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We study the problem of estimating the origin of an epidemic outbreak: given a contact network and a snapshot
of epidemic spread at a certain time, determine the infection source. This problem is important in different
contexts of computer or social networks. Assuming that the epidemic spread follows the usual susceptible-
infected-recovered model, we introduce an inference algorithm based on dynamic message-passing equations and
we show that it leads to significant improvement of performance compared to existing approaches. Importantly,

this algorithm remains efficient in the case where the snapshot sees only a part of the network.
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I. INTRODUCTION

Understanding and controlling the spread of epidemics on
networks of contacts is an important task of today’s science.
It has far-reaching applications in mitigating the results of
epidemics caused by infectious diseases, computer viruses,
rumor spreading in social media, and others. In the present
article, we address the problem of estimation of the origin of
the epidemic outbreak (the so-called patient zero, or infection
source—in what follows, these terms are used alternately):
given a contact network and a snapshot of epidemic spread
at a certain time, determine the infection source. Information
about the origin could be extremely useful to reduce or prevent
future outbreaks. Whereas the dynamics and the prediction of
epidemic spreading in networks have attracted a considerable
number of works (for a review, see [1-3]), the problem
of estimating the epidemic origin has been mathematically
formulated only recently [4], followed by a burst of research
on this practically important problem [5-11]. In order to
make the estimation of the origin of spreading a well-defined
problem, we need to have some knowledge about the spreading
mechanism. We shall adopt here the same framework as in
existing works, namely we assume that the epidemic spread
follows the widely used susceptible-infected-recovered (SIR)
model or some of its special cases [12,13].

The stochastic nature of infection propagation makes the
estimation of the epidemic origin intrinsically hard: indeed,
different initial conditions can lead to the same configuration
at the observation time. Finding an estimator that locates the
most probable origin, given the observed configuration, is, in
general, computationally intractable, except in very special
cases such as the case where the contact network is a line or
a regular tree [4,6,11]. The methods that have been studied
in the existing works are mostly based on various kinds
of graph-centrality measures. Examples include the distance
centrality or the Jordan center of a graph [4—7]. The problem
was generalized to estimating a set of epidemic origins using
spectral methods in [8,9]. Another line of approach uses more
detailed information about the epidemic than just a snapshot
at a given time [10]. Note, however, that all of the present
methods are limited; for instance, none of them make efficient
use of the information about the nodes to which the epidemic
did not spread.
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In this paper, we introduce an algorithm for the estimation
of the origin of an SIR epidemic from the knowledge of the
network and the snapshot of some nodes at a certain time. Our
algorithm estimates the probability that the observed snapshot
resulted from a given patient zero in a way which is crucially
different from existing approaches. For every possible origin of
the epidemic, we use a fast dynamic message-passing method
to estimate the probability that a given node in the network was
in the observed state (S, I, or R). We then use a mean-field-
like approximation to compute the probability of the observed
snapshot as a product of the marginal probabilities. Finally, we
rank the possible origins according to that probability.

The dynamic message-passing (DMP) algorithm that we
use in order to estimate the probability of a given node to
be in a given state is interesting in itself. It belongs to the
class of message-passing algorithms that includes the standard
belief propagation (BP) method, also known in different fields
as cavity method or sum-product equations [14,15]. BP is
a distributed technique that allows one to estimate marginal
probability distributions in problems on factor graphs and
networks, and appeared to be very successful when applied
to Bayesian networks [16], error-correcting codes [17], and
optimization problems [18]. The BP equations are derived
from the Boltzmann-Gibbs distribution under the assumption
that the marginals defined on an auxiliary cavity graph (a
graph with a removed node) are uncorrelated, which is exact
if the underlying network is a tree (for a general discussion,
see [15]). From a numerical point of view, the solution of the
BP equations is obtained by iteration until convergence.

The DMP equations can be derived be generalizing BP to
dynamic problems, using as variables in the corresponding
graphical model the whole time trajectories of a given node;
see, e.g., [19,20]. For general dynamics, the complexity
of the equations increases exponentially with time, making
it impossible to solve the dynamic BP equation for the
whole trajectory except for only few time steps. However,
crucial simplifications occur for the models with irreversible
dynamics, such as the random field Ising model [21] and
the SIR model considered in this paper. Indeed, the time
trajectories in these models can be fully parametrized with
only a few flipping times, leading to important simplification
of the corresponding BP equations on trajectories. As a result,
they can be rewritten in terms of closed DMP equations, using
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dynamic variables that appear to be the weighted sums of
messages of the dynamic BP equations. In this work, we
present a more straightforward derivation that makes use of
arguments similar to those used in the cavity method [15].

