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Control of cardiac alternans by mechanical and electrical feedback
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A persistent alternation in the cardiac action potential duration has been linked to the onset of ventricular
arrhythmia, which may lead to sudden cardiac death. A coupling between these cardiac alternans and the
intracellular calcium dynamics has also been identified in previous studies. In this paper, the system of PDEs
describing the small amplitude of alternans and the alternation of peak intracellular Ca2+ are stabilized by optimal
boundary and spatially distributed actuation. A simulation study demonstrating the successful annihilation of
both alternans on a one-dimensional cable of cardiac cells by utilizing the full-state feedback controller is
presented. Complimentary to these studies, a three variable Nash-Panfilov model is used to investigate alternans
annihilation via mechanical (or stretch) perturbations. The coupled model includes the active stress which defines
the mechanical properties of the tissue and is utilized in the feedback algorithm as an independent input from
the pacing based controller realization in alternans annihilation. Simulation studies of both control methods
demonstrate that the proposed methods can successfully annihilate alternans in cables that are significantly
longer than 1 cm, thus overcoming the limitations of earlier control efforts.
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I. INTRODUCTION

Annually, 300 000 to 500 000 deaths in the United States
can be attributed to sudden cardiac death (SCD) resulting
from ventricular arrhythmias [1]. Specifically, ventricular
fibrillation (VF) and ventricular tachycardia (VT) are the two
types of arrhythmias associated with the abnormal electrical
activities in the cardiac tissue. Both VF and VT have been
identified as the primary reasons behind the majority of
fatal cardiac arrest [1,2]. Alternans, shown in Fig. 1, are
defined as the beat-to-beat alternation in the action potential
duration (APD). Multiple studies have shown that alternans
act as a precursor to these life-threatening arrhythmias, since
it can transition into VF under rapid pacing rates [3–6].
On an electrocardiogram (ECG), these alternans appear as
alternations in the T -wave segments. In both animals [3]
and humans [7], clinical studies have shown that the risks
of VF and SCD are increased in the presence of T-wave
alternans, even at small levels. Therefore, the annihilation of
these alternans may potentially be an effective antiarrhythmic
strategy.

Alternations in the APD can be induced in the cardiac
tissue by applying a rapid pacing protocol. Associated with
each action potential is a resting period known as the diastolic
interval (DI). Reducing the pacing period shortens the DI, and
as a result the tissue does not have enough time to fully recover
before the next stimulus is applied, thus yielding a shorter
APD. This leads to a period-doubling bifurcation in which the
following pattern emerges: short DI → short APD → long DI
→ long APD.

During an action potential propagation, the transmembrane
potential and the intracellular Ca2+ transient are bidirec-
tionally coupled [8–10]. In the case of positive V → Ca2+
coupling, a longer APD corresponds to a higher peak Ca2+
transient, and vice versa. Similarly, for positive Ca2+ → V
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coupling, a larger Ca2+ release will prolong the APD, and
vice versa. In this work, we only consider the case when both
couplings are positive, as shown in Fig. 1, which leads to
concordant (spatially synchronized) alternans [9].

Most of the existing alternans annihilation methods are
solely based on modulating the pacing interval at the tissue
boundary. The pacing interval is modulated based on measure-
ments of consecutive APDs at the pacing site. This electrical
boundary control strategy has been shown to be effective
in small tissues [3,11–13]. However, it has been shown
analytically and experimentally that this control strategy has a
finite degree of controllability, such that alternans stabilization
in cardiac tissues >1 cm cannot be achieved [3,11–17]. One
reason for this limitation is the fact that the feedback law
is based on only one measurement site and therefore does
not account for the spatially distributed nature of the tissue’s
electrical dynamics. Furthermore, since this control strategy
is nonmodel based, there is an inherent limitation on the
controller gain in order to prevent conduction block. As
demonstrated by [18], for alternans suppression in a ring
geometry, a model-based LQR (linear quadratic regulator)
control scheme significantly outperforms the non-model-based
control scheme. The same conclusion was reached in [19] for
the open fiber (the Purkinje fiber). However, as demonstrated
in [19], the optimal model-based control algorithm is only
successful up to L ≈ 2 cm. Recently, it has been shown that
oscillations in the pacing cycle length can induce alternans in
the heart [20]. A stochastic pacing protocol that annihilates
alternans by reducing the slope of the APD resitution curve
was then developed by [21]. However, this study was limited to
small cardiac tissues (1 cm × 1 cm). To overcome the limitation
in controllability pointed out in [16,17,19], we consider in this
paper the inclusion of a second actuator which is completely
independent of the boundary electrical pacing, and is based
on the coupling between voltage, calcium dynamics, and the
heart muscle’s mechanical activity.

Previously, Dubljevic and Christofides [22] developed an
optimal control strategy in which a spatially distributed,
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FIG. 1. (Color online) Time evolution of transmembrane poten-
tial (black solid line) and intracellular calcium concentration (red
dashed line) in the presence of alternans.

calcium-based actuation was combined with boundary
actuation. However, in [22], the authors did not account for
the spatial evolution of the Ca2+ transient along the cable
of cardiac cells. In this work, a similar control strategy is
developed for a system of two coupled PDEs describing the
spatiotemporal dynamics of the amplitudes of alternans [23]
and that of the peak intracellular Ca2+ concentration [9]. With
this coupled system of PDEs, the cardiac system’s calcium
dynamics is relevantly represented. These PDEs belong to a
class of parabolic PDEs that describe diffusion-convection-
reaction processes. By transforming the system of PDEs into
an abstract evolutionary form and partitioning its spectrum
into slow (finite-dimensional) and fast (infinite-dimensional)
subsystems, the finite-dimensional optimal state feedback
controller can be obtained, as presented in [24,25]. In this
method, the boundary actuator, which represents a pacing
algorithm, is applied at one end of the cable, while the
calcium-based actuator is applied over a specific region
of the cable. This calcium-based actuator modulates the
intracellular Ca2+ concentration and can be realized using
a drug that affects the calcium channels in the cardiac cells
(tissue), delivered using either a patch or an implantable
device.

The intracellular Ca2+ dynamics plays a critical role in the
mechanical contraction and relaxation of the cardiac muscle.
For instance, the binding of Ca2+ to Troponin C leads to the
generation of active stress in the sarcomere [26]. Therefore,
this coupling between the transmembrane potential and the
Ca2+ dynamics leads to the electromechanical coupling in
cardiac tissues, in which mechanically induced stretching of
the tissue affects its electrical activity, and vice versa [27–29].
Specifically, [30] has demonstrated that an axial stretch in the
direction of the fibers will prolong the APD.

