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Leukocytes and other circulating cells deform and move relatively to the channel flow in the lateral
and translational directions. Their migratory property is important in immune response, hemostasis, cancer
progression, delivery of nutrients, and microfluidic technologies such as cell separation and enrichment, and
flow cytometry. Using our three-dimensional computational algorithm for multiphase viscoelastic flow, we have
investigated the effect of pairwise interaction on the lateral and translational migration of circulating cells in a
microchannel. The numerical simulation data show that when two cells with the same size and small separation
distance interact, repulsive interaction take place until they reach the same lateral equilibrium position. During
this process, they undergo swapping or passing, depending on the initial separation distance between each other.
The threshold value of this distance increases with cell deformation, indicating that the cells experiencing larger
deformation are more likely to swap. When a series of closely spaced cells with the same size are considered,
they generally undergo damped oscillation in both lateral and translational directions until they reach equilibrium
positions where they become evenly distributed in the flow direction (self-assembly phenomenon). A series of cells
with a large lateral separation distance could collide repeatedly with each other, eventually crossing the centerline
and entering the other side of the channel. For a series of cells with different deformability, more deformable cells,
upon impact with less deformable cells, move to an equilibrium position closer to the centerline. The results of
our study show that the bulk deformation of circulating cells plays a key role in their migration in a microchannel.
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I. INTRODUCTION

Circulating cells, including blood cells such as erythrocytes
(red blood cells), thrombocytes (platelets), and leukocytes
(white blood cells), and other individual cells under certain
conditions (e.g., tumor cells during hematogenous metas-
tasis [1]), are deformable and drastically different in their
geometric and mechanical properties [2]. Circulating cells
move in a channel relatively to the external flow in the
lateral (transverse) and translational directions. This migratory
property of circulating cells plays a crucial role in immune
response, hemostasis, cancer progression, and delivery of
nutrients [1,3–6], and has been proposed to be used for flow
cytometry and cell separation and enrichment in microfluidic
devices [7–12]. Most microfluidic methods for cell separation
require the external assistance of fluorescence, magnetic force,
electrophoresis, and/or optical trapping [13]. However, it is
possible to separate or enrich circulating cells by a purely
hydrodynamic approach [14–19]. This method, known as
inertial microfluidics, is based on the fact that a deformable
particle migrates to a specific lateral position in a microchannel
depending on its size and deformability [15,20].

Much research on the migration of circulating cells and
deformable particles in flow channels was conducted in the
simplest scenario of negligible intercellular or interparticle in-
teractions where the cell-to-cell or particle-to-particle distance
was much larger than the size of the cells or particles. In this
scenario, which we call scenario A, the lateral migration of
a single particle in a confined channel is driven by the shear
force and wall repulsion that lead the particle to a specific
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lateral equilibrium position, either at the centerline or between
the centerline and the wall [21–26]. With lateral lift force, both
deformable particles and cells migrate to midway between the
centerline and the wall of a channel [15,20]. A number of
mathematical models were proposed as well to investigate
scenario A [27–35]. These models predicted that a bigger or
more deformable particle or cell had the lateral equilibrium
position closer to the centerline, which was consistent with
experimental data.

However, scenario A does not work for dense suspension
flow in a microchannel because of the large volume fraction
of circulating cells and thus a close spacing between cells
[36]. In the scenario of dense suspension, called scenario B,
the migration of circulating cells significantly depends on hy-
drodynamic cell-cell interactions. Hydrodynamic interactions
between erythrocytes and leukocytes and between erythrocytes
and thrombocytes were studied in a number of experimental
works [3–6,37,38]. These studies revealed that the geometric
(size, shape) and mechanical properties (deformability) of the
cells contribute to the increased concentration of erythrocytes
near the centerline and leukocyte and thrombocyte margination
[39]. Erythrocyte accumulation near the centerline leads to the
formation of a thin cell-free layer adjacent to the capillary
wall. This layer is responsible for the Fahraeus effect, i.e.,
a decrease in tube hematocrit and apparent viscosity of the
blood with a decrease in the capillary diameter [40]. Leukocyte
margination, i.e., their lateral migration to vessel wall margins,
is necessary for leukocytes to adhere to the wall and initiate the
immune response [4]. Similarly, the migration of thrombocytes
to vessel wall margins is a necessary step in blood clotting
[41]. In terms of microfluidic applications for scenario B, it
is important to mention biomimetic separation of leukocytes
during whole blood perfusion in a microfluidic channel [9].
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Lattice Boltzmann, immersed boundary, and boundary integral
methods have been used to model the flow of a dense suspen-
sion of deformable particles or cells in a microchannel [42–47].
The results of these computational studies indicate that highly
deformable particles or erythrocytes concentrate near the
centerline during circulation, which pushes out solid particles,
leukocytes, or thrombocytes from the centerline to the channel
wall. The shape difference between cells was also considered
in numerical studies as different types of cells have different
morphologies, such as a spherical shape for leukocytes, a
biconcave shape for erythrocytes, and an ellipsoidlike or oblate
shape for platelets [39]. The nonspherical shape of erythrocytes
was shown to be essential for their concentration at the cen-
terline of the channel and for leukocyte margination [43,48].