A precursor of DMP equations appeared in [22] in a form
averaged over initial conditions, which does not lend itself to
algorithmic use. Here we derive and use the DMP on a given
network for given initial conditions. If averaged also over the
graph ensemble, it can be used to obtain the asymptotically
exact dynamic equations of [23,24] for SIR, or those of [21] for
avalanches in the random field Ising model. Note that although
DMP bears some similarity to BP, it is crucially different in
several aspects: it is not directly derived from a Boltzmann-like
probability distribution and it does not need to be iterated until
convergence; instead the iteration time corresponds directly to
the real time in the associated SIR dynamics. A nice property
that DMP shares with BP is that it gives exact results if the
contact network is a tree. We use it here as an approximation
for loopy-but-sparse contact networks in the same way that BP
is commonly used with success in equilibrium studies of such
networks.

We test our algorithm on synthetic spreading data and show
that it performs better than existing approaches (except for a
special region of parameters where the Jordan center is, on
average, better). The algorithm is very robust; for instance,
it remains efficient even in the case where the states of only
a fraction of nodes in the network are observed. From our
tests, we also identify a range of parameters for which the
estimation of the origin of epidemic spreading is relatively
easy, and a region where this problem is hard. Hence, our data
set can also serve as a testbed for new approaches.

II. SIR MODEL AND DYNAMIC
MESSAGE-PASSING EQUATIONS

A. Spreading model

The mathematical modeling of epidemic spreading is a
subject of growing interest because of its importance for
practical applications, such as the analysis, evaluation, and
prevention of consequences of epidemiological processes.
Percolationlike processes have been addressed in a number
of physics studies, in particular aiming to understand the role
of the network topology on the spreading results. The most
popular and studied epidemiological models are susceptible-
infected-susceptible (SIS) and susceptible-infected-recovered
(SIR) models. The SIS model is used to model endemic
diseases that can be maintained in a population for a long time
because of the reinfection of individuals. In the SIR model,
the infection cannot persist indefinitely due to depletion of
susceptible agents, and the quantity of interest is typically the
fraction of population touched by the infection. The general
properties and the phase diagram of these models on random
networks were studied in many works; see, e.g., [3], and
references therein. In this paper, we focus on the SIR model,
corresponding to the irreversible dynamic process where
the nodes that catch the infection ultimately become either
immunized or dead. The real cases that fall into this category
include diseases that confer immunity to their survivors, or
computer viruses in a setting of a permanent virus checking
against attacks of the same virus in a computer network.
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The typical assumptions in the studies of the SIR dynamics
on networks include the uniformity of the infection and recov-
ery probabilities and the mass-action mixing hypothesis, i.e.,
an assumption that, in principle, each pair of individuals can
interact, ignoring the actual topology of the physical contacts.
These assumptions allow one to write simple “naive” mean-
field differential equations on the densities of susceptible,
infected, and recovered nodes in the population, providing for
a qualitative understanding of mechanisms and thresholds of
epidemic spreading and a rough fitting of some real epidemic
data [12,13]. However, these assumptions are obviously
unrealistic since they do not account for heterogeneities in
contacts and transmission probabilities. A number of recent
investigations addressed these issues by considering more
accurate settings, e.g., using random networks, but averaging
over the graph ensembles or initial conditions (for reviews,
see [3,22,25]). Still, most of the studies on random graphs
are limited to numerical simulations or to the use of naive
mean-field equations, which might be a crude approximation
for some applications. In this paper, we study the SIR model
on a given graph. The dynamic equations that we use are
exact for locally treelike networks; for real-world problems,
they often provide a good approximation, allowing a better
determination of the infection source. Throughout this work,
we study a static network of interacting individuals, although
dynamically changing networks can also be considered within
our approach; see discussion below.