Based on this knowledge, we develop a simple error based
feedback control strategy which employs direct mechanical
perturbations on the tissue, based on the three variable
Nash-Panfilov (NP) model [31]. In this model, the action
potential propagation is reconstructed using three variables,
namely voltage, recovery, and active stress. This model is then
coupled to a model of the tissue’s mechanical properties, which

is developed based on the finite elastic deformation theory.
The resulting model is a fully coupled electromechanical
model for the contracting excitable tissue, in which the effects
of mechanoelectric feedback are incorporated systematically.
The control action for this method is applied to the model’s
active stress variable, using an error based control algorithm
in which the error signal is the difference between two
consecutive APD measurements. The mechanoelectric feed-
back is achieved through a stretch-activated current, which
is dependent on the active stress variable. Thus, modulating
the active stress variable alters the tissue’s electric wave
profile, and consequently the APD. To the authors’ best
knowledge, this method of alternans annihilation has not been
explored in previous studies. Through numerical simulations,
we demonstrate that both control algorithms can successfully
annihilate alternans in the whole cable of cardiac cells with
length �1 cm.

Finally, the main contribution of the research efforts
demonstrated in this work is to extend the understanding and to
provide theoretical analysis for the idea of a combined pacing
and mechanoelectric (Ca2+)-based alternans annihilation in
relevantly sized cardiac tissue. The dynamical analysis of
spatiotemporal voltage and calcium coupling arising from
relevant ionic models (LR1, Fox, etc.) and model based control
synthesis provide a foundation to seek alternans annihilation
realizations in the cardiac tissue of size greater than 1 cm.
In particular, a fully coupled electromechanical model is
utilized to demonstrate the mechanic based annihilation of
alternans.

This paper is organized as follows. Section II introduces
the amplitude of alternans PDEs and the system’s state space
representation. Section III is devoted to the optimal control
of cardiac alternans and its realization through numerical
simulations, where parameters emerging from two ionic
models are considered. The limitations of this approach are
also discussed in this section. Finally, Sec. IV is dedicated to
the control and numerical realization of the electromechanical
model.

II. PRELIMINARIES

A. Amplitude equations

A cable of cardiac cells can be modeled as an excitable
medium, and the propagation of action potentials along the
cable is described by the following cable equation:

∂V (ζ,t)

∂t
= D

∂2V (ζ,t)

∂ζ 2
− Iion(ζ,t)

Cm

(1)

with boundary conditions

∂V (0,t)

∂ζ
= Vp(t),

∂V (L,t)

∂ζ
= 0. (2)

The first term on the right hand side of (1) describes the
propagation of action potential from one cell to another due to
the diffusive coupling between the cells. Iion(ζ,t) represents
the sum of the ionic currents that passes through the cell
membrane during an action potential, and its formulation
varies from one ionic model to another. Vp(t) = Istim/Cm is
the electrical stimulus applied at one end of the cable. Finally,
D = 0.001 cm2/ms and Cm = 1 μF/cm2 are the diffusivity
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constant and the cell membrane capacitance, respectively.
In this work, two ionic models are considered, namely the
Luo-Rudy (LR1) model given in [32] and the Fox model
presented in [33]. The main difference between these two
ionic models lies in the treatment of the intracellular Ca2+
dynamics. The Fox ionic model explicitly accounts for the
bidirectional coupling between the transmembrane potential
and the intracellular Ca2+ concentration, while the LR1 model
does not.

The amplitude of alternans, a(ζ,n), is defined as the
difference between two consecutive APDs. That is,

a(ζ,n) = (APDζ,n − APDζ,n−1)(−1)n. (3)

Using the fact that close to the critical pacing rate, a(ζ,n)
varies slowly from beat to beat, Echebarria and Karma [23]
derived the PDE that describes the spatiotemporal dynamics
of the small amplitude of alternans. Similarly, based on [9],
a PDE describing the spatiotemporal dynamics of the peak
intracellular Ca2+, denoted as aCa(ζ,t), can be written. For a
1D cable, the system of PDEs is given by

∂a(ζ,t)

∂t
= Da1

∂2a(ζ,t)

∂ζ 2
− ω1

∂a(ζ,t)

∂ζ
+ σa(ζ,t)

− ga(ζ,t)3 + ηaCa(ζ,t), (4)

∂aCa(ζ,t)

∂t
= Da2

∂2aCa(ζ,t)

∂ζ 2
− ω2

∂aCa(ζ,t)

∂ζ

+ γ a(ζ,t) +
m∑

i=1

bCa,i(ζ )uCa,i(t), (5)

with boundary conditions

∂a(0,t)

∂ζ
= a(0,t) + v(t),

∂a(L,t)

∂ζ
= 0, (6)

∂aCa(0,t)

∂ζ
= aCa(0,t)

∂aCa(L,t)

∂ζ
= 0. (7)

All the PDE parameters are normalized with respect to
τ , the pacing period. In both (4) and (5), the parame-
ters Dai

and ωi describe the propagation of the ampli-
tudes by diffusion and convection, respectively. Although
there is no diffusion of Ca2+ between the adjacent cells,
we expect that the alternations in aCa(ζ,t) will propagate
along the cable in a similar fashion to that of a(ζ,t)
due to the bidirectional coupling between them. There-
fore, it is assumed that Da1 = Da2 = Da and ω1 = ω2 = ω.
The term σa(ζ,t) represents the growth of the amplitude of
alternans along the cable, while the term ga(ζ,t)3 ensures that
the evolution of a(ζ,t) is bounded. In this work, we assume that
alternans arise from the instabilities in the voltage dynamics
and not the Ca2+ dynamics. Therefore, these terms are omitted
in (5). Finally η and γ are the coupling parameters that relate
the two PDEs.

The boundary actuation, which represents a pacing protocol
applied at ζ = 0, is denoted by v(t), while the spatially
distributed actuation is denoted by uCa(t). This calcium-
based actuation acts directly on the aCa(ζ,t) system in
order to suppress the alternations in the intracellular Ca2+
concentration, but also helps in stabilizing the a(ζ,t) system
through the coupling between the two PDEs. The placement
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FIG. 2. (Color online) Restitution curve for the Fox ionic model
obtained using an S1 period of 350 ms and S2 periods ranging from
340 to 200 ms.

of the ith calcium-based actuator on the cable is described
by the function bCa,i(ζ ), and the summation term in Eq. (5)
represents the overall effect of the calcium-based actuator(s)
on the system.

