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Geometrical invariability of transformation between a time series and a complex network
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We present a dynamically equivalent transformation between time series and complex networks based on coarse
geometry theory. In terms of quasi-isometric maps, we characterize how the underlying geometrical characters
of complex systems are preserved during transformations. Fractal dimensions are shown to be the same for time
series (or complex network) and its transformed counterpart. Results from the Rössler system, fractional Brownian
motion, synthetic networks, and real networks support our findings. This work gives theoretical evidences for an
equivalent transformation between time series and networks.
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I. INTRODUCTION

Complex networks and time series are two generic ways to
describe complex systems in the real world. Transformations
from one to the other have attracted considerable attention
[1–9]. Dynamical properties of time series are usually trans-
formed into topological network structures via the similarities
of the segmented cycle morphology [2], linear visibility
conditions [3], amplitude difference of data points [4], or
phase space reconstruction [6,7]. Since nodes of a network
have no temporal sequence, the random walk strategy is
usually adopted to obtain the temporal information of nodes
[10,11] when the network is transformed into a time series.
A deterministic method is proposed by Shimada et al. [12] to
transform the ring lattices into sine data. However, whether the
transformed network (or time series) can determine time-series
dynamics (or network topological structure) is unknown to
these transformation methods. It is not clear what dynamical
characters are preserved during the given transformation
and to what extent the given transformation is equivalent.
Without an explicit transformation theory, it is hard to tell
how the transformed network (or time series) characterizes
time-series dynamics (or network topological structure). This
is a fundamental problem but is less discussed.

In this paper we emphasize a dynamically equivalent
transformation between time series and complex networks.
Similarly, a discussion of equivalence between time series
and their recurrence plots is presented in Ref. [13]. But
this conclusion implies that the recurrence plot contains the
temporal information of the time series, which is absent for
the transformation from a network to a time series. Moreover,
such equivalence is induced by topological homeomorphisms.
However, topological homeomorphisms are weak conditions
without considering the geometrical features of dynamical
systems. For example, spatial distances, sizes, and shapes of
dynamical systems are not preserved by homeomorphisms. A
time series corresponds to a unique manifold in phase space,
and thereby geometrical features play a key role in time-series
dynamics. Meanwhile, geometrical concepts are widely em-
ployed to describe topological structures of complex networks
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[14–16]. We, therefore, propose geometrical invariability in
a dynamically equivalent transformation. We theoretically
show that there exists a quasi-isometric transformation where
the geometrical features of a time series (or network) can
be strictly preserved. Inspired by this finding, we adopt
a correlation dimension [17] for describing a geometrical
self-similarity of time-series dynamics and extend this concept
to measure network dimension. We notice that the correlation
dimension may have some limitations in characterization
of a time series with multiscale features, as suggested in
Ref. [18]. Gao et al. specifically proposed a scale-dependent
measure to characterize various types of complex motions
[19]. Here correlation dimension is used to explicitly exhibit
preservation of geometrical characters and the existence of
geometrical invariants during transformations. Additionally,
we further show that for the fractional Brownian motion,
there also exists a quasi-isometric transformation that ensures
that the fractal dimension of the original stochastic time
series is accurately captured by its network. We, therefore,
provide theoretical evidences for a dynamically equivalent
transformation, which is vital but absent in the previous
studies.

II. TRANSFORMATION SCHEMATIC

Let {xt }Nt=1 be a scalar time series of N observations
and ε be a threshold. We use the amplitude difference
of data points as a transformation method, i.e., aij = 1 if
|xi − xj | < ε, otherwise aij = 0. The matrix A = {aij }Ni,j=1
is the adjacency matrix of the transformed network. Given
this adjacency matrix, one can define a graphic distance
matrix D = {dij }Ni,j=1 of the same network. According to the
classical multidimensional scaling (CMDS) [20], we get a
square-distance matrix S = {d2