The SIR model is defined as follows. Let G = (V,E) be
a connected undirected graph containing N nodes defined by
the set of vertices V and the set of edges E. Eachnode i € V
at discrete time ¢ can be in one of three states g;(¢): susceptible
qi(t) = §, infected g;(t) = I, or recovered ¢;(t) = R. At each
time step, an infected node i will recover with probability u;,
and a susceptible node i will become infected with probability
1 — [Tieail — AkiSgur), 1), wWhere i is the set of neighbors of
node i, and X;; measures the efficiency of spread from node k
to node i. The recovered nodes never change their state. We
assume that the graph G and parameters A;;, (; are known (or
have already been inferred).

B. Dynamic message-passing equations

Let us derive the dynamic message-passing (DMP) equa-
tions for the SIR model that are used later in the inference
algorithm. In particular, we will show that the probabilities
of being susceptible, infected, or recovered at a given time ¢
as provided by the DMP equations are exact for all initial
conditions and every realization of the transmission and
recovery probabilities A;; and u; if the graph of contacts is
a tree. We define Pi(1), Pj(t), and Pg(¢) as the marginal
probabilities that g;(¢) = S, ¢;(t) = I, and ¢;(t) = R. These
marginals sum to one and thus

Pi(t+1)=1— Pi(t + 1) — Pp(t + 1). 60

Since the recovery process from state [ to state R is
independent of neighbors, we have

Pi(t 4+ 1) = Ph(r) + i Pi(1). )

The epidemic process on a graph can be interpreted as the
propagation of infection signals from infected to susceptible
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nodes. The infection signal d'~/(¢) is defined as a random
variable which is equal to one with probability §,,;—1),;Aj, and
equal to zero otherwise. Consider an auxiliary dynamics D;
where node j receives infection signals, but ignores them and
thus is fixed to the § state at all times. Since the infection cannot
propagate through node j in this dynamic setting, different
graph branches rooted at node j become independent if the
underlying graph is a tree. This is the natural generalization of
the cavity method used for deriving BP (see [15]) to dynamic
processes. Notice that the auxiliary dynamics D; is identical
to the original dynamics D for all times such that g;(t) = S.
We also define an auxiliary dynamics D;; in which the state of
a pair of neighboring nodes i and j is always S.

In order to obtain a closed system of message-passing
equations, we write the remaining update rules in terms of
three kinds of cavity messages, defined as follows. We first
define the message 6 ~(¢) as the probability that the infection
signal has not been passed from node k to node i up to time ¢
in the dynamics D;:

0%~ (t) = Prob” [Z di) = 0} . (3)

t'=0

The quantity ¢*~(¢) is the probability that the infection signal
has not been passed from node k to node i up to time ¢ in the
dynamics D; and that node & is in the state I at time ¢:

&*%)=Hﬂﬂ[§:f*%5:04un=l] “

t'=0

Finally, P£7(¢) is the probability that node & is in the state S
at time ¢ in the dynamics D;:

P (1) = Prob” [gi(t) = S]. (5)
In what follows, we prove that
P+ ) =Py [] 6@+ D, (©)
kedi\ j
where 0i \ j means the set of neighbors of i excluding j. Indeed,
by definition,
Pt 4+ 1) = Prob”[g;(¢ + 1) = §]

t+1

DI AN N C)

kedi\j 1'=0

= P{(0)Prob”

Since the auxiliary dynamics D;; coincides with dynamics D;
as long as node i is in the S state, we can write

t+1

DoAY | @)

kedi\j 1'=0

P/ (t + 1) = Pi(0) Prob”

Since different branches of the graph containing nodes k €
0i\ j are connected only through node i, they are independent
of each other, hence,

t+1
P/t +1) = Pi(0) ] Prob™ [Zd“"(ﬂ)] 9)

kedi\j t'=0
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Moreover, for nodes k € 97\ j, the dynamics D;; is equivalent
to the dynamics D;, so we can replace D;; by D; in the last
expression and, hence, using the definition (3), we obtain
Eq. (6). We complete the updating rules by writing the
equations for #*~/(t) and ¢*~(t). The only way in which
6%=i(¢) can decrease is by actually transmitting the infection
signal from node k to node i, and this happens with probability
Aw; multiplied by the probability that node k was infected, so
we have

5=t + 1) — 057 (t) = —h @F 70 (0). (10)

The change for ¢*~i(¢) at each time step comes from
three different possibilities: either node k actually sends the
infection signal to node i (with probability Ag;), recovers
(with probability py), or switches to I at this time step,
being previously in the S state [this happens with probability
St —1) = S0

¢k—>i(t) _ ¢k—>i(l _ 1)
= AT — 1) — et = 1)
+ M = D)+ S 1) = S5 @), ()

The third compensation term on the right-hand side of the
previous equation has been introduced in order to avoid double
counting in the situation when node k transmits the infection
and recovers at the same time step.