The parameters Da , ω, σ , and g are obtained from the
restitution curve, which describes the relationship between the
(n + 1)th APD and the previous DI, i.e., APDn+1 = f (DIn).
The restitution curve for the Fox ionic model is shown in Fig. 2.
This figure was obtained by applying the S1S2 pacing protocol
to a single cardiac cell. In this protocol, the cell is initially
paced at a sufficiently large pacing cycle length (PCLS1) for
50 beats, followed by a shorter cycle length (PCLS2). This
is repeated for decreasing values of PCLS2, until conduction
block is induced. The electrical stimulus is applied as square
wave pulses with a magnitude of 80 μA/μF and a duration of
1 ms [33]. The APD was measured as APD90, which is the
APD at 90% repolarization.

Based on [23], the PDE parameters are defined as Da ≈√
D × APDc, ω ≈ 2D/c, σ ≈ ln(f ′) and g ≈ (f ′′)2/4 −

f ′′′/6, with all derivatives computed at the bifurcation point,
defined as the pacing period at which persistent alternans start
to emerge. APDc is the APD at the bifurcation point, and c

is the wave propagation speed computed at the bifurcation
point. Refer to [23] for the detailed derivation and physical
interpretation of these parameters. To identify γ , the S1S2
pacing protocol described previously is again applied to the
single cell, and the peak Ca2+ concentration at S2 is plotted
against the DI at S1. γ is then obtained by computing the
slope of this curve at the bifurcation point. The identification
of η is performed by pacing the single cell at a period close
to the the bifurcation point for approximately 50 beats, and
then introducing an external Ca2+ signature (obtained from
a separate simulation with a different pacing period) for the
following beat. η is then approximated by the ratio 	a

	aCa
. Note

that since the LR1 model does not account for the coupling
between aCa(ζ,t) and the transmembrane potential, η for this
model is set to zero.
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B. Amplitude of voltage and calcium alternans representation

For the following procedure, the PDEs given by (4)–(7) are
first linearized around their spatially uniform unstable steady
states a(ζ,t) = 0 and aCa(ζ,t) = 0. Equations (4) and (6) can
then be formulated as the following abstract boundary control
problem:

da

dt
= Fa(t) + ηaCa(t), t � 0,

a(0) = a0, Ba(t) = v(t), (8)

where a(·,t) = {a(ζ,t),0 � ζ � L} and aCa(·,t) =
{aCa(ζ,t),0 � ζ � L} are state variables in the Hilbert
space L2([0,L] ; t) [24], t is the time variable, and v(t) ∈ R is
the boundary actuation. F is the spatial derivative operator
defined as

Fφ(ζ ) =
[
Da

d2

dζ 2
− w

d

dζ
+ σ

]
φ(ζ ) (9)

with the domain D(F) = {φ(ζ ) ∈ L2(0,L) : φ(ζ ),φ′(ζ ) are
absolutely continuous, Fφ(ζ ) ∈ L2(0,L),and φ′(L) = 0}.
Here L2(0,L) denotes the Hilbert space of measurable,
square-integrable, real-valued functions with weighted inner
product and norm defined as 〈f,g〉μ,L2 = ∫ L

0 e−μζ f (ζ )g(ζ )dζ ,
and ‖f ‖2 = √〈f,f 〉μ,L2 , respectively. The boundary operator
B : L2(0,L) �→ R can be defined as follows:

Bφ(ζ ) = δφ(0)

δζ
− φ(0), with D(F) ⊂ D(B). (10)

Equation (8) is not well posed, due to the fact that the controlled
input appears in the boundary condition. Therefore, we define
a new operator A1 such that

A1φ(ζ ) = Fφ(ζ ), and D(A1) = D(F) ∪ ker(B). (11)

This is based on the assumption that v(t) ∈ C2([0,t]; V ) is
sufficiently smooth, and one can find a function B(ζ ) such that
∀v(t), B(ζ )v(t) ∈ D(F), and

BB(ζ )v(t) = v(t), v(t) ∈ V. (12)

Furthermore, without loss of generality, we can choose B(ζ )
such that FB(ζ ) = 0. Knowing B(ζ ), we define the following
state transformation:

a(t) = p(t) + B(ζ )v(t). (13)

Substituting (13) into (8), we obtain the following well posed
abstract differential equation:

dp

dt
= A1p(t) + FBv(t) + ηaCa(t) − Bv̇(t), t � 0,

p(0) = p0. (14)

Interestingly, in (14), the boundary actuation is manifested as
a time derivative when it is transferred into the domain of the
PDE setting. This can be seen as a constraint on the pacing
protocol, since v̇(t) needs to be a sufficiently smooth function.
Additionally, it is important to note that the transformation
given by (13) must be exact to ensure that any noise at the
boundary will not be amplified throughout the system.

A similar abstract evolutionary form can be formulated for
the aCa(ζ,t) PDE:

daCa

dt
= γ a(t) + A2aCa(t) + BCauCa(t), t � 0,

aCa(0) = aCa0 , (15)

where the spatial derivative operator A2 is given by

A2ψ(ζ ) =
[
Da

d2

dζ 2
− w

d

dζ

]
ψ(ζ ) (16)

with the domain D(A2) = {ψ(ζ ) ∈ L2(0,L) : ψ(ζ ),ψ ′(ζ )
are abs. cont., A2ψ(ζ ) ∈ L2(0,L),ψ ′(0) − ψ(0) = 0, and
ψ ′(L) = 0}. For the spatially distributed actuators, we define

BCauCa(t) =
n∑

i=1

bCa,i(ζ )uCai(t), (17)

where bCa,i(ζ ) = 1
2ε

for ζ ∈ [ζi − ε,ζi + ε], ε > 0 is a func-
tion describing the locations of the actuators.

Combining (14) and (15), and defining v(t) as a new state
variable, the PDE system given by (4)–(7) is reformulated on
the extended state space Le

2 := L2 ⊗ V , yielding

ȧe(t) =
⎡
⎣ 0 0 0
FB A1 η

γB γ A2

⎤
⎦ ae(t) +

⎡
⎣ 1 0

−B 0
0 BCa

⎤
⎦ [

ṽ(t)
uCa(t)

]

= Aeae(t) + Beũ(t),

ae(0) = [v(0) p(0) aCa(0)]
′ = ae

0. (18)

Here, ae = [v(t) p(t) aCa(t)]′ and ṽ(t) = v̇(t). Physiolog-
ically, ṽ(t) can be interpreted as the rate of change of pacing
period applied at the boundary.