ij }Ni,j=1. Such a matrix S is then

transformed to a centralizing gram matrix Gc = − 1
2HSH ,

where H = I − 1
N

E, I is the N × N identity matrix, and
E is the N × N matrix of ones (where all elements of this
matrix equal to 1). Note that the defined graphic distance
matrix D needs to be a Euclidean distance matrix such that
Gc is a positive semidefinite matrix [21]. Let {λ1,λ2, . . . ,λN }
be the set of eigenvalues and pi = {pi1,pi2, . . . ,piN } be
the set of eigenvectors of Gc. Denote by h the number
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FIG. 1. (Color online) (a)–(c) Transformation from time series to its network. The x-component data of a Rössler system (a) in chaotic
regime [ẋ = −(y + z),ẏ = x + 0.2y,ż = 0.2 + 5.7(x − c)] with the iterative step size 0.2 is transformed into a network (b), provided that ε

is small enough to ensure that the constructed network is a connected graph without isolated nodes or subgraphs. The time series (c) is then
reproduced from the previous network. (d)–(f) Transformation from a network to its time series. A simple scale-free network (d) is transformed
into two time series under two temporal strategies [i.e., the node sequence is determined by a random walk (e) or is assigned randomly (f)].
The latter is equivalent to randomly shuffle the former.

of nonzero eigenvalues. We perform spectral decomposition
of the matrix Gc = V V ′, where V = (v1,v2, . . . ,vh) =
diag(

√
λ1,

√
λ2, . . . ,

√
λh)( p1, p2, . . . , ph). The matrix V cor-

respondingly forms a data set Y = ( y1, y2, . . . ,yN )′ ∈ Rh and
yi = (yi1,yi2, . . . ,yih). The matrix V is an exact configuration
of the previous distance matrix D, i.e., the Euclidean norm of
yi and yj equals dij [20]. In this sense, each network node
is coordinated by a corresponding vector of Y, and finally all
nodes form trajectories in a h-dimensional space. In practice,
we usually choose a low-dimensional optimal configuration

matrix in order to get a low-dimensional geometrical repre-
sentation of the given network. In this case, the Euclidean
distance of this new matrix is an approximation of D. Figure 1
depicts a schematic diagram of transformations between a time
series and a network. Here we take the vector corresponding
to the maximal eigenvalue as the reproduced time series.

It is interesting that in the transformation cycle (the top
panel of Fig. 1) the original time series and the reproduced
time series have obvious similarity. Their cross-correlation
coefficient is almost 1. For transformation of a network into
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time series (the bottom panel of Fig. 1) using a random
walk on the network, the transformed time series exhibits
temporal correlation closely related to the network structure.
However, we cannot reproduce exactly the same network
as the original network from the transformed time series
since this data is generated in a stochastic way. Using
the quasi-isometric principle [22], we elaborate why the
underlying dynamics of both the original and the reproduced
time series are equivalent and how the time series trans-
formed from a network preserves the network topological
relationship.

III. THE QUASI-ISOMETRIC THEOREM OF TIME
SERIES AND NETWORK

In this section we present mathematical evidences that
two time series corresponding to the same network could
be quasi-isometric. Let M and N be two closed subspaces
of Rn for some positive integer n < ∞. Fix positive real
values ε1 and ε2. Let ϕ be a surjection from the subspace
M to the subspace N with the property that two points are
ε1-close in M , i.e., d(x,y) < ε1, if and only if their images are
ε2-close in N , i.e., d(ϕ(x),ϕ(y)) < ε2. Here d is the Euclidean
metric. We also assume that the subspaces M and N satisfy
the separation condition as follows. For each x �= y ∈ M ,
there exists an element z ∈ M such that d(x,z) > ε1 and
d(y,z) < ε1. Similarly, whenever u �= v ∈ N , there exists an
element w ∈ M such that d(u,w) > ε2 and d(v,w) < ε2.