There exists another scenario (scenario AB) where the in-
teractions between particles or cells may be significant but the
average separation distance is larger than in the case of a dense
suspension (scenario B). One example is the “single chain”
flow of particles or cells in a small channel where a moving par-
ticle or cell interacts with only two neighbors located at some
distance from the cell [49]. This self-assembly of circulating
particles or cells has been employed in biomedicine, material
synthesis, and logical computation [50–52] and shown to be
very important for microfluidics-based flow cytometry and
cell separation [53,54]. Recent experimental studies show
that circulating particles migrate to a specific lateral position
where they are uniformly spaced in the flow direction (like
beads on a string) as a result of the balance of attractive and
repulsive interactions between nearby particles [49,55–57].
The analysis of scenario AB is very important for optimization
of microfluidic technologies for cell separation and enrichment
because of the potential to increase the efficiency of cell
separation when the cell concentration or volume fraction is
between that of the dense and dilute suspensions. The pairwise
interactions of spherical and nonspherical rigid particles in
linear or quadratic shear flows have already been investigated
[49,58–60]. It was theoretically established that the flow distur-
bances induced by a rotating particle could repel the neighbor-
ing particle with only fluid inertia maintaining a finite distance
between the particles [49]. The interactions of two deformable
particles have not been analyzed in the context of cell migration
in confined channels. Previous work focused on the interaction
of two elastic solid particles close to the wall in linear shear
flow [61] and the effect of the collision of two elastic capsules
or drops on their deformation in linear shear flow [62–65].

As much research has been carried out on the simulation of
dense suspension of erythrocytes, our focus in this study is on
circulating leukocyte dynamics in a microfluidic channel under
scenario AB. Using our volume-of-fluid (VOF) computational
algorithm, we have investigated how the pairwise interactions
of circulating cells influence their lateral and translational
migration during perfusion through a microchannel. Our fully
three-dimensional (3D) numerical simulation of scenario AB
was performed for cells of different deformability and initial
distribution in the microchannel.

II. NUMERICAL ALGORITHM

Our computational model is based on a fully three-
dimensional algorithm for multiphase viscoelastic flow, where

the fluid-fluid interface is tracked by the volume-of-fluid
(VOF) method [34,66,67]. The external fluid is a Newtonian
fluid with viscosity μext = 1 cP (water). The cell is modeled
as a one-phase complex fluid with two internal compartments:
a solvent (cytosol) and a polymer matrix (cytoskeleton). We
assume that the solvent viscosity μs is equal to the viscosity
of the external fluid. The viscoelasticity of the polymer matrix
is described by the Giesekus constitutive equation [66]:

λ

(
∂T
∂t

+ (u · ∇)T − (∇u)T − T(∇u)T
)

+ T + λκT2

= λG(0)(∇u + (∇u)T ). (1)

Here κ is the Giesekus nonlinear parameter and was assumed
to be zero in the current study, G(0) the elastic modulus at
t = 0, and λ the relaxation time. The polymer viscosity is
μp = G(0)λ. The total viscosity of the cell is μd = μs + μp.

The velocity field in the whole computational domain was
determined from the solution of one set of the Navier-Stokes
equations with the values of physical parameters (mass density,
shear viscosity, etc.) averaged over each grid cell containing
multiple phases [66]:

∇ · u = 0, (2)

ρ

(
∂u
∂t

+ u · ∇u
)

=∇ · T − ∇p+ ∇ · [μs(∇u +(∇u)T )] +F.