By solving the eigenvalue problem Aφ(ζ ) = λφ(ζ ), the
eigenvalues and corresponding eigenfunctions of A1 and
A2 can be found analytically through the separation of
variables [24]. Furthermore, eigenfunctions of the adjoint
operators A∗

1 and A∗
2 that satisfy the orthogonality condition

〈φi(ζ ),φ∗
j (ζ )〉 = δij can also be computed. The eigenvalues for

A1 and A2 are respectively given by

λi = σ − Da

[
αi + ω2

4D2
a

]
, 0 < αi < αi+1, i � 1, (19)

λ̄i = −Da

[
αi + ω2

4D2
a

]
, 0 < αi < αi+1, i � 1, (20)

where αi are the solutions to the following transcendental
equation:

tan(
√

αiL) =
√

αi

αi − ω
2Da

(
1 − ω

2Da

) . (21)

The corresponding eigenfunctions for A1 and A2 are de-
noted by φi(ζ ) and ψi(ζ ), respectively. These are given in
Appendix A, along with the adjoint eigenfunctions φ∗

i (ζ ) and
ψ∗

i (ζ ).
In general, the eigenvalues and eigenfunctions ofAe cannot

be determined analytically. However, in the special case where
η = 0 (i.e., the LR1 case), Ae has a lower triangular structure.
In this case, the eigenvalue problem for this extended operator
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can be solved analytically. First, note that Ae can be written as

Ae =
[

0 0
A3 A

]
, with A =

[
A1 0
γ A2

]

and A3 =
[
FB

B

]
.

SinceA is a lower triangular matrix, its eigenspectrum is given
by �(A) = �(A1) ∪ �(A2). That is,

�(A) = �j =
{
λi when j is odd,
λ̄i when j is even. (22)

Denoting the eigenfunctions of A as �j (ζ ) = [ξ1,j ξ2,j ]′, we
have [

A1 0
γ A2

] [
ξ1,j

ξ2,j

]
= �j

[
ξ1,j

ξ2,j

]
. (23)

Equation (23) leads to a system of two algebraic equations
for each value of �j . Solving these equations, and utilizing
the definition of resolvent sets [24], we obtain the following
expression:

�j (ζ ) =
{[

φi(ζ ) γ

σ
ψi(ζ )

]′
, when j is odd,

[0 ψi(ζ )]′, when j is even.
(24)

The eigenfunctions of the adjoint operator A∗ can be found
using the same procedure. These are given by

�j (ζ ) =
{

[φ∗
i (ζ ) 0]′, when j is odd,[− γ

σ
φ∗

i (ζ ) ψ∗
i (ζ )

]′
, when j is even.

(25)

The same procedure is again repeated for the extended spatial
operator Ae, whose eigenspectrum is given by �(Ae) =
{0} ∪ �(A) = {0} ∪ {λi} ∪ {λ̄i}. If there are m boundary input
variables, the zero eigenvalue will be repeated m times.
Here, m = 1. The eigenfunction and adjoint eigenfunction
corresponding to the zero eigenvalue are given by

�̂0(ζ ) =
[

1∑∞
j=1

1
�j

〈A3,�j 〉�j

]
and �̂0(ζ ) =

[
1
0

]
(26)

while those corresponding to the remaining eigenvalues are
given by

�̂j (ζ ) =
[

0
�j

]
and �̂j (ζ ) =

[ 1
�j

A∗
3�j

�j

]
. (27)

Parabolic systems such as (4)–(7) can be realized through
modal decomposition. In the case where the PDE parameters
are obtained from the LR1 model, the decomposition can
be performed directly on the extended state ae, since the
eigenfunctions of Ae can be found analytically, as given by
(26) and (27). By substituting ae = ∑∞

j=1 cj (t)�̂j (ζ ) into (18)

and projecting the resulting system onto �̂j (ζ ), we obtain the
following infinite-dimensional state space system:

ċ(t) = �c(t) + 〈Be,�̂(ζ )〉ũ(t), (28)

where � is a diagonal matrix whose entries are the eigenvalues
of Ae.

On the other hand, when the PDE parameters are obtained
using the Fox model, analytical expressions for �̂j (ζ ) and
�̂j (ζ ) are not available. Therefore, each state variable must
be decomposed separately, namely a(ζ,t) = ∑∞

i=1 ai(t)φi(ζ )

and aCa(ζ,t) = ∑∞
i=1 aCai

(t)ψi(ζ ). After applying the state
transformation (13) and substituting these eigenfunction ex-
pansions into (18), for each i we obtain⎡

⎣1 0 0
0 φi 0
0 0 ψi

⎤
⎦ ȧe

i = Ae
i

⎡
⎣1 0 0

0 φi 0
0 0 ψi

⎤
⎦ ae

i + Beũ. (29)

Projecting (29) onto ⎡
⎣1 0 0

0 φ∗
i 0

0 0 ψ∗
i

⎤
⎦ ,

we obtain

ȧe
i (t) =

⎡
⎣ 0 0 0

〈FB,φ∗
i 〉 λi η

〈B,ψ∗
i 〉 γ λ̄i

⎤
⎦ ae

i (t)

+
⎡
⎣ 1 0

−〈B,φ∗
i 〉 0

0 〈bj ,ψ
∗
i 〉

⎤
⎦ ũ(t)

= Aeae
i (t) + Beũ(t). (30)

In this case, the overall system’s eigenvalues must be computed
numerically. Nonetheless, it is still possible to diagonalize the
state matrix Ae using its eigenvectors, since all the eigenvalues
are distinct. These eigenvalues are dependent on the coupling
parameters η and γ . When η and γ have opposite signs,
depending on their magnitudes, one can potentially obtain
conjugate complex eigenvalues, which will result in oscillatory
coupling among the APD and calcium alternans. However,
further parametric investigation is required to determine
whether or not this can be realistically achieved. In this study,
both η and γ are positive, and all eigenvalues are real.

The stability of the extended system given by (18) is
governed by the eigenvalues of Ae, which are dependent
on the eigenvalues of the individual PDEs, namely λi and
λ̄i . From (20), it is apparent that ∀i, λ̄i < 0. This implies
that in the absence of coupling, (5) is inherently stable. For
the LR1 case, the overall system’s eigenvalues are simply a
union of λi and λ̄i [see (22)]. Therefore, in this case, due
to the master-slave relationship between voltage and calcium
dynamics, instabilities in the extended system arise solely from
the a(ζ,t) (voltage) subsystem. On the other hand, for the
Fox model, each of the overall system’s eigenvalues depend
simultaneously on both λi and λ̄i . As a result, due to the
bidirectional coupling between voltage and calcium dynamics,
both subsystems contribute to the instabilities in the extended
system.

III. OPTIMAL CARDIAC ALTERNANS ANNIHILATION

The operators of the parabolic system given by (4)–(7) are
dissipative, and the structure of their eigenspectra is beneficial
for the formulation of a simple gain-based optimal full-state
feedback control law which stabilizes the unstable modes,
while the stable modes remain invariant to this control law. The
eigenspectrum of Ae can be divided into a finite-dimensional
unstable (slow) part and an infinite-dimensional stable (fast)
part, i.e., �(Ae) = �+(Ae) ∪ �−(Ae). The finite-dimensional

012706-5



YAPARI, DESHPANDE, BELHAMADIA, AND DUBLJEVIC PHYSICAL REVIEW E 90, 012706 (2014)

TABLE I. PDE parameter values for the LR1 and Fox ionic
models.