For any two points x,y ∈ M , let d ′ denote the distance
between x and y along M . Precisely, d ′(x,y) is defined as
the infimum of lengths of all paths connecting x and y in M .
Similarly, we define a similar metric d ′ on N . To eliminate
confusion, we write d instead of d ′ for short. Our target
is to show that ϕ is a quasi-isometry, i.e., ε2

ε1
d(x,y) − ε2 <

d(ϕ(x),ϕ(y)) < ε2
ε1

d(x,y) + ε2 for any two elements x,y ∈ M .
First, it is easy to justify that ϕ is injective. Since for

two arbitrary distinct points ϕ(x) and ϕ(y) in N , based on
the separation condition, there is an element ϕ(z)∈N with
d(ϕ(x),ϕ(z)) > ε2 and d(ϕ(y),ϕ(z)) < ε2. In return we have
d(x,z) > ε1 and d(y,z) < ε1 in the subspace M . So ϕ is
injective.

Now we prove that ϕ is a quasi-isometry. For two arbitrary
points x and y in the subspace M , there is an integer k such
that

kε1 � d(x,y) < (k + 1)ε1. (1)

We can find a path P connecting x and y whose length is
very close to d(x,y). Choose a partition x = x0,x1, . . . ,xn+1 =
y of P such that d(xi,xi+1) < ε1 for each i = 0,1, . . . ,n.

Since d(x,y) < ε1 if and only if d(ϕ(x),ϕ(y)) < ε2, we get
ϕ(B(z,ε1)) = B ′(ϕ(z),ε2), where B(z,ε1) is an open ball in M

with center z and radius ε1. Therefore, by triangle inequalities
we have

d(ϕ(x),ϕ(y)) �
n∑

i=0

d(ϕ(xi),ϕ(xi+1)) < (k + 1)ε2. (2)

It can be rewritten as

d(ϕ(x),ϕ(y)) < kε1
ε2

ε1
+ ε2 � ε2

ε1
d(x,y) + ε2. (3)

By symmetric relationship between subspaces M and N , we
also have

d(x,y) <
ε1

ε2
d(ϕ(x),ϕ(y)) + ε1. (4)

By combining Eqs. (3) and (4) together, we obtain the
following relations:

ε2

ε1
d(x,y) − ε2 < d(ϕ(x),ϕ(y)) <

ε2

ε1
d(x,y) + ε2. (5)

Thus ϕ is a quasi-isometry.
Now back to our problem, we assume that there are two

scalar time series M = {xi}Ni=1 and M ′ = {x ′
i}Ni=1 correspond-

ing to the same network. In other words, for some positive real
numbers ε1 and ε2, they produce the same adjacency matrix of
a transformed network, i.e., |xi − xj | < ε1 if and only if the
corresponding points satisfy the inequality |x ′

i − x ′
j | < ε2. As

discussed previously, we assume that M (and M ′) satisfies the
separation property that for each xi �= xj in M , there exists an
element xk ∈ M such that |xi − xk| < ε1 and |xk − xj | > ε1.

For any two points x,y ∈ M, we find a path P connecting x and
y in M, whose length is close to the distance |x − y|. Divide
the path P into small pieces x = x0 → x1 → x2 → · · · →
xn = y such that for each i we have |xi − xi+1| < ε1. Since M

and M ′ induce the same adjacency matrix, the corresponding
points x ′,y ′ in M ′ can be connected by a path x ′ = x ′

0 → x ′
1 →

x ′
2 → · · · → x ′

n = y ′ such that |x ′
i − x ′

i+1| < ε2. Therefore,
the distance |x ′ − y ′| < nε2, where the right-hand side is close
to ε2

ε1
|x − y|. Actually, we can prove that

ε2

ε1
|x − y| − ε2 < |x ′ − y ′| <

ε2

ε1
|x − y| + ε2. (6)

These inequalities indicate that if M and M ′ induce the
same network, the distances between corresponding points are
almost the same as well when the small numbers ε1 and ε2 are
close to each other. We say that there is a quasi-isometric
map between M and M ′. Based on that, we can observe
a sort of geometrical invariability during transformations as
follows.