This completes the update rules for cavity messages.
These equations can be iterated in time, starting from initial
conditions for cavity messages:

6=i0) =1, 12)

¢"I(0) = 84001 (13)

The marginal probability in the original dynamics D is
obtained by including all of the neighbor nodes k € di in
Eq. (6):

Pit+1)=PiO o "¢+ D). (14)
kedi

Let us summarize the closed set of recursion rules, given by
the combination of (1,2,6,10,11,14):

Pt + 1) =Py0) J] 07"+ 1), (15)
kedi\j

Ot + 1) — 057 (1) = — A" (1), (16)

"1 0) =(1 — M) — )" (@ — 1)
— [P0y — P — D). (17)

The marginal probabilities that node i is in a given state at
time ¢ are then given as

Pit+1)=PiO) [ [0t + 1), (18)
keoi

Pi(t + 1) = Ph(t) + wi Pi(1), (19)

Pi(t+1)=1—Pi(t+1)— Pp(t +1). (20)
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Together with the initial conditions (12) and (13), these
equations give the exact values of marginal probabilities Pi(),
Pi(t), and P}(t) on a tree graph. The algorithmic complexity
of DMP equations for a given vertex i is O(¢Nc), where c is
the average degree of the graph.

It should be noted that equations reminiscent of (15)—(20)
were first derived in [22]. The authors of [22] treated a
more general SIR model where the transmission and recovery
distributions are nonexponential. For this more general case,
no easily tractable form of the DMP is known (by this we
mean a Markovian form of the DMP, where the probabilities
at time ¢ give the probabilities at time 7+ 1 via a set of
simple closed equations). The equations in [22] were instead
written in a convolutional form that is rather complicated for
numerical resolution. The authors noticed that when recovery
and transmission rates are constant, the equations simplify,
but did not write a version of the equations that is applicable
on a given graph for a given initial condition (actually they
only wrote equations averaged over a set of initial conditions).
Hence we find it useful to provide the derivation of the DMP
on a single graph in their simple iterative form.

For the purpose of this paper, we use the DMP on a single
instance of the contact network for a given initial condition.
However, if an ensemble of initial conditions is given as well
as an ensemble of random graphs with a given probability
distribution, then one can write differential equations for the
fraction of nodes that are susceptible, infected, or recovered
at a given time. These equations were first derived by [23]
and appeared also in [22] and [24]. One should not confuse
these averaged DMP equations with the “naive” mean-field
equations that are often written for the SIR model under
the assumption of perfect mixing, as discussed previously.
Whereas the naive mean-field equations provide only a very
crude approximation for the real probabilities, the equations
of [23,24] are exact in the thermodynamic limit, N — oo, as
long as, in the random graph ensemble, the probability that a
randomly chosen node belongs to a finite-length loop goes to
zero in the large graph-size limit.

III. INFERENCE OF EPIDEMIC ORIGIN
AND DMP ALGORITHM

To define the problem of estimation of the epidemic origin,
we consider the case where, at initial time # = 0, only one
node is infected (the “patient zero”, iy) and all others nodes
are susceptible. After 7y > O time steps (fp is, in general,
unknown), we observe the state of a set of nodes O C V,
and the task is to estimate the location of patient zero based on
this snapshot; see Fig. 1.

Let us briefly explain two existing algorithms [4,6,7] that
we will use as benchmarks. The authors of [4,6,7] considered
only the case when all of the nodes were observed, © = V. In
the Appendix, we propose a generalization of these algorithms
to a more general case. The most basic measure for node i to
be the epidemic origin is the distance centrality D(i), which
we define as D(i) = Zjeg d(i, j)(8q;.1 + 84;.r/1n;), Where the
graph G is a connected component of the original graph G
containing all infected and recovered nodes and only them,
and d(i,j) is the shortest path between node i and node
J on the graph G. The ad hoc factor 1/u; is introduced
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FIG. 1. (Color online) An example of a single instance of the
inference problem on a random regular graph of degree ¢ = 4 with
N = 40 nodes. The patient zero is labeled by P and appears in the
state R in the snapshot. The epidemic is generated for A = 0.5 and
= 0.5; the snapshot is represented at time 7, = 5.