LR1 Fox

Da 0.4883 0.148
ω 0.03388 0.04
σ ln(2.2) ln(1.314)
g 0 7.221×10−5

η 0 0.6
γ 2.25×10−6 8.575×10−3

optimal controller will then be developed based only on the
unstable subsystem.

The optimal controller gain is obtained by solving the
following minimization problem over an infinite time horizon:

min
ũ

J (ae(0); ũ) =
∫ ∞

0

[
ae

u(t)′Qae
u + ũ(t)′Rũ(t)

]
dt,

subject to ȧe
u(t) = Ae

ua
e
u(t) + Be

uũ(t), (31)

where ae
u(t), Ae

u and Be
u have dimensions corresponding to

that of the unstable subsystem �+(Ae). Q � 0 and R > 0 are
the diagonal penalty matrices for the state and input variables,
respectively. Solving this LQR problem, the optimal control
law is obtained as

ũopt(t) = −Kopta
e
u(t) = − 1

2R−1B
′
uPae

u(t), (32)

where P is a symmetric, positive definite solution to the
algebraic Riccati equation

0 = A
′
uP + PAu + Q − PBuR

−1B
′
uP . (33)

A. Numerical simulation

In this section, we consider the system of PDEs given
by (4)–(7), with parameters Da , ω, σ , and g obtained from
the LR1 ionic model [32] and the Fox ionic model [33].
These parameters as well as the coupling parameters η and
γ are presented in Table I. The critical pacing periods for
the LR1 model and the Fox model were found to be 311
and 215 ms, respectively. For the each set of parameters,
the eigenspectra for the operators A1 and A2 are computed
according to (19)–(21). The eigenspectrum of Ae can then be
obtained from these individual eigenvalues. The distribution
of the eigenspectrum depends on the cable length L. As can be
seen from Figs. 3 and 4, the number of unstable eigenvalues
increases with increasing cable length. In these simulations, a
cable length of 6.25 cm is considered. Both Figs. 3 and 4 show
that for all cable lengths, there is a zero eigenvalue. This is
because for both models, �(Ae) = {0} ∪ �(A), where the zero
eigenvalue arises from the presence of boundary actuation.
This is a dynamical feature that has not been recognized in
previous works, and implies that the system is effectively
controlled by the time derivative of the boundary input and
not the input itself.

In both cases, the Galerkin formulations for a(ζ,t) and
aCa(ζ,t) are approximated by 28 modes, namely a(ζ,t) =∑28

i=1 ai(t)φi(ζ ) and aCa(ζ,t) = ∑28
i=1 aCai

(t)ψi(ζ ). This leads
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FIG. 3. Eigenspectrum of Ae for the LR1 model, for different
cable lengths.

to a finite-dimensional approximation to (18), of the form

ȧe(t) = Āeae(t) + B̄eũ(t), (34)

where Āe and B̄e are (57×57) and (57×2) matrices, re-
spectively. Increasing the number of modes in the Galerkin
formulation will increase the number of fast modes, which are
stable. Since the controller formulation is based only on the
slow modes, increasing the total number of modes will not
affect the overall result. The function B(ζ ) has the general
form

B(ζ ) = expaζ [c1 cos(bζ ) + c2 sin(bζ )], (35)

where a and b are the real and imaginary parts of r , which
satisfy the characteristic equation of (4):

Dar
2 − ωr + σ = 0. (36)
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FIG. 4. Eigenspectrum ofAe for the Fox ionic model, for different
cable lengths.
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The coefficients c1 and c2 can be found by applying the
following boundary conditions:

dB

dζ

∣∣∣∣
ζ=0

− B(0) = 1,
dB

dζ

∣∣∣∣
ζ=L

= 0. (37)

The Ca2+ based controller, uCa(t), is applied at ζ ∈ [3.5,4.5]
cm. The location of this actuator was chosen to be far enough
from the boundary, such that its effects are independent from
the boundary pacer. In choosing the size of this region, we have
considered the trade-off between the magnitude of actuation
and the size of the actuator. This size was therefore selected
such that the magnitude of actuation is not too high, while
keeping the affected region relatively small.

Once the finite-dimensional approximation of the system
has been obtained, the system is decomposed into the stable
(fast) and unstable (slow) subsystems. The low-dimensional
unstable subsystem is then used to compute the optimal control
law, given by (32). Computation of the optimal control law
requires solving the algebraic Riccati equation. This is done
through MATLAB using the “care “function. Note that in this
procedure, the nonlinear term in (4) is neglected. However,
since this term has a stabilizing effect on the system, this
exclusion has no negative effect on the stability of the closed
loop system. In the simulations, this nonlinear term is added to
the closed loop system as Gi(t) = g〈a(ζ,t)3,ψi(ζ )〉. The same
penalty matrices are used in both cases. Q can be partitioned
as Q = [qv 0; 0 qaI ], where qv = 10 is applied to v(t) and
qa = 5 is applied to p(t) and aCa(t). For the input variables, an
equal weight is placed on ṽ(t) and uCa(t): R = [5 0; 0 5].
The numerical integration is performed using the explicit finite
difference method with 	t = 0.02.

Case 1: LR1 ionic model

For the parameter values given in Table I and a cable length
of 6.25 cm, Ae has three unstable eigenvalues (including the
zero eigenvalue). As discussed previously, all the unstable
eigenvalues correspond to those of A1. Therefore, for the LR1
model, the aCa(ζ,t) PDE (5) is inherently stable, and only (4)
needs to be stabilized.

The finite-dimensional approximation of the system, (34),
takes the form of (28), where the Āe and B̄e can be computed
by following the procedure outlined in (22)–(27). Since there
are three unstable modes, a third-order optimal controller is
obtained. Solving the LQR problem posed in (31), we obtained
the following optimal controller gain:

Kopt =
[

1 −23.3 4.61
0 0 0

]
. (38)

As noted earlier, since the aCa(ζ,t) system is already stable,
uCa(t) is deemed unnecessary in this case, and therefore the
corresponding controller gains are equal to zero. Applying this
controller gain to (34) [via Eq. (32)], we obtained the closed
loop response for a(ζ,t), shown in Fig. 5. This figure shows
that the low-dimensional controller can indeed stabilize all
28 modes of a(ζ,t). The corresponding trajectories of v(t) and
ṽ(t) are shown in Figs. 8 and 9.