IV. NUMERICAL SIMULATIONS

To illustrate a dynamically equivalent transformation be-
tween a time series and a complex network, we take a
chaotic Rössler time series of 10 000 data points with the
step size of 0.2 as an example. Following the above procedure,
we get the adjacency matrix A = {aij } of the transformed
network. The threshold for this transformation is denoted
by ε1. For any adjacent nodes i and j , let Gi = {j : aij =
1} denote the set of nodes having links to node i. The
weight wij is defined as 1 − |Gi∩Gj |

|Gi∪Gj | , where |Gi | denotes
the cardinality of the set Gi [9]. We get an existing link
having weights W = {wij } and a graphic distance matrix
D = {dij }, where dij is the shortest distance between nodes
i and j based on these new link weights. The CMDS is
equivalent to the principal components analysis when handling
the data set [20]. We use the eigenvector corresponding to
the maximal eigenvalue to produce a time series since the
maximal eigenvalue contributes 90% of the sum of all nonzero
eigenvalues.

012804-3



YI ZHAO, TONGFENG WENG, AND SHENGKUI YE PHYSICAL REVIEW E 90, 012804 (2014)

FIG. 2. (Color online) (a) The Euclidean distance between the Rössler data points in phase space versus graphic distances of the
corresponding network nodes. (b) (Top panel) Log-log plot of correlation sum Cm(r) as a function of the distance scalar r . Different curves are
obtained with embedding dimensions of m = 2 (uppermost curve) to m = 7 (lowest curve). (Bottom panel) Local slopes of the correlation sums
shown in the upper panel. The correlation dimension is an estimate of D = 2 ± 0.05. (c) Correlation sum C(l) for the transformed network is
plotted versus the shortest path length l. The network correlation dimension is estimated to 1.96. (d) (Top panel) Log-log plot of the correlation
sum Cm(r) versus the distance scalar r for the reconstructed data. (Bottom panel) Local slopes of the correlation sums shown in the upper
panel. The correlation dimension is an estimate of D = 1.98 ± 0.05.

From Fig. 2, we observe that there is a strictly linear
relationship between the Euclidean distance of data points in
phase space and the graphic distance of corresponding nodes.
This suggests that the network structure contains the underly-
ing geometrical features of the original time-series dynamics.
Moreover, the correlation dimension of the Rössler system is
consistent with that of the transformed network, as well as
that of the reproduced time series. We calculate a correlation
dimension of time series according to the Grassberger and Pro-
caccia algorithm [17]. Note that calculation of correlation di-
mension is sensitive to the step sizes of the Rössler system. The
large step size indicates coarse discretization of the Rössler
system, and then there will be fewer neighbors within the given
threshold. Statistical errors have an obvious effect in the small

scaling levels, and thereby the middle scaling regime likely
disappears.

For calculation of a network’s correlation dimension, we
randomly select one seed node and then count nodes whose
shortest path lengths to this seed node are smaller than l. This
procedure is repeatable by choosing each node as a seed node.
The average number of nodes centered around the seed nodes is
a function of l (i.e., the network fractal cluster dimension [23]).
This calculation can be regarded as an unbiased estimation of
network correlation dimension, in contrast to the calculation
procedure in Refs. [14,24].

We can choose another threshold ε2 such that the trans-
formed network can be reconstructed from the reproduced time
series. Notice that ε2 is normally close to ε1 and both are very
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FIG. 3. (Color online) The effect of threshold value ε on network structure: (a) clustering coefficient C and (b) correlation dimension D.
Inset: local view of the box area.

small. By the inequalities of quasi-isometry, we conclude that
the original and reproduced time series are quasi-isometric.
When ε1 approximately equals ε2 and both are out of the
scaling regime, we further theoretically confirm that both
the original and the reproduced time series corresponding to
the same network structure shall have the same correlation
dimension.

