be
identified by the timelines. Moreover, many areas involve
more than two variables and a variable is often impacted by
multiple variables. The diffusion issue of the multivariable
linear regression patterns will be addressed in a future study,
and the essential characteristics will be extracted to provide
insight into more complex natural phenomena and human
behaviors.

ACKNOWLEDGMENTS

This research is supported by grants from the Natural
Science Foundation of China (Grant No. 71173199), the Hu-
manities and Social Sciences planning funds project under the
Ministry of Education of the PRC (Grant No. 10YJA630001),
the Fundamental Research Funds for the Central Universities
(Grant No. 2-9-2013-04), and the Science and Technology
Innovation Fund of the China University of Geosciences
(Beijing). The authors would like to express their gratitude to
Jianguo Yu, Xiaoqi Sun, Qier An, Lijun Wang, and Lingjuan
Xia who provided valuable suggestions.

[1] R. F. Engle and C. W. Granger, Econometrica 55, 251 (1987).
[2] C. W. Granger and A. A. Weiss, Studies in Econometrics, Time

Series, and Multivariate Statistics (Academic Press, New York,
1983), p. 255.

[3] C.-J. Kim, J. Econometrics 60, 1 (1994).
[4] D. N. Gujarati, Essentials of Econometrics (McGraw-Hill, New

York, 1992).
[5] D. J. Watts and S. H. Strogatz, Nature (London) 393, 440 (1998).
[6] A.-L. Barabási and R. Albert, Science 286, 509 (1999).
[7] M. E. Newman and D. J. Watts, Phys. Lett. A 263, 341 (1999).
[8] J. Zhang and M. Small, Phys. Rev. Lett. 96, 238701 (2006).
[9] X. Xu, J. Zhang, and M. Small, Proc. Natl. Acad. Sci. USA 105,

19601 (2008).
[10] C.-B. Li, H. Yang, and T. Komatsuzaki, Proc. Natl. Acad. Sci.

USA 105, 536 (2008).
[11] T. Nakamura and T. Tanizawa, Physica A 391, 4704 (2012).
[12] Y. Yang and H. Yang, Physica A 387, 1381 (2008).
[13] Z. Jiang, H. Yang, and J. Wang, Physica A 388, 1299 (2009).
[14] R. V. Donner, Y. Zou, J. F. Donges, N. Marwan, and J. Kurths,

New J. Phys. 12, 033025 (2010).
[15] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuño,

Proc. Natl. Acad. Sci. 105, 4972 (2008).

[16] L. Lacasa, B. Luque, J. Luque, and J. C. Nuno, Europhys. Lett.
86, 30001 (2009).

[17] M.-C. Qian, Z.-Q. Jiang, and W.-X. Zhou, J. Phys. A 43, 335002
(2010).

[18] Y. Yang, J. Wang, H. Yang, and J. Mang, Physica A 388, 4431
(2009).

[19] R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. X.
Xiang, and J. Kurths, Int. J. Bifurcation Chaos 21, 1019 (2011).

[20] F. Takens, Dynamical Systems and Turbulence, Warwick 1980
(Springer, Berlin, 1981), p. 366.

[21] H. An, X. Gao, W. Fang, X. Huang, and Y. Ding, Physica A 393,
382 (2014).

[22] B. Podobnik, D. Horvatic, A. M. Petersen, and H. E. Stanley,
Proc. Natl. Acad. Sci. USA 106, 22079 (2009).

[23] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. NunesAmaral,
and H. E. Stanley, Phys. Rev. Lett. 83, 1471 (1999).

[24] X.-Y. Gao, H.-Z. An, and W. Fang, Acta Phys. Sin. 61, 098902
(2012).

[25] S. Maslyuk and R. Smyth, Energy Policy 37, 1687 (2009).
[26] A. Coppola, J. Futures Markets 28, 34 (2008).
[27] S. D. Bekiros and C. G. Diks, Energy Economics 30, 2673

(2008).