to distinguish recovered nodes that for small p; tend to be
closer to the epidemic origin. In the existing works, this factor
was not present because [4,6] treated only the SI model,
and [7] considered that susceptible and recovered nodes are
indistinguishable. The authors of [4,6] suggested a “rumor
centrality” estimator and showed that, for tree graphs, the
rumor centrality and the distance centrality coincide. Another
simple but well-performing estimator, Jordan centrality J (i),
was proposed in [7] and corresponds to a node minimizing
the maximum distance to other infected and recovered nodes:
J(i) =max;egd(i,j). A node i where J(i) is minimal is
known as a “Jordan center” of G in the graph theory literature.
Note that in [7], the Jordan center of only the infected notes
was used, hence our implementation uses more information.
The core of the algorithm proposed in the present work is
DMP, explained in the previous section, which provides an
estimate of the probabilities Py (7,io) [respectively, P; (z,io),
P,‘é(t,io)] that a node j is in each of the three states S, I, R, at
time 7, for a given patient zero iy. Let us first assume that the
time #( is known. With the use of Bayes rule, the probability
that node i is the patient zero given the observed states is
proportional to the joint probability of observed states given the
patient zero, P(i|O) ~ P(O|i). We also define an energylike
function of every node E(i) = — log P(QO|i), such that nodes
with lower energy are more likely to be the infection source.
If one were able to compute P(Q|i) exactly, finding i which
minimizes E(i) would be an optimal inference scheme of the
patient zero. As there is no tractable way to compute exactly
the joint probability of the observations, we approximate it
using a mean-field-type approach as a product of the marginal
probabilities provided by the dynamic message passing,

POl ~ [] Péwi) [T Py T] Pr@.i. @b
i =t ik
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FIG. 2. (Color online) A test of inference of the epidemic origin
on random regular graphs of degree ¢ = 4, size N = 1000. Inset: An
epidemic is generated with recovery probability i = 1, transmission
probability A = 0.6; a snapshot of all the nodes is taken at time #, = 8
(in this figure, we assume we know the value of #;), and 242 nodes
are observed to be in the / or R state. The dynamic message passing
is used to compute the energy of every node. This energy is finite for
43 nodes; it is plotted as a function of their rank r. The true patient
zero is marked by a red cross, and its rank is r(ip) = 2 in this case.
Main figure: an epidemic generated with u = 1, A = 0.5, 7y = 5. The
histogram (over 1000 random instances) of the normalized rank (i.e.,
the rank divided by the number of R or I nodes in the snapshot) of the
true patient zero is plotted for the dynamic message-passing (DMP)
inference, as well as for the distance, rumor, and Jordan centrality
measures.

To estimate the value of 7y, we compute the energy E(i,t)
for different possible values ¢, and choose the value that
maximizes the “partition function” Z(r) =), e £0:D. As
mentioned previously, the algorithmic complexity for com-
puting the energy E(i) of a given vertex i (and therefore the
probability that it is the epidemic origin) is O(tyNc), where ¢
is the average degree of the graph.
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IV. PERFORMANCE OF INFERENCE ALGORITHMS

We first test our algorithm on random regular graphs, i.e,
random graphs drawn uniformly from the set of graphs where
every node has degree c. In all of the simulations, we consider
uniform transmission and recovery probabilities A;; = A and
Hi = K.

In the first example (inset of Fig. 2), we plot the energy
E (i) resulting from the dynamic message passing of the nodes
for which the probability of being the epidemic origin is finite
according to our algorithm; we order the nodes according to
the energy value. The true epidemic origin is marked with a
red cross. We define the rank of candidates for the epidemic
origin to be its position in this ranking (the lowest energy node
having rank 0). The main graph of Fig. 2 shows the histogram
of normalized ranks (i.e., the rank divided by the total number
of nodes that was observed as recovered or infected) of the
true epidemic origin as obtained from our DMP inference
algorithm, compared to the rankings obtained by distance,
rumor, and Jordan centralities. The DMP inference algorithm
considerably outperforms the three centrality measures, with
a comparable computational cost.