(3)

Here, u is the velocity vector, ρ the mass density, T the extra
stress tensor that represents the polymer matrix (cytoskeleton)
contribution to the shear stress field inside the cell, and p

pressure. The interfacial tension force F (known as cortical
tension for the cell) is calculated by the continuous surface
force (CSF) method [68] as follows:

F = σ κ̃||∇c||n̂, (4)

where σ is the cortical tension coefficient, n̂ = ∇c/||∇c|| the
outward unit normal, κ̃ = −∇ · n̂ the mean curvature, c =
c(t,x) the concentration function (color function) that takes
the value between 0 and 1 at the interface, and x = (x, y, z) the
position vector in the Cartesian coordinate system. To simplify
the problem, we assume that the mass density of the external
fluid and the cell are equal and gravity is ignored.

In the simulation, we consider two cells of initially spherical
shape with the same diameter D suspended at the middle
plane (y = W/2) of a rectangular microchannel with height
H = 70 μm and width W = 140 μm (Fig. 1). All the
side walls of the microchannel are considered to be no-slip
boundaries, and periodic boundary conditions are applied at
the inlet and outlet. Initially, the flow is fully established with
the centerline velocity Uc, with a range of values from 0.014
to 0.70 m/s. In most cases studied, Uc = 0.14 m/s, which
is based on the flow conditions in microfluidic experiments
by Hur et al. [15]. We consider the cells with diameter
D = 14 μm; elastic modulus G(0) = 12.5, 25, 50, and 250 Pa;
relaxation time λ = 0.2 s; and cortical tension coefficient σ =
0.03 mN/m. These values were selected according to the
experimental data for human leukocytes [2,66,69,70]. It should
be noted that with our choice of the elastic modulus values,
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FIG. 1. Schematic of the simulated problem. Two interacting
cells in a rectangular microchannel. The cells may have different
deformability and different spacing in the x direction (translational
direction) and/or the z direction (lateral direction). They are subject to
shear flow created by a pressure difference between inlet and outlet.
Periodic boundary conditions have been applied at the inlet and outlet.
No-slip boundary conditions were applied to the channel walls in the
y and z directions. Chanel height H and width W are 70 and 140 μm,
respectively. Channel length L is variable.

the total viscosity of the cell is within the experimental range
of 2.5–50 Pa s. The results are presented in dimensionless
form using D or H as a characteristic length and t∗ =
H/Uc as a characteristic time. With the selected values
of physical parameters, the channel height–based Reynolds
number Re = ρextUcH

μext
and the cell-to-external fluid viscosity

ratio γ = μp

μext
range from 1 to 50 and from 2500 to 10 000,

respectively. In most cases, Re = 10 at which the wall shear
stress averaged over the channel perimeter is about 6 Pa. Since
D/H is 0.2 in all the simulation except the data presented
in Fig. 10, the Reynolds number based on the cell diameter
is five times less than the channel height–based Reynolds
number. Different from erythrocytes, leukocyte migration and
deformation are dominated by bulk rheological properties
(e.g., viscosity), not by surface rheological properties (e.g.,
cortical or interfacial tension) [2,34]. As such, the viscosity
ratio is a more appropriate measure of cell deformability than
the capillary number.

III. RESULTS AND DISCUSSION

We first considered the case of a long channel, 30
times the cell diameter, to eliminate the effects of periodic
boundary conditions (and thus cells in domains adjacent to the
computational domain) on the interaction of migrating cells.
In this simulation, the translational distance between the cell
centroids, called the x distance [blue dashed line in Fig. 2(a)],
was initially ten times the cell diameter. This ensures that
the cell-cell interaction was initially negligible. By changing
the initial z distance, i.e., the initial distance between the cell
centroids in the lateral direction, we investigated the migration
of both cells (cell 1 and cell 2) in a microchannel. With initial
z distance/D = 0.286, the cells first moved slowly towards
the lateral equilibrium position as expected according to our
previous study on single cell migration [34]. As their x distance
decreased to five times the cell diameter at t/t∗ = 16, the
migration deviated from the trajectory of a single migrating
cell and the pairwise interaction became significant. The rate
by which the cells approached each other in the lateral direction
suddenly increased and then the cell positions were stabilized.
The cells never collided and their x distance/D was no less
than 3.2. When the cells reached this minimal translational