Recall that the correlation sum for any set of n points in an
m-dimensional space {
xi}ni=1 is defined as [17]

C(ε) = lim
n→+∞

g(ε)

n2
, (7)

where g(ε) = ∑n
i,j=1 �(ε − |
xi − 
xj |) represents the total

number of pairs of points whose distance is less than ε, and
�(·) is the Heaviside function. In the limit of an infinite
amount of data and for small ε, a scaling regime and a
scaling for the correlation integral appear, i.e., C(ε) ∼ εD .
The exponent D is defined as the correlation dimension of time
series.

Suppose that f : M → N is a quasi-isometric map of
two sets of points, i.e., KdM (x,y) − c � dN (f (x),f (y)) �
KdM (x,y) + c for some constants K > 0 and c � 0. We note
that the variables in space M and N are denoted with the
subscripts M and N, respectively. Without loss of generality, we
assume that f is injective. Suppose that two points x,y ∈ M ,
satisfying dM (x,y) < ε; then dN (f (x),f (y)) � Kε + c. This
proves that gM (ε) � gN (Kε + c). Therefore, when ε and
Kε + c are small,

DM = logε εDM = logε C(ε) = lim
n→+∞ logε

gM (ε)

n2

� lim
n→+∞ logε

gN (Kε + c)

n2

� lim
n→+∞ logε

gN (K(ε + c/K))
n2

= logε (K(ε + c/K))DN

= DN ( logε K + logε(ε + c/K)).

FIG. 4. (Color online) The effect of noise level on the network structure: (a) clustering coefficient C and (b) correlation dimension D.
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FIG. 5. (Color online) (a) Log-log plot of correlation sum C(l) as a function of l for ring lattice networks with each node having k links.
Correlation dimensions of these ring lattice networks equal 1. (b) (Top panel) Log-log plot of correlation sum Ch(r) as a function of the distance
scalar r for a series of multidimensional vectors reconstructed from a ring lattice network (k = 40) for different values of h. (Bottom panel)
Local slopes of the correlation sums shown in the upper panel. The correlation dimension is an estimate of D = 1 ± 0.03. The convergent
value is marked by a horizontal dashed line.

With reference to the previous section, here K = ε2/ε1 and
c = ε2. If M and N are time series corresponding to the same
network, assume that ε1 = ε2 are very small compared with
ε. This is a reasonable assumption since in practice ε cannot
be below a length scale of a few multiples of noise level (if
the data is noisy) or discretization accuracy, and moreover, at
small accessible scales, ε needs to ensure adequate neighbors
[25]. The scaling regime is a finite intermediate interval, while
ε1 and ε2 could be arbitrary small. With these assumptions,
the right-hand side of the last equality is DN. With the same
argument, we prove that DN � DM. This shows that DM and
DN are the same.

Technically, for a given time series, it is still a challenge
to define the threshold value small enough. To address this,
we investigate the effect of threshold value ε on the structure
of transformed network. We take the previous chaotic Rössler
time series as an example. To better describe the network
structure, we adopt a network statistic, i.e., clustering coeffi-
cient C. As shown in Fig. 3, there is a toleration range for the
minimal transformation threshold so that the network in terms
of clustering coefficient is almost kept unchanged. Moreover,
the correlation dimension of the transformed networks is
consistent with that of the Rössler system. We also note that
the larger threshold value results in the smaller scaling regime

FIG. 6. (Color online) (a) Log-log plot of correlation sum C(l) as a function of the shortest path length l for 2D lattice networks with N

nodes. Correlation dimensions of these 2D lattice networks are estimated to 1.98. (b) (Top panel) Log-log plot of correlation sum Ch(r) as a
function of a distance scalar r for a series of h-dimensional vectors reconstructed from a 2D lattice network. (Bottom panel) Local slopes of
the correlation sums shown in the upper panel. The correlation dimension is an estimate of D = 1.98 ± 0.03. The convergent value is marked
by a horizontal dashed line.
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FIG. 7. (Color online) (a) Log-log plot of correlation sum C(l) as a function of the shortest path length l for the Sierpinski gasket with the
8th generation. Correlation dimension of the Sierpinski gasket is estimated to 1.57. (b) (Top panel) Log-log plot of correlation sum Ch(r) as a
function of a distance scalar r for a series of h-dimensional vectors reconstructed from the Sierpinski gasket. (Bottom panel) Local slopes of
the correlation sums shown in the upper panel. The correlation dimension is an estimate of D = 1.57 ± 0.03. The convergent value is marked
by a horizontal dashed line.

of the correlation sum. Hence, the slight variation of threshold
value ε has little influence on network structure.