In Fig. 3, we present the average normalized rank of the true
epidemic origin for random regular graphs for the whole range
of the transmission probability A, for different values of the
recovery probability 1, and snapshot times fy. As an estimation
for the spreading time #;, we take the one maximizing the
“partition function” Z(r) = Y, e~ The distribution of the
estimated time is concentrated at the true spreading time #,.
We find that for different values of u, DMP inference always
outperforms the centrality measures [see, e.g., the case of
Fig. 3(a)], except in the special case of Fig. 3(b) (u =1,
corresponding to the deterministic recovery), in a range of
0.3 < A < 0.58 where Jordan center is a better estimation.
In other cases, however, Jordan centrality is less performant.
Note that for u < 1, Jordan centrality does not distinguish
between recovered and infected nodes, which partly explains
its rather bad performance in that case. Figure 3(c) shows the
dependence on the spreading time #, for fixed values of A and
1. Note that DMP remains efficient even for relatively large
tp, when the centrality algorithms fail to make a prediction.

05F  pDMP o

| Distance —=—

1 05

rank of ig / |G|

41 0.5
E 0.4
R 0.3
E 0.2
E 0.1

I and R fraction

FIG. 3. (Color online) Average rank of the true epidemic origin on random regular graphs of size N = 1000 with degree ¢ = 4. Each data
point is averaged over 1000 instances. (a),(b) The dependences of the average rank on the infection rate A, for the snapshot time 7o = 10 and
recovery probability p: (a) © = 0.5 and (b) u = 1. In this figure, #; is inferred by the algorithm. The DMP estimator (red circles) is compared to
the Jordan centrality (green triangles) and the distance centrality (blue squares) estimators. The dotted line shows the average fraction of nodes
that were infected or recovered in the snapshot, |G|/N; we use this number to normalize the ranks of the epidemic origin. (c) The dependence
on the snapshot time #, for A = 0.7 and p = 0.5. The dashed line is the average fraction of nodes that were infected and the dash-dotted line is
the average fraction of nodes that were recovered in the snapshot; both are normalized to N.
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FIG. 4. (Color online) Left: An instance of inference problem on the Erdos-Rényi graph with average degree (c¢) = 4 and N = 84. The
epidemic is generated for A = 0.7 and . = 0.5. In this example, only infected (light) and recovered (dark) nodes are present in the snapshot
at time 7o = 5. The true patient zero is labeled by P; the best-ranked nodes for DMP (M), Jordan (J), and distance (D) centralities are at
distances 1, 2, and 3 from P, correspondingly. Right: Average rank of the true epidemic origin on Erdos-Rényi graphs of size N >~ 1000 with
average degree (c¢) = 4. Each data point is averaged over 1000 instances. The snapshot time 7, (assumed to be known) and recovery probability
ware (a) to = 10, u = 0.5 and (b) #p = 10, u = 1. The dotted line shows the average fraction of nodes that were infected or recovered in the
snapshot, |G|/N. We use this number to normalize the ranks of the epidemic origin.

Importantly, in some range of parameters, the average size N ~ 1000, generated to have the Pareto degree dis-
normalized rank of the true epidemic origin is not so close  tribution with a shape parameter o = 0.25, and minimum
to zero (note that the value 1/2 of the normalized rank  value parameter k = 1, with a probability distribution function
corresponds to a random guess of patient zero among all the P(x) = ak®x~'7%, defined for x > k. For both networks,
infected or recovered nodes). The problem of estimating the the DMP algorithm considerably outperforms Jordan and
epidemic origin with good precision is very hard in these distance centralities. In our opinion, the systematic comparison
regions. In some cases, the information about the epidemic presented here is a good testbed for comparing and improving
origin was lost during the spreading process. For instance, for ~ algorithms.

A > A, = u/(c — 2+ p)[26], the epidemic percolates at large We now show the performance of our algorithm in the case
times fy > log. N; then the information about the epidemic where the snapshot is incomplete: a fraction & of nodes is
origin is lost. On the other hand, for 7y < log, N, the epidemic not observed. We compare it to the generalizations of Jordan
is confined to a tree network and in this case the inference of ~ and distance centralities to this case that we propose in the
the origin is easier; cf. Fig. 3(c). In Figs. 3(a) and 3(b), we Appendix. The idea behind this generalization consists of a

mostly focus on the intermediate case ) ~ log. N. careful construction of a connected component of infected,
We also present the results for other families of random recovered, and undefined nodes, for which the centrality
networks, which can be qualitatively more relevant for applica- algorithms can be applied. Figure 6 gives the average rank

tions. In Fig. 4, we plot the inference results for the connected of the true epidemic origin. It shows that with incomplete
component of Erdos-Rényi graphs of size N >~ 1000 with snapshots, the DMP inference algorithm outperforms both
average degree (c) = 4. Figure 5 shows the corresponding centralities even in the case where for complete snapshots
results for the connected component of scale-free networks, the Jordan centrality was better. This observed robustness of
which are prototype to the real-world social networks, of =~ DMP is a very useful property.