FIG. 2. (Color online) The swapping of two identical cells during
migration in a microchannel. (a) Time evolution of the cell lateral
positions (solid lines) and cell-to-cell translational distance (x
distance/D, blue dashed line) when the initial lateral separation
distance (z distance/D) is 0.286 (initial lateral position z0/H for cells
1 and 2 is 0.371 and 0.314, respectively). Black dotted lines are the z

position of single migrating cells (scenario A). (b) Flow field at t/t∗ =
27.4 with the center of cell 1 used as a reference point. (c) Snapshots
of cell shapes at t/t∗ = 19.8, 27.4 and 35. Here, the x coordinate of the
cell 2 spheroid is calculated relative to that of the cell 1 spheroid. The
channel length is 30D, and the initial translational position x0/H

for cells 1 and 2 is 2.0 and 4.0, respectively. Re = 10, γ = 104,
D/H = 0.2.

distance (at t/t∗ = 27.4), they had the same lateral position.
After t/t∗ = 27.4, cell 1 continued to move downward, while
cell 2 moved upward. As a result, cell 1 went below cell 2
and cell 2 started moving faster than cell 1, as evident by
positive and increasing values of the x distance after t/t∗ =
27.4 [blue dashed line in Fig. 2(a)]. At t/t∗ = 50, the
x distance/D was 6.8 and the cells migrated like single cells
again and eventually reached their lateral equilibrium position,
which was higher than the initial z position for cell 2 and
much lower than the initial z position for cell 1. This case
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FIG. 3. (Color online) The passing of two identical cells during
migration in a microchannel. (a) Time evolution of the lateral
positions of the cells (black solid lines) and cell-to-cell x distance
(blue dashed line) when the initial z distance/D is 0.5 (z0/H for cells
1 and 2 is 0.414 and 0.314, respectively). (b) Snapshots of cell shapes
at t/t∗ = 20, 22, 23, and 24. (c) Flow field at t/t∗ = 22 with the
center of cell 1 used as a reference point. The channel length is 30D;
the initial translational position x0/H for cells 1 and 2 is 2.0 and 4.0,
respectively. Re = 10, γ = 104, D/H = 0.2.

illustrates that although the cells at the end are far from each
other and their position equilibrates, they can be “swapped”
during transient interactions occurring before reaching this
equilibrium position. Figure 2(b) shows the flow field at t/t∗
= 27.4 with the centroid of cell 1 as a reference point. The
wall reflection of the flow produced by one of the rotating cells
drove the other one across the streamline, leading to relative
reversal migration in the z direction. This is similar to the
simulation data for two particles in simple shear flow [58].
Figure 2(c) displays the shapes of the cells at different time
instants. It points out that swapping occurs when the x distance
becomes minimal.

With the initial z distance/D increased to 0.5, cell 1 was
positioned closer to the centerline and moved faster in the x

direction than cell 2 (Fig. 3). This led to a decrease in the x

distance with a concurrent decrease in the z distance. Similar
to the data in Fig. 2, the cells first moved like single cells

until the x distance decreased to five times the cell diameter.
Then they started to interact and followed the swapping
trajectories in the lateral direction. However, the swapping
process stopped prematurely at t/t∗ = 20, when the cells came
close to each other and underwent large deformation. The z

distance between the cells suddenly increased and reached
to the maximum value at t/t∗ = 23.1 when the x distance
became zero [red dotted line in Fig. 3(a)]. After t/t∗ = 23.1,
cell 1 passed cell 2 (the x distance changed the sign) and
the cell-cell interaction weakened. The cells recovered their
precollision shapes and moved back rapidly to the lateral
position slightly higher (in the case of cell 1) or lower (cell 2)
than they had before t/t∗ = 20. In this case, cell 1 remained
closer to the centerline and faster in the translational direction
than cell 2, and thus the absolute value of the x distance
continued to increase with time and the interaction gradually
vanished. The three-dimensional view of the computed cell
shape during the above-described passing process is shown
in Fig. 3(b). Significant flattening of the cells occurred at the
regions where the cell-to-cell separation distance was small.
Figure 3(c) shows the flow field at t/t∗ = 22 with the centroid
of cell 1 serving as a reference point.