Moreover, we test the robustness of our transformation
method against observational Gaussian noise given the same
threshold as that in Fig. 2. Figure 4 shows the clustering
coefficient versus noise level (signal-to-noise ratio, SNR)
for the previous Rössler time series. It is shown that the
clustering coefficient is approximately stable at SNR > 30 dB.
Meanwhile, the correlation dimension of the corresponding
transformed networks is approximately 2. However, along with
more noise, the correlation dimension of the transformed net-
works deviates significantly from the correlation dimension of
the chaotic Rössler system, suggesting that the quasi-isometric
condition cannot be satisfied. Meanwhile, the clustering
coefficient also indicates that the network structure changes
significantly. In summary, the transformation theory shows its
robustness in practical conditions where the threshold varies
somewhat or the time series is contaminated with a weak noise.

We now study transformations from three typical synthetic
networks with well-defined dimensions. The first one is a ring
lattice network with each node having k links [26]. For a
randomly chosen seed node, the number of nodes centered
at the seed node with distance less than l is l × k. When the
distance increases by 1, the number of nodes centered at the
seed node increases to k(l + 1). It is clear that the average
number of nodes C(l) shows a linear scaling with respect to
the distance, i.e., C(l) ∝ l. This implies that the dimension of
a ring lattice network equals that of the straight line in space.
Here we test a ring lattice network with 10,000 nodes. As
expected, in Fig. 5(a) C(l) shows a scaling, whose slope is
the same as the theoretical value. By CMDS, this network is
transformed into the multidimensional vectors. This process
can be understood as reconstruction of a network in phase
space with the multidimension denoted by h as an embedding
dimension. We select the vectors corresponding to the maximal
h eigenvalues to compute the spatial distance between nodes

by the Euclidean norm. According to Fig. 5(b), correlation
dimension of the multidimensional vectors is consistent with
that of the ring network. This suggests that these vectors can
accurately represent the geometrical features of this network.

A two-dimensional (2D) lattice network can be re-
garded as a discretion limit of a smooth metric plane [16].
Therefore, a correlation dimension of a 2D lattice network
with finite but adequate nodes is almost two (i.e., the Hausdorff
dimension of a plane). We show correlation sums of 2D
lattice networks in Fig. 6(a). Correlation sums of a series of
the multidimensional vectors from a 2D lattice network with
10,000 nodes corresponding to the maximal h eigenvalues
are presented in Fig. 6(b). Correlation dimensions saturate

FIG. 8. (Color online) Log-log plot of correlation sum Ch(r) as
a function of the distance scalar r for a series of the h-dimensional
vectors from a random network with 10,000 nodes. The scaling keeps
increasing with larger h.
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and approximately converge to 1.98 when h is more than 3.
The maximal five eigenvalues dominate 90.3% of the sum
of all nonzero eigenvalues. The space representation of a 2D
lattice network described by these multidimensional vectors
constitutes a flat surface, showing the same geometry as the
given network.

We further validate another regular network (i.e., Sierpinski
gasket) with a known fractal dimension. We generate a
Sierpinski gasket composed of 3282 nodes and 6561 edges.
From Fig. 7(a), we observe that the correlation dimension of
this network is approximated to the Hausdorff dimension of the
Sierpinski gasket, i.e., ln3/ln2 [27]. Correlation sums of series
of the multidimensional vectors from the Sierpinski gasket
corresponding to the maximal h eigenvalues are presented in
Fig. 7(b). The curves for correlation dimension converge to

1.57 when h is more than 3. Again, the fractal network and its
transformed time series have the same fractal dimension.