- DMP e 41 0.5F o 1
| Distance —=— e - 1 =
Jordan —=— - : g/-/./. ;%
L I+ R - :;!{g;g,é A g,,ﬁiﬁ\& i 0.3+ «./‘!j ,Afa,,&\é‘ i §
e oo E
| / ‘oo oo L,\.\‘ zs;é_ 0.2k .\o\‘\& &f' E
\.K_x‘ +
- e 0.1 e A
______ '\m‘ \ ~
L o ; ----- 1 1 ] O 0 L o I- ----------- I“‘ 1 ] 0
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A A

FIG. 5. (Color online) Left: An instance of inference problem on the scale-free graph with average degree (c) =5/3 and N = 77. The
epidemic is generated for A = 0.7 and p = 0.5. The snapshot is represented at time #, = 10. The true patient zero is labeled by P; the
best-ranked nodes for DMP (M), Jordan (J), and distance (D) centralities are at distances 1, 2, and 4 from P, correspondingly. Right: Average
rank of the true epidemic origin on scale-free graphs of size N >~ 1000, generated according to the Pareto distribution with shape parameter
o = 0.25, and minimum value parameter k = 1, average degree (c) = 5/3. Each data point is averaged over 3000 instances. The snapshot
time 7y (assumed to be known) and recovery probability u are (a) tp, = 10, w = 0.5 and (b) #, = 10, u = 1. The dotted line shows the average
fraction of nodes that were infected or recovered in the snapshot, |G|/ N. We use this number to normalize the ranks of the epidemic origin.
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FIG. 6. (Color online) Performance of algorithms in the case of
an incomplete snapshot. Data is presented for a random contact
network of size N = 1000, degree ¢ = 4. Recovery probability
1 = 1, transmission probability A = 0.5 and A = 0.7; only the state
of a fraction 1 — & of nodes is observed at time #, = 10, assumed to be
known. The rank (averaged over 1000 instances) of the true epidemic
origin obtained with our DMP inference algorithm is compared to the
distance and Jordan centralities.

In order to illustrate the method on a nonrandomly
generated network, we studied the performance of DMP for
synthetic data on a real network of the US West-Coast power
grid which contains N = 4941 nodes with a mean degree
(c) = 2.67 and a maximum degree 19 [27], also considered as
an application to the patient zero problem in [4]. Our aim here
is not to study any problem relevant to the power grid itself,
but we use this well-documented network in order to test how
our algorithm performs on a network that is not random. This
network is, in fact, a widely used example of a real network
with the small-world property, having a right-skewed degree

0.5 DMP —e— E
Distance —l—
Jordan —A—

rank of 79 / |G|

FIG. 7. (Color online) Left: A representation of the topology
of the US West-Coast power grid network, generated with GEPHI.
Right: Normalized rank (averaged over 1000 instances) of the true
epidemic origin for epidemic spreading with u = 0.5 and all nodes
observed at time 7, = 10, on the power grid network. DMP inference
is significantly better than inference based on distance and Jordan
centralities.
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distribution, and is quite different with respect to an Erdos-
Rényi random graph of the same size and mean degree: its
measure of cliquishness, the clustering coefficient C = 0.08,
is much bigger than the transitivity of a corresponding random
graph Cy,ng = 0.005 [25,27]. The results are reported in Fig. 7:
we see that the algorithm works well and the DMP estimator
gives a better prediction for all range of A.

Our algorithm is based on an approximate form of Bayesian
optimal inference. There are two possible sources of subopti-
mality on real networks: first, the fact that the message-passing
equations may lead to errors on loopy graphs, and, second, the
mean-field-like approximation (21) of the joint probability dis-
tribution. We have observed that taking into account the two-
point correlation in this approximation does not lead to any
improvement in our results. It would be interesting to search
for better approximations of the likelihood on a general graph.