0

2

4

6

0
10

20
30

40

−20

0

20

ζ(cm)

t/τ

a(
m

s)

FIG. 5. (Color online) Stabilization of the amplitude of alternans
PDE under optimal full-state feedback control with LR1 model
parameters.

Case 2: Fox ionic model

In this case, despite the fact that all the eigenvalues of A2

are negative, instabilities can still arise in the aCa(ζ,t) system
due to the bidirectional coupling between (4) and (5). Using
the parameter values in Table I, we found that Ae has three
unstable eigenvalues. Therefore, both a(ζ,t) and aCa(ζ,t) need
to be stabilized.

As noted in the previous section, analytical expressions for
the eigenvalues and eigenfunctions of Ae are not available
when η is nonzero. Therefore, Āe and B̄e must be computed
according to (30). A state transformation was then performed
to diagonalize Āe before the unstable subsystem was extracted.
The remaining procedure for obtaining the optimal control law
is identical to that employed in the LR1 case. Here, the optimal
controller gain was found to be

Kopt =
[

0.469 −11.2 2.46
−0.957 −10.1 1.54

]
. (39)

In contrast to the previous case, the second row of Kopt

is now nonzero since the aCa(ζ,t) system is also unstable.
Figures 6 and 7 show the stabilization of a(ζ,t) and aCa(ζ,t),
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FIG. 6. (Color online) Stabilization of the amplitude of alternans
PDE under optimal full-state feedback control with Fox model
parameters.
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FIG. 7. (Color online) Stabilization of the amplitude of calcium
alternans PDE under optimal full-state feedback control with Fox
model parameters.

respectively, under this optimal control law. Again, these
figures demonstrate that stabilization of all 28 modes of
a(ζ,t) and aCa(ζ,t) can be achieved using the low-dimensional
optimal controller. The input trajectories v(t), ṽ(t), and uCa(t)
are shown in Figs. 8–10.

It is important to note that although the exponential
stabilization of the infinite-dimensional state variables is
achieved in both cases, this method does not account for
the influence of the feedback control law on the higher (fast)
modes. In reality, the higher modes of Ae may be amplified
by the control law. This is known as the spillover effect [22].
In the simulations, this phenomenon is reflected as the high
excursion of the state variables away from the boundary pacing
site, as shown in Figs. 5–7.

From Figs. 8 and 9, it is apparent that the boundary
controller for the LR1 model is significantly more aggressive
compared to that for the Fox model. This is because for
the LR1 model, the stabilization of a(ζ,t) must be achieved
solely through boundary control. On the other hand, for the
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FIG. 8. Trajectories of boundary input v(t) for the LR1 and Fox
ionic models under optimal full-state feedback control.
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FIG. 9. Trajectories of input derivative ṽ(t) for the LR1 and Fox
ionic models under optimal full-state feedback control.

Fox model, stabilization is achieved using both boundary and
spatial actuation, and as a result aggressive controller actions
are not required. This is advantageous for the implementation
of the control scheme, since an overly aggressive boundary
controller may result in conduction block, which is highly
undesirable.

The results obtained from the LR1 model imply that in the
case of full-state feedback realization (i.e., full knowledge
of the APD state evolution), boundary pacing alone can
potentially stabilize alternans along the entire length of the
cable. However, in reality this cannot be achieved, because it
is impossible to measure the electrical activity at each cardiac
cell within the domain.

B. Limitations

An important limitation for the boundary actuator is the fact
that the pacing protocol should not postpone the heart’s natural
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FIG. 10. Trajectory of uCa(t) for the Fox ionic model under
optimal full-state feedback control.
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rhythm, which is governed by the sinoatrial node (SAN). In
other words, the boundary actuation is constrained to negative
perturbations only. This provides the motivation to extend this
work further into the framework of model predictive control,
such that input constraints can be explicitly accounted for in
the controller formulation.

Another natural extension to this method is the development
of an optimal output feedback controller, in which measure-
ments of a and aCa at discrete points along the cable are
used to reconstruct their profiles along the entire cable. As
shown in [19], if an unstable mode is unobservable, feedback
control will not be able to suppress it. Therefore, the number of
sensors must be equal to or greater than the number of unstable
modes in the system. For a cable length of 6.25 cm, there
are two unstable eigenvalues (excluding the zero eigenvalue),
so at least two sensors are required for a proper observer
design. This is convenient, since the sensors can be placed
at either end of the cable. As shown by Figs. 3 and 4,
the number of unstable eigenvalues increases with the cable
length. Therefore, with longer cables, more sensors will be
required.

For the Ca2+ based actuator, modulating the intracellular
Ca2+ concentration affects the tissue’s mechanical properties.
In general, however, Ca2+ is a weak modulator for the
heart’s mechanical activities compared to a direct mechanical
stimulus. Furthermore, measurements of the intracellular Ca2+
concentration may not be readily available. Therefore, in the
following section, we develop a second control scheme based
on the three variable Nash-Panfilov model [31], in which the
feedback algorithm applies direct mechanical perturbations
to the cable. As shown in [29], the the cardiac muscle’s
contractile act coincides with the electric wave back. Applying
a mechanical stimulus to the cable will affect the wave back,
therefore altering the APD [29,30].

IV. ELECTROMECHANICAL MODEL

In this section, we utilize the three variable Nash-Panfilov
(NP) model [31] to reconstruct the cardiac cell’s electrical and
mechanical properties. The NP model adds a third variable
to the well known Aliev-Panfilov model (AP) to describe the
active tension in the cell. The active tension, which is a function
of the electrical voltage, is then linked to the mechanics model.
The purpose of this section is to demonstrate alternans anni-
hilation via mechanical perturbations through the feedback
mechanism by relying on nonionic descriptions of the cardiac
cell dynamics. While ionic models can reconstruct the action
potential in detail by accounting for all possible interactions
between the ionic species, the AP model reconstructs cardiac
cell dynamics by accounting for the major dynamical features
of the action potential coupled with the mechanics of cell
contraction.