012818-7

http://dx.doi.org/10.2307/1913236
http://dx.doi.org/10.2307/1913236
http://dx.doi.org/10.2307/1913236
http://dx.doi.org/10.2307/1913236
http://dx.doi.org/10.1016/0304-4076(94)90036-1
http://dx.doi.org/10.1016/0304-4076(94)90036-1
http://dx.doi.org/10.1016/0304-4076(94)90036-1
http://dx.doi.org/10.1016/0304-4076(94)90036-1
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1038/30918
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1126/science.286.5439.509
http://dx.doi.org/10.1016/S0375-9601(99)00757-4
http://dx.doi.org/10.1016/S0375-9601(99)00757-4
http://dx.doi.org/10.1016/S0375-9601(99)00757-4
http://dx.doi.org/10.1016/S0375-9601(99)00757-4
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.1103/PhysRevLett.96.238701
http://dx.doi.org/10.1073/pnas.0806082105
http://dx.doi.org/10.1073/pnas.0806082105
http://dx.doi.org/10.1073/pnas.0806082105
http://dx.doi.org/10.1073/pnas.0806082105
http://dx.doi.org/10.1073/pnas.0707378105
http://dx.doi.org/10.1073/pnas.0707378105
http://dx.doi.org/10.1073/pnas.0707378105
http://dx.doi.org/10.1073/pnas.0707378105
http://dx.doi.org/10.1016/j.physa.2012.05.039
http://dx.doi.org/10.1016/j.physa.2012.05.039
http://dx.doi.org/10.1016/j.physa.2012.05.039
http://dx.doi.org/10.1016/j.physa.2012.05.039
http://dx.doi.org/10.1016/j.physa.2007.10.055
http://dx.doi.org/10.1016/j.physa.2007.10.055
http://dx.doi.org/10.1016/j.physa.2007.10.055
http://dx.doi.org/10.1016/j.physa.2007.10.055
http://dx.doi.org/10.1016/j.physa.2008.12.019
http://dx.doi.org/10.1016/j.physa.2008.12.019
http://dx.doi.org/10.1016/j.physa.2008.12.019
http://dx.doi.org/10.1016/j.physa.2008.12.019
http://dx.doi.org/10.1088/1367-2630/12/3/033025
http://dx.doi.org/10.1088/1367-2630/12/3/033025
http://dx.doi.org/10.1088/1367-2630/12/3/033025
http://dx.doi.org/10.1088/1367-2630/12/3/033025
http://dx.doi.org/10.1073/pnas.0709247105
http://dx.doi.org/10.1073/pnas.0709247105
http://dx.doi.org/10.1073/pnas.0709247105
http://dx.doi.org/10.1073/pnas.0709247105
http://dx.doi.org/10.1209/0295-5075/86/30001
http://dx.doi.org/10.1209/0295-5075/86/30001
http://dx.doi.org/10.1209/0295-5075/86/30001
http://dx.doi.org/10.1209/0295-5075/86/30001
http://dx.doi.org/10.1088/1751-8113/43/33/335002
http://dx.doi.org/10.1088/1751-8113/43/33/335002
http://dx.doi.org/10.1088/1751-8113/43/33/335002
http://dx.doi.org/10.1088/1751-8113/43/33/335002
http://dx.doi.org/10.1016/j.physa.2009.07.016
http://dx.doi.org/10.1016/j.physa.2009.07.016
http://dx.doi.org/10.1016/j.physa.2009.07.016
http://dx.doi.org/10.1016/j.physa.2009.07.016
http://dx.doi.org/10.1142/S0218127411029021
http://dx.doi.org/10.1142/S0218127411029021
http://dx.doi.org/10.1142/S0218127411029021
http://dx.doi.org/10.1142/S0218127411029021
http://dx.doi.org/10.1016/j.physa.2013.08.055
http://dx.doi.org/10.1016/j.physa.2013.08.055
http://dx.doi.org/10.1016/j.physa.2013.08.055
http://dx.doi.org/10.1016/j.physa.2013.08.055
http://dx.doi.org/10.1073/pnas.0911983106
http://dx.doi.org/10.1073/pnas.0911983106
http://dx.doi.org/10.1073/pnas.0911983106
http://dx.doi.org/10.1073/pnas.0911983106
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.1103/PhysRevLett.83.1471
http://dx.doi.org/10.1016/j.enpol.2009.01.013
http://dx.doi.org/10.1016/j.enpol.2009.01.013
http://dx.doi.org/10.1016/j.enpol.2009.01.013
http://dx.doi.org/10.1016/j.enpol.2009.01.013
http://dx.doi.org/10.1002/fut.20277
http://dx.doi.org/10.1002/fut.20277
http://dx.doi.org/10.1002/fut.20277
http://dx.doi.org/10.1002/fut.20277
http://dx.doi.org/10.1016/j.eneco.2008.03.006
http://dx.doi.org/10.1016/j.eneco.2008.03.006
http://dx.doi.org/10.1016/j.eneco.2008.03.006
http://dx.doi.org/10.1016/j.eneco.2008.03.006