V. CONCLUSION

The approximate solution of dynamics of the SIR model
in terms of message-passing equations allowed us to develop
an efficient probabilistic algorithm for detecting patient zero.
Compared to existing algorithms, it generically (except for a
narrow range of parameters) provides an improved estimate
for the source of infectious outbreak. It also performs well
when the snapshot sees only a part of the network. One
superiority of our approach, compared to previous ones, is that
it efficiently uses the information about where the epidemic
did not spread. As is usual for Bayes inference approaches, our
algorithm is versatile and easily amenable to generalizations.
Let us mention a few possibilities of extension of our approach,
the study of which is left for future work. The present DMP
algorithm can be applied to contact networks that evolve in
time. The generalization is straightforward; one only needs
to encode the dynamics of the network into time-changing
transmission probabilities A;;(¢) and use Eqgs. (15)—(20). The
SIR model on dynamically changing networks has already
been studied using the graph-averaged version of the DMP
equations in [28,29]. We anticipate that the DMP equations on
a single graph will also be useful for studies where specific
experimental data about the changing network, such as those
of [30], can be used. Our approach can also infer multiple
infection sources. In the most straightforward way, it would,
however, scale exponentially in the number of sources. This
can be easily avoided by realizing that with k infection sources,
one may do a kind of Monte Carlo search for their best
positions. Another interesting problem for which our approach
can be generalized is when the knowledge of the contact
network is incomplete.
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APPENDIX: THE CENTRALITY ALGORITHMS
FOR INCOMPLETE SNAPSHOTS

In the case where the state of all the nodes is known
at time 7y, the centrality algorithms work on a connected
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component G of infected and recovered nodes. In practice,
the information is available only for a fraction 1 — & of nodes
in the graph G. The snapshot O(;) can then be thought of as a
configuration of (I — &) N nodes in the states S, I, R (nodes for
which we have the information), and of £ N randomly located
nodes in the unknown state X. Now the infected and recovered
nodes, in general, do not form a connected component and are
located in several disconnected components, separated by the
nodes in the unknown states X . Nevertheless, it is clear that not
all of the X nodes have to be checked as possible candidates to

PHYSICAL REVIEW E 90, 012801 (2014)

be the actual source of infection. If the cluster of nodes in the
X state is surrounded only by the S nodes, this cluster is clearly
in the S state itself. Other X nodes, in principle, are susceptible
to be the infection source and thus need to be checked.

We propose the following generalization of centrality
algorithms for the & # 0 case. First, we construct a connected
component composed of all of the nodes in the / and R states
and clusters of X nodes which are not completely encircled
by S nodes. This gives a connected component of /, R, and
X nodes attached together. Since now we have a connected
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FIG. 8. (Color online) Distribution of inferred rank of the epidemic origin measured over the graph G for Jordan centrality estimator
(light brown) and DMP estimator (dark brown) with known spreading time on regular random graphs of degree ¢ =4: (a) £ = 0,. = 0.5,
b)E=01=07,(c)E=051=05,(d)&=051=07,()&=09,L=0.5, ) £ =0.9,L =0.7. The average is performed over 500

instances.
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component G, we can run centrality algorithms on it in the
usual way. For £ = 0, the connected component constructed
in this way coincides with a connected component composed
of infected and recovered component.

In Fig. 8, we compare the distributions of ranks for DMP
and Jordan estimators for different & (¢ =0, £ = 0.5, and
& = 0.9) in the special case of “deterministic” recovery u = 1
forA = 0.5and A = 0.7. The results are presented for a regular
random graph composed of N = 1000 nodes with connectivity
¢ =4, and we take #p = 10. The plot shows how often the
rank of the actual epidemic origin iy is within the value

PHYSICAL REVIEW E 90, 012801 (2014)

of the corresponding bin (0% means exact reconstruction).
According to the histogram, in 60% of cases we manage to
locate the true infection source within 10% of relevant nodes
(those situated in G) for & = 0. This number falls to 40% for
& = 0.9, when the states of only 10% of nodes in the network
are known.

We see that although for £ = 0 the rank distribution based
on the Jordan centrality estimator gives better results (in the
case A = 0.5), it is no longer efficient when the number of
unknown nodes gets larger (for all £ > 0.4). The dependence
on £ for the case & = 0.7 follows the same patterns.
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