The mechanical analysis is based on the the finite elastic
deformation theory. The finite deformation gradient tensor F,
coordinates x and X, the Cauchy-Green deformation tensor
C and the Lagrange-Green strain tensor E are defined in
Appendix B. In the absence of body forces, conservation of
linear momentum gives rise to equilibrium conditions that
are expressed in terms of the second Piola-Kirchhoff stress
components, where an isotropic hyperelastic model typical

of the Mooney-Rivlin materials is introduced to describe the
mechanical properties of the tissue:

∂

∂Xm

(
TmnF

i
n

) = 0, (40)

∂

∂Xm

(Smn) = 0, m,n = 1,2,3. (41)

Here, Smn is the first Piola-Kirchoff stress tensor while Tmn is
the second Piola-Kirchoff stress tensor given as

Tmn = T passive
mn + T active

mn . (42)

T active
mn has components that are obtained from the electro-

physiological model and is responsible for the mechanical
deformations. The individual components of T

passive
mn and T active

mn

are given by

T passive
mn = T W

mn − p(Cmn), (43)

T W
mn = 1

2

(
∂W

∂Emn

+ ∂W

∂Enm

)
, (44)

T passive
mn = 1

2

(
∂W

∂Emn

+ ∂W

∂Enm

)
− p(Cmn), (45)

T active
mn = TaCmn, (46)

where Enm = (Emn)T are Green’s strain components, Cmn =
(Cmn)−1, p is the pressure, Ta is the active stress, and W is the
strain energy function defined as

W = c1(I1 − 3) + c2(I3 − 3),

I1 = tr(C), I2 = 1
2 [(tr(C))2 − tr(C2)], I3 = det(C), (47)

where c1 and c2 are material constants. Here, I1, I2, and I3 are
the principal invariants of the Cauchy-Green stress tensor, C,
and tr(C) is the trace of C, which is the sum of its principal
diagonal elements.

Equations governing the electrophysiological variables of
the one-dimensional NP model are described as follows:

C̄m

∂V

∂t
= D

∂

∂Xi

(√
CCmn ∂V

∂Xi

)
− f (V ), (48)

∂r

∂t
=

(
ε + μ1r

μ2 + V

)
[−r − kV (V − a − 1)], (49)

∂Ta

∂t
= ε(V )(kT aV − Ta), (50)

∂Smn

∂Xm

= 0, (51)

where all parameters and variables are dimensionless. C̄m = 1
represent the membrane capacitance, V is the transmembrane
potential, D = 1 is the diffusivity constant, C = det(C),
f (V ) = kV (V − 1)(V − a) − rV − Ig , a is the threshold
parameter, r is the recovery variable, Ig is the stretch-activated
current, and kT a is a parameter that controls the amplitude of
Ta . Ta is assumed to depend directly on the trans-membrane
potential, with a delay fixed by ε(V ), which is given by 0.1
for V < a and 1.0 for V > a. The parameters ε, k, μ1, and μ2

have no clear physiological meaning, but are fitted to reproduce
the key characteristics of the cardiac tissue [31].
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The electrophysiological model described by (48)–(50)
coupled with the cardiac mechanics described in Appendix B
and (40)–(47) together form the NP model. The term F =
∂x/∂X introduces nonlinearity in the system and requires
the usage of rigorous numerical techniques to ensure com-
putational stability. Hence, a linear approximation for F is
employed and the model is simulated as a coupled system,
as similarly presented in [34]. When only one dimension is
relevant, F and C can be written as

F =
⎡
⎣F (X) 0 0

0 1 0
0 0 1

⎤
⎦ , C =

⎡
⎣F 2(X) 0 0

0 1 0
0 0 1

⎤
⎦ . (52)

By computing the derivatives in (44), the one-dimensional
(1D) mechanics equations can be reduced to

TW = 2c1I, (53)

SW = TW F′ = 2c1F, (54)

Spassive = SW + p det(F)F−1, (55)

where F′ denotes the transpose of F. The last term in
(55), which is nonzero in the absence of external forces for
incompressible materials [for which det(F) = 1], maintains the
isotropic conditions. By enforcing the condition Spassive = 0
when F (X) = 1, we obtain p = −2c1 = −c̃. Hence, the
complete stress which is given by S = TF′ = Spassive + Sactive

can be written as

S = SW − c̃ F−1 + TaC−1F′. (56)

From (51), we obtain

∂

∂X

[
SW

11 + p + Ta(X)

F (X)

]
= 0,

∂

∂X

[
c̃[F (X) − 1] + Ta(X)

F (X)

]
= 0. (57)

Neglecting the constant pressure term, (57) becomes

∂

∂X

[
c̃F (X) + Ta(X)

F (X)

]
= 0. (58)

For small (linear) deformations, we apply the approximation
F (X) = 1 + u(X), where u(X) is the instantaneous deforma-
tion, and u � 1. Integrating (58) using this approximation
(see [34]), we obtain

F (X) = 1 + u(X) = [A − Ta(X)]

c̃
, (59)

where A is a constant of integration to be determined. Applying
the boundary conditions [x(0) = 0 and x(L) = L] yields∫ L

0
F (X)dX = L (60)

and thus

A = c̃ + T̄a, T̄a = 1

L

∫ L

0
Ta(X)dX, (61)

F (X) = 1 + [T̄a − Ta(X)]

c̄
. (62)

At any particular position, T̄a > Ta signifies that the cable is
elongated or stretched. The current Ig in f (V ) [see Eq. (48)]

TABLE II. Parameter values for the electromechanical model.

k = 8 a = 0.05 ε = 0.1 μ1 = 0.12
μ2 = 0.3 kT a = 47.9 c̃ = 16 g = 1.6

is active only when the cell stretches locally and it is given as

Ig = (g/c̃)(V − 1)(T̄a − Ta)2. (63)

For the purpose of numerical simulations, (48)–(51) are used to
constitute the electromechanical model while the mechanical
deformation gradient is given by (62). A one-dimensional
cable of length L = 7 cm is considered. F is evaluated
numerically using the semi-implicit finite difference time
integration scheme, namely the first order forward-backward
Euler method [35], with 	t = 0.02 and 	X = 0.1. All model
parameters used in the simulation are given in Table II. The
cable is paced at the boundary to its critical pacing length
(PL) such that the APD alternates. For the given parameters,
the critical period is found to be 66 time units. As outlined
in [31], to determine the scaling factor for the dimensionless
time unit, the dimensionless APD obtained from the model
must be compared to experimental measurements. Scaling
factors ranging 5–14 ms have been reported [36–38]. For
the dimensionless space variable, one dimensionless unit
corresponds to 1 mm [37], which links the NP model to other
relevant electrophysiological models. The APD is measured
from the instant V crosses a threshold value during the
depolarization phase, until the instant it falls below this value
during the repolarization phase. The threshold value was
chosen to be 0.4 (in dimensionless units). The amplitude of
alternans is given by the difference between two consecutive
APDs. As shown by Fig. 11, without control and under
constant critical PL, the amplitude of alternans grows until
it reaches a plateau.
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FIG. 11. (Color online) Magnitude of the amplitude of alternans
for the Nash-Panfilov (NP) model. The cable is paced at 66 time units,
which is the critical pacing length.
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FIG. 12. (Color online) Amplitude of alternans Nash-Panfilov
(NP) model. The cable is paced 66 time units, at which the amplitude
of alternans grow until control is applied at t = 4000.