Different from the previous networks with a fixed number
of links for each node, a random network is constructed
based on a prescribed probability ρ determining whether
one node is connected with others. For a random network
of size n, the probability of two nodes with the shortest
path length less than l approximates to 1 − e−1/n(nρ)l [28].
For the given l, the average number of nodes centered at
a seed node approximates to C(l) = (n − 1)(1 − e−1/n(nρ)l ).
The first-order Taylor expansion of the previous equation
is (n − 1)/n(nρ)l according to e−1/n(nρ)l ≈ 1 − 1

n
(nρ)l . This

shows that the logarithm of an average number of nodes
exhibits a linear function with respective to l, i.e., log C(l) ≈
l log (nρ), which suggests that a random network has an

FIG. 9. (Color online) (a) Scaling for the protein-protein interaction network and the correlation dimension is estimated to 3.02. (b) (Top
panel) Log-log plot of correlation sum Ch(r) as a function of a distance scalar r for the protein-protein network. (Bottom panel) Local slopes
of the correlation sums shown in the upper panel. The correlation dimension is an estimate of D = 3 ± 0.05. (c) Scaling for the electrical
power grid network and the correlation dimension is estimated to 2.61. (d) (Top panel) Log-log plot of correlation sum Ch(r) as a function of
a distance scalar r for the power grid network. (Bottom panel) Local slopes of the correlation sums shown in the upper panel. The correlation
dimension is an estimate of D = 2.58 ± 0.05. The convergent value is marked by a horizontal dashed line.
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infinite correlation dimension. We notice that in Fig. 8
correlation sums of series of the multidimensional vectors from
a random network fail to converge to a fixed scaling. Therefore,
the multidimensional vectors transformed from a random
network also give an infinite correlation dimension. This result
implies that the dynamics described by the multidimensional
vectors of a random network may correspond to a stochastic
system.

The structural relationship of the previous synthetic net-
works is mapped to the spatial relationship coordinated by
the multidimensional vectors from these networks obtained
by CMDS. Furthermore, geometrical features related to each
network are still approximately preserved during transforma-
tions. Therefore, we get geometrical invariability in terms of
measure of correlation dimension. As a further validation,
we examine two real networks. One is the protein-protein
interaction network having 1609 nodes and 5546 links [29],
which has been confirmed as a fractal network [14]. The
other is the electrical power grid of the western United
States, with 4941 nodes and 6594 edges [26]. From Fig. 9
we observe an intermediate scaling regime and a scaling
C(l) ∼ lα (α = 3.02) for the first network. This exponent
value is a little lower than the box-counting dimension of
this network [14], since the box-counting dimension is an
upper boundary of Hausdorff dimension [16]. The scaling
for the multidimensional vectors shows Ch(r) ∼ lβ (β = 3).
This network and its multidimensional space representation
almost have the same correlation dimension. The estimation
of correlation dimension of the latter network is consistent with
the dimension of this network suggested in Ref. [24]. We also
notice the consistency of correlation dimensions for another
network and its multidimensional vectors in the corresponding
scaling regimes.

V. IDENTIFICATION OF DYNAMICAL TRANSITION
THROUGH TRANSFORMATION

Here we demonstrate the dual characterization of complex
systems by means of a quasi-isometric transformation. We

use the logistic map given by xn+1 = axn(1 − xn), where a

is the control parameter. Figure 10(a) shows the bifurcation
diagram versus a ∈ [3.5,4] with a step size of 0.007 5, where
the logistic map exhibits various dynamical behaviors [30].
Here, we characterize it in terms of network measurement.
For each value of a, we generate 1000 data from the logistic
map and choose the threshold ε that satisfies the condition of
the quasi-isometric transformation. We calculate the clustering
coefficient C from the transformed networks. A transition
of dynamical behaviors is exactly captured by this network
statistics. In particular, the periodic behavior corresponds to
the maximal value of C (i.e., C = 1), whereas smaller values
of C (i.e., less than 0.82) are calculated from the clearly chaotic
regime. Some other behaviors such as accumulation point and
interior crisis may result in intermediate values of C [30].
Results imply that a dynamically equivalent transformation
ensures that dynamical behaviors hidden in a time series
can be strictly preserved and then captured by network
statistics. Significantly, the quasi-isometric transformation
theorem makes it possible to investigate complex systems
from both perspectives and thereby achieves a comprehensive
understanding for them. Based on such a transformation, more
network-based methods may be proposed to describe specific
dynamical behaviors of complex systems as well as their
characteristic parameters that have been studied by time-series
methods such as Lyapunov exponent or recurrence times
[31,32].