The numerical simulation of the previous two cases indi-
cates that the trajectories of the cells change from swapping to
passing when the initial z distance between the cells increases
above a certain threshold value. We investigated the effects of
flow rate, cell viscosity, and cell position on the threshold z

distance. In this analysis, the z distance was determined at the
time when the x distance between the cells becomes five times
the cell diameter. This condition was selected based on the data
in Figs. 2 and 3 that showed the onset of pairwise interaction at
the x distance below or equal to 5D. As the flow rate increases
(Re = 1, 10, 50), the critical z distance/D increases from
0.367 to 0.402 [Fig. 4(a)]. When the cell viscosity increases
(γ = 2500, 5000, 10 000), the critical z distance/D decreases
from 0.398 to 0.368 [Fig. 4(b)]. If the positions of the cells
become closer to the centerline (z/H = 0.2, 0.32, 0.38 for
the lower cell), the critical z distance/D decreases from 0.42
to 0.34 [Fig. 4(c)]. These results indicate that when the cells
experience larger deformation due to higher flow rate, lower
viscosity, or closer proximity to the channel wall, the critical
z distance below which the cell swapping occurs increases.
Thus, the probability of swapping becomes higher with larger
deformation of the cells.

The related problem is how the threshold value of the z

distance changes when considering two cells with different
bulk viscosities. We ran the simulation where cell 1 (the
upper cell) was more deformable than cell 2. The critical
z distance/D decreased from 0.398 in the case of identical
cells to 0.255 in the case when cell 2 was four times more
viscous than cell 1 (γ 1 = 2500, γ 2 = 10 000). This change
was much higher than that shown in Fig. 4 for identical cells.
This result indicates that if the upper cell is more deformable
or the lower cell is less deformable, the probability of cell
swapping substantially reduces. This is not the case if the
upper cell becomes less deformable than the lower cells. If
γ 1 = 10 000 and γ 2 = 2500, the critical z distance/D is 0.468,
which is larger than the corresponding values for identical
cells in Fig. 4. Both cases show that the pairwise interaction
facilitates the migration of more deformable cells towards the
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FIG. 4. The effect of flow rate (a), cell viscosity (b) and cell
position (c) on the critical z distance of two interacting cells. D/H =
0.2. (a) z/H for the lower cell is 0.32, γ = 104. (b) z/H for the lower
cell is 0.32, Re = 10. (c) γ = 104, Re = 10.

centerline. These results also point out that it is important to
consider the initial lateral position of cells in a microchannel
for deformability-based cell separation. If more deformable
cells are positioned at the inlet closer to the centerline than
less deformable cells, most of the cells will migrate in the
channel without swapping, i.e., the cells will not be mixed and
can be efficiently separated at small distances from the channel
inlet. However, if more deformable cells are closer to the wall
than less deformable cells, they will swap when they migrate.
The cells need to travel a sufficiently large distance along the
channel for swapping to be completed and the final z distance
large enough for separation to be reached. Thus, with less de-
formable cells positioned closer to the centerline, a long chan-
nel is required for efficient deformability-based cell separation.

In all the cases we considered above, both cells were
located in the same bottom half of the channel. Figure 5
shows the numerical data on pairwise interaction of cells
migrating in different (top and bottom) halves of the channel.

FIG. 5. (Color online) The interaction of two identical cells
located in different halves of the microchannel. (a) Time evolution
of the cell lateral positions (solid lines) and cell-to-cell x distance
(blue dashed line) when z0/H for cells 1 and 2 is 0.629 and 0.314,
respectively. (b) Flow field at t/t∗ = 32.5 with the centroid of cell
2 used as a reference point. The channel length is 30D, and the
initial translational position x0/H for cells 1 and 2 is 2.0 and 4.0,
respectively. Re = 10, γ = 104, D/H = 0.2.

One interesting result is that as the cells get closer to each
other, their lateral migration occurs synchronously in the
same direction, not in the opposite direction as in Figs. 2(a)
and 3(a). This phenomenon seems to contradict intuition, but
could be explained by the flow field shown in Fig. 5(b) at
t/t∗ = 32.5 when the x distance/D reaches the minimum.
The existence of cell 1 introduces a small region of the flow
field in the direction marked by a big arrow in Fig. 5(b). The
recirculating flow around an upwardly migrating cell 1 lifts
cell 2, thereby leading to synchronous motion of two cells.