A spatially distributed, mechanic based control algorithm
is implemented on the cable to annihilate alternans. Basic full
state feedback algorithm which takes the error en(t) [defined in
Eq. (65)] generated between two consecutive APDs provides
a control signal which is applied over the region 3–4.5 cm.
The control signal is active only when en(t) < 0 meaning that
the controller only acts on the long-APD [see Fig. 13(b) after
t = 4000, when the controller is activated]. Incorporating the
spatially distributed controller into (50), the following error
based control scheme is obtained:

∂Ta

∂t
= ε(V )(kT aV − Ta) + βen(t), (64)

en(t) = (APDn − APDn−1), (65)

where β is the controller gain. In the simulation, β = −0.0003.
This control action alters the cable’s membrane potential
through mechanoelectric feedback, in which changes in Ta

alter the stretch-activated current Ig , which then affects (48)
through f (V ). As shown by Fig. 12, this control algorithm can
successfully annihilate alternans along the cable.

Figures 13(a) and 13(b) show the evolution of the membrane
potential and the deformation variable, respectively, before and
up to the application of control. Figures 14(a) and 14(b) show
the evolution of the same variables after control is applied. The
controller action applied over the region [3,4.5] cm on the long
(L) APD can be seen in Fig. 13(b). From Figs. 12 and 14, we see
that after the the spatially distributed mechanical stress-strain
based controller is activated at t = 4000, both electrical and
mechanical alternans are annihilated. Although the controller
is only applied over a localized region of the cable [see
Fig. 13(b)], it affects the entire length of the cable, successfully
annihilating alternans along the cable. Thus, using a model
based on the mechanical and electrophysiological properties
of the cardiac tissue, it is clearly shown that mechanical
perturbations can be used to manipulate the electrical APD
in order to suppress alternans.
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FIG. 13. (Color online) Time evolution of membrane potential
and deformation variable showing alternans. (a) Membrane potential.
(b) Deformation variable xi . Control is applied at t = 4000 over the
region [3,4.5] cm, as denoted by the arrow in (b).

V. CONCLUSION

In this paper, an optimal full-state feedback control scheme
is developed for the coupled system of PDEs describing the
dynamics of the small amplitude of cardiac alternans and the
peak intracellular Ca2+ concentration alternations along a 1D
cable of cardiac cells. This control scheme combines a pacer
applied at the boundary and a spatially distributed, Ca2+ based
controller. The optimal control law is obtained by solving the
standard LQR problem. Simulations were performed using
PDE parameters obtained from the LR1 ionic model and
the Fox ionic model. In both cases, we demonstrated the
successful annihilation of cardiac alternans along a 6.25-cm
cable of cardiac cells. In practice, direct measurements of
the intracellular Ca2+ concentration and its alternations are
difficult. Hence, a mechanical stretch based distributed control
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FIG. 14. (Color online) Time evolution of membrane potential
and deformation variable xi after control is applied. (a) Membrane
potential. (b) Deformation variable xi . As shown by both (a) and (b),
the control action successfully annihilates alternans in both variables.

was considered. We then demonstrated that this stretch based
control protocol can suppress alternans in a 7-cm-long cable
of cardiac cells simulated using the Nash-Panfilov model.

The annihilation of cardiac alternans using feedback control
has been studied extensively. However, it has been found
that control strategies that are solely voltage based are only
effective close to the control site. Away from the pacing
site, alternans will continue growing, eventually leading to
conduction block. In this work, we have demonstrated that by
the inclusion of a voltage-independent actuator (i.e., calcium
based or mechanical based), we can overcome this limitation
in controllability, and achieve alternans annihilation along the
entire 6–7-cm cable.

In developing these control strategies, constraints that may
be naturally present in the cardiac system were not accounted
for. This issue will be addressed in future works, where the

input and state constraints are to be included explicitly in the
controller formulation. Furthermore, in order to further verify
the results presented in this paper, extensive research efforts
are being concentrated on realizing the control strategies
suggested here onto ionic model(s), as a pacing and Ca2+
drug releasing protocol, or a stretching protocol.
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APPENDIX A: EIGENFUNCTIONS OF
THE PDE SPATIAL OPERATORS

In (18), the spatial derivative operators A1 and A2

are Sturm-Liouville operators which can be written in the
following form:

Aφ(·) = 1

ρ(·)
d

dζ

[
p(·)dφ

dζ
(·)

]
+ q(·)φ(·). (A1)

Comparing the coefficients of (A1) with (9) and (16), we
obtain ρ(ζ ) := exp−(ω/Da )ζ , p(ζ ) := Daρ(ζ ), q(ζ ) := σ for
A1, and q(ζ ) = 0 for A2. The eigenvalues for A1 and A2 are
given by (19) and (20), respectively. ForA1, the eigenfunctions
and adjoint eigenfunctions for i � 1 are given by

φi(ζ ) = Bi exp(ω/2Da )ζ

[
cos(

√
αiζ )

+ 1√
αi

(
1 − ω

2Da

)
sin(

√
αiζ )

]
, (A2)

φ∗
i (ζ ) = exp−ω/Da φi(ζ ). (A3)

The coefficients Bi’s are obtained by imposing the orthogo-
nality condition 〈φi(ζ ),φ∗

j (ζ )〉 = δij , and are evaluated as

Bi =
{∫ L

0

[
cos(

√
αiζ )

+ 1√
αi

(
1 − ω

2Da

)
sin(

√
αiζ )

]2

dζ

}−1/2

. (A4)

For A2, the eigenfunctions and adjoint eigenfunctions are
equal to those of A1. This is because the PDE parameters
in (4) and (5) are equal except for the growth term σ , and the
eigenfunctions are independent of this term. Thus,

ψi(ζ ) = φi(ζ ), and ψ∗
i (ζ ) = φ∗

i (ζ ). (A5)

APPENDIX B: FINITE ELASTIC DEFORMATION
THEORY—DEFINITIONS

In the electromechanical model, the mechanical analysis is
based on the the finite elastic deformation theory. The finite
deformation gradient tensor F that transforms the undeformed
cell geometry to a deformed state is given as

F i
m = ∂xi

∂Xm

, F = ∂x
∂X

, i,m = 1,2,3, (B1)
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where x is a vector denoting the positions of the particles
in the deformed coordinates (xi’s) while X consists of
Xm’s, which denote the reference (undeformed) material
coordinates. Therefore, F represents a map that transforms
a material line segment from an undeformed geometry dX
to a deformed geometry dx. The Cauchy-Green deformation
tensor C and Lagrange-Green strain tensor E are respectively

defined as

C = FT F, Cmn =
{

∂xk

∂Xm

,
∂xk

∂Xn

}
, (B2)

E = 1

2
(C − I), (B3)

where I is the identity matrix.
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