VI. DISCUSSION ON FRACTIONAL BROWNIAN PROCESS

We have so far illustrated our findings with deterministic
systems. Of course, the quasi-isometric theorem is also appli-
cable to stochastic processes. To address this case, we choose
the fractional Brownian motion (fBm) with Hurst exponents H
ranging from 0.5 to 0.95. We repeat the previous experimental
procedure with these fractional Brownian motions and find that
the correlation dimension D of their networks stays almost
the same as the original fractal dimension of a stochastic

FIG. 10. (Color online) (a) Bifurcation diagram of the logistic map versus the parameter a. (b) Clustering coefficient C of the transformed
networks.
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FIG. 11. (Color online) (a) Correlation sum C(r) for the transformed network from the fBm versus the shortest path length l. (b) Relationship
between the Hurst exponent H of a series of original fBm data and a correlation dimension D of their transformed networks.

time series. Typical results are plotted in Fig. 11(a). More
significantly, the dimension estimated from these networks
contains an approximately linear function with respect to the
Hurst exponent H (D = −1.07 ∗ H + 2.03), which indicates
the existing relationship between the Hurst exponent H and
fractal dimension d for the fBm (d = 2 − H ) [33]. We notice
that when the Hurst exponent decreases to near 0.5, the
stochastic data is less correlated and there is more stochastic
fluctuation. It gradually becomes difficult to exactly preserve
the original distance during transformation. For the fBm with
a Hurst exponent lower than 0.5, due to anticorrelation it
is almost impossible to achieve a proper threshold value in
practical simulation so as to ensure geometrical perseveration
over transformation.

VII. CONCLUSION

In this work, we give theoretical evidences for the ge-
ometrical invariability of transformations so that a time
series and its network representation (or vice versa) can
be dynamically equivalent. This conclusion is based on a
theorem of quasi-isometry, which implies that underlying
geometrical features of complex systems are preserved. As
a result, the fractal dimension stays the same in a justified
quasi-isometric transformation. Our theorem is applicable to
the transformation methods proposed in Refs. [7,34].

The correlation dimension of a network has been described
in Ref. [16]. In that article, a trajectory of random walks on
a network as a time series is reconstructed with embedding
dimensions. The correlation dimension estimated on the
reconstructed phase space is regarded as a network correlation
dimension. In contrast to this method, we directly transform

a network into multidimensional vectors by the technique
of classical multidimensional scaling. As the output vectors
are an optimal configuration of the input network structure,
CMDS enables a quasi-isometric transformation. The dis-
tancelike information of a network is preserved during such
a transformation. Consequently, the correlation dimension
of the multidimensional vectors exactly reflects the network
dimension. Numerical analysis of various synthetic and real
networks confirms this finding. One advantage of our method
is that the quasi-isometric theorem provides a theoretical base
for identifying network dimensions. The numerical results of
more networks support our conclusion.

The quasi-isometric transformation theorem (i.e., geomet-
rical invariability) serves as a fundamental proof that ensures
an equivalent characterization of complex systems from the
dual perspective of a time series and a network. We have so
far illustrated the feasibility and utility of a network-based
approach for identifying the underlying bifurcation of a time
series given such transformation. Our theorem suggests that
by means of an equivalent transformation it is feasible to
explore the dynamical characteristics of the complex system
from a new perspective or even mine extra information that is
uncovered from the present perspective. Consideration is then
shifted to how to extract effective network (or time-series)-
based methods for this purpose.
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