Here, we consider the pairwise interaction between the cells
located in a short channel, where periodic boundary conditions
will influence the cell migration. Physically, this case describes
the migratory dynamics of a long periodic series of cells
[Fig. 6(a)]. Two identical cells were put in with the same initial
lateral position z0 but different translational position x0. The
channel length was ten times the cell diameter and the initial
x distance between the cells was three times the cell diameter.
As shown in Fig. 6(b), both migrating cells underwent damped
oscillation in the lateral direction around the same equilibrium
position. These oscillations were in antiphase (i.e., the phase
shift was 180°) and had a period of about 51t∗ and the max-
imum amplitude of 0.136D. The distance between the cells
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FIG. 6. (Color online) (a) Diagram of a long series of cells
located in the same half of the channel. (b) Time evolution of the
cell lateral positions (solid lines) and cell-to-cell x distance (blue
dashed line) when z0/H for cells 1 and 2 is 0.303. The channel
length is 10D, and the initial translational position x0/H for cells 1
and 2 is 0.7 and 1.3, respectively. Re = 10, γ = 104, D/H = 0.2.

in the translational direction also oscillated with time around
the average x distance [blue dashed line in Fig. 6(b)]. This
oscillatory dynamics of cells occurs while the cells are dragged
by bulk flow toward the outlet, i.e., two interacting cells behave
as two beads attached to a string with a dashpot that regularly
contracts and relaxes during its movement in shear flow. The
oscillation of the cells in the translational direction was out
of phase (at a phase shift of 90°) with the oscillation in the
lateral direction, but the periods of these oscillations were the
same. The maximum amplitude was 3.36D, which was more
significant than the amplitude of the lateral oscillation. After
the decay of the oscillations, the cells reached the same lateral
equilibrium position and the same x distance (half of the chan-
nel length) between them, in qualitative agreement with the
experimental results of Lee et al. [49] on particle self-assembly
in a microchannel. When the computational domain length de-
creased to six times the cell diameter, the period of the oscilla-
tions decreased to 30.6t∗ and the maximum amplitude became
0.179D. The oscillation period was proportional to the compu-
tational domain length because the rate of decrease in the do-
main length was always equal to the rate of the period decrease.

Our next short-channel simulation deals with two cells
initially located in the top and bottom halves of the channel
[Fig. 7(a)]. Here, the channel length was six times the cell
diameter. The initial x distance between the cells was 0.14D.
As seen in Fig. 7(b), both cells experienced damped oscilla-
tions in both lateral and translational directions. During these
in-phase (phase shift = 0°) oscillations with the maximum
lateral amplitude of about 0.21D, they were slowly drifting to
their expected lateral equilibrium positions. These positions
were symmetric around the centerline, i.e., if the bottom cell

FIG. 7. (Color online) (a) Diagram of a long series of cells
located in different halves of the channel. (b) Time evolution of
the cell lateral positions (solid lines) and cell-to-cell x distance (blue
dashed line) when z0/H for cells 1 and 2 is 0.28 and 0.72, respectively.
The channel length is 6D, and the initial translational position x0/H

for cells 1 and 2 is 0.59 and 0.61, respectively. Re = 10, γ = 104,
D/H = 0.2.

went to the equilibrium position zeq, the top cell reached the
equilibrium position H–zeq. Cell 1 moved faster in the x

direction than cell 2 because it was closer to the centerline.
This resulted in an increase in the x distance with time until
t/t∗ � 21, when the x-distance-damped oscillation around the
distance of three times the cell diameter began [blue dashed
line in Fig. 7(b)]. The equilibrium x distance was half of
the channel length, which indicates that the cells were evenly
distributed along the translational direction.

Figure 8 shows the short-channel simulation data when two
cells have very large initial z distance but are still located in
the same half (bottom or top) of the channel. The upper cell
repeatedly collided with the lower one. Similarly to Fig. 3(a),
during every collision, the cells have opposite spikes in their
lateral position. These repeated collisions kept them from
reaching the single-cell equilibrium position. The spike height
for the lower cell (cell 1) was shorter due to the wall repulsion.
Eventually, due to higher spikes, cell 2 moved further and
further from the trajectory of the single cell migration. It finally
crossed the centerline and entered the other half of the channel.
After this happened, cell 2 continued to oscillate with higher
amplitude but lower frequency, and the oscillations of both
cells became in phase, similar to what was shown in Fig. 7(b).

The effect of deformability on pairwise cell interaction and
migration in a microchannel for a long series of cells is dis-
played in Fig. 9. In this simulation, the channel length was ten
times the cell diameter. Cell 2 was more deformable than cell 1
and initially positioned closer to the centerline. This case was
selected because more deformable cells generally have lateral
equilibrium positions closer to the centerline [34]. As in Fig. 9,
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FIG. 8. (Color online) The migration of a series of identical
periodically spaced cells (two lines of cells with a large initial z

distance between them). The initial lateral position z0/H for cells 1
and 2 is 0.186 and 0.386, respectively. The channel length is 6D, and
the initial translational position x0/H for cells 1 and 2 is 0.9 and 0.3,
respectively. Re = 10, γ = 104, D/H = 0.2.

cell 2 collided and passed cell 1 repeatedly until reaching the
equilibrium position closer to the centerline than cell 1. Cell
2 was unable to enter the top half of the channel, but the
lateral distance between the cells increased significantly from
the initial value. When compared to the scenario A simulation
[34], this result indicates that the cell-cell interaction facilitates
separation of cells with different deformability.

Finally, Fig. 10 shows the effect of the cell-cell separation
distance on the lateral equilibrium position of a long series of
cells migrating in the bottom half of the channel. In this case,
the cells were equally spaced in the translational direction
while having the same lateral position. The lateral equilibrium
position becomes closer to the channel wall as the cell-cell
separation distance shortens, in line with the computational
work on Newtonian drops by Mortazavi et al. [71]. There was
a strong interaction between the cells when the ratio of the
x distance to the cell diameter was less than 5. The pairwise
interaction effects were substantially weakened when the
ratio became greater than 5, indicating that this value can

FIG. 9. (Color online) Time evolution of the lateral positions of
two cells with different deformability. The initial lateral position z0/H

for cells 1 and 2 is 0.257 and 0.357, respectively. The channel length
is 10D, and the initial translational position x0/H for cells 1 and 2
is 0.5 and 1.5, respectively. Re = 10, γ1 = 5 × 104, γ2 = 5 × 103,
D/H = 0.2.

FIG. 10. Lateral equilibrium position of a series of identical
periodically spaced cells as a function of x distance for different
cell diameters. Dash-dot lines show the equilibrium position values
according to scenario A (no interaction).

serve as a threshold cell-to-cell distance for a transition from
scenario AB to scenario A provided D/H is between 0.2 and
0.3. The difference in the lateral equilibrium position between
scenario A [34] and the current simulation of scenario AB
at the x distance of five times the cell diameter was less than
0.8%. Figure 10 also shows a decrease in the slope for smaller
cells (D/H = 0.2) when the x distance decreases below
1.5D. This effect is most likely caused by the wall repulsion
that becomes higher as the cells get closer to the wall and by
the close proximity of the cells.

IV. CONCLUSIONS

In this computational study, we have investigated the effect
of pairwise interaction of deformable cells on lateral and
translational migration in a microchannel. When two identical
cells are located in the bottom or top half of the channel at
different lateral positions and not interacting with other cells,
they pass each other or “bounce back” in the translational
direction, eventually reaching the same lateral equilibrium
position and large separation distance (more than ten times the
cell diameter). The transient interaction between these cells
leads to cell “swapping” in the lateral direction provided the
lateral distance between the cells is small enough. “Swapping”
can deleteriously influence cell separation or enrichment,
likely putting the restriction on how small the channel length
can be for these applications. Our study indicates that there
is a threshold value in the lateral distance between the cells
entering the channel for this phenomenon to occur. As the cell
deformation increases, the threshold value becomes larger
and the swapping has more chance to happen.

A series of identical cells closely spaced in the translational
direction generally undergoes damped oscillation in both
the lateral and translational directions until the cells reach
equilibrium positions and become evenly distributed in the
translational direction (self-assembly phenomenon). For a
series of cells with different deformability, the cell-cell
interaction leads to the migration of more deformable cells
to the equilibrium position closer to the centerline, thereby
facilitating cell separation.
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