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Coarse-grained molecular dynamics simulations of the tensile behavior of a thermosetting polymer
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Using a previously developed coarse-grained model, we conducted large-scale (�85 × 85 × 85 nm3) molecular
dynamics simulations of uniaxial-strain deformation to study the tensile behavior of an epoxy molding compound,
epoxy phenol novolacs (EPN) bisphenol A (BPA). Under the uniaxial-strain deformation, the material is found to
exhibit cavity nucleation and growth, followed by stretching of the ligaments separated by the cavities, until the
ultimate failure through ligament scissions. The nucleation sites of cavities are rather random and the subsequent
cavity growth accounts for much (87%) of the volumetric change during the uniaxial-strain deformation. Ultimate
failure of the materials occurs when the cavity volume fraction reaches �60%. During the entire deformation
process, polymer strands in the network are continuously extended to their linear states and broken in the
postyielding strain hardening stage. When most of the strands are stretched to their taut configurations, rapid
scission of a large number of strands occurs within a small strain increment, which eventually leads to fracture.
Finally, through extensive numerical simulations of various loading conditions in addition to uniaxial strain, we
find that yielding of the EPN-BPA can be described by the pressure-modified von Mises yield criterion.
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I. INTRODUCTION

Epoxy-based thermosets have found numerous applications
as adhesives, molding compounds, and binders for compos-
ites in electronic packaging, automotive manufacturing, and
aerospace industries. Fracture of epoxies has long been an
issue of intensive study. Despite their macroscopically brittle
behavior, there has been reported evidence of localized plastic
deformation in the literature for epoxy-based thermosets.
For example, Morgan and O’Neal [1] observed that epoxy
films deform and fail by a crazing process, a predominant
toughening mechanism considered to occur only in thermo-
plastics. The crazing phenomenon was also reported for a high-
performance resin (AB-benzocyclobutene-maleimide) [2,3].
Similar to crazing but lacking the distinct fibrils, dilatation
bands were found to form within a series of moderately cross-
linked thermosets and enhanced by toughening particles [3,4].
Such experimental observations cannot be explained by the
brittle nature of epoxy thermosets observed macroscopically.
Therefore, there is a need to gain a comprehensive understand-
ing of the conditions and mechanisms of the initiation, growth,
and eventual failure of such localized plastic deformations at
the submicron scale. However, direct tracking and measuring
of these submicron physical processes are extremely difficult,
if not impossible.

Molecular dynamics (MD) simulations have been used
to successfully simulate the mechanical behaviors of poly-
mers. For instance, yielding [5,6] and strain hardening [7,8]
have been investigated for amorphous polymer glasses using
coarse-grained (CG) models. In other studies, researchers
have examined the nucleation, growth, microstructure, and
failure of crazes formed in glassy thermoplastics [9,10] and
obtained fracture-related properties based on MD simulation
results [11]. Unlike thermoplastic polymers, which have been
extensively investigated, results on thermosets are rather
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limited, due to the complexities associated with modeling
the chemically cross-linked network structure inherent to this
type of material. Highly cross-linked polymer networks were
studied in [12–14] using coarse-grained molecular dynamics
(CGMD) simulations to understand the interfacial fracture
between the polymer networks and a solid substrate. The
effects of monomer functionality, degree of curing, and
interfacial bond density were also examined. However, these
works focused on debonding of polymer networks from the
confining walls rather than the cohesive fracture within the
bulk material. Thus, the detailed microstructure of the large
plastic deformation within the polymer was not analyzed.
Panico et al. [15] simulated the tensile failure of glassy
polymers and discussed the different mechanical behavior
between thermoplastics and thermosets and concluded that
chemical cross-linking embrittles the polymer. In all these
aforementioned studies, the CG models are based on nondi-
mensional parameters. Consequently, their results do not
provide physically meaningful quantitative information, for
example, the length scale and stress magnitude.

In our earlier work [16], a fully atomistic MD investigation
provided an accurate prediction of key thermomechanical
properties of a commercially important epoxy molding com-
pound epoxy phenol novolacs (EPN) bisphenol A (BPA).
Subsequently, a CG model for the EPN-BPA was developed
[17]. In this work, the CG model developed in [17] will be
used to conduct large-scale simulations of the EPN-BPA to
understand its tensile deformation and failure mechanism.
Experimental observations of the crazes and dilatation bands
[1–4] indicate that the localized plastic deformations in epoxies
occur within a narrow band of a few microns or less (several
hundred nanometers). While including the entire crack tip
is still not realistic even in our CG model, the material
volume (�85 × 85 × 85 nm3) simulated in the current study
is approaching the length scale of a crack-tip opening and
can thus serve as a representative volume to study cavity
nucleation and growth and ligament scission. The rest of the
paper is organized as follows. In Sec. II we describe the CG
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FIG. 1. (Color online) Bead-connector representations of monomers: (a) EPN 3-mer, (b) EPN 4-mer, and (c) BPA. (a) and (b) Dark gray
(brown) beads are reactive beads on epoxy monomers and (c) two-sided (yellow) beads are reactive beads on hardener monomers.

molecular model used and the methodology of conducting
nonequilibrium CGMD simulations. Results of the simulations
are presented in Sec. III with a detailed discussion of the
interpretations of the simulation results. A summary and
concluding remarks are given in Sec. IV.

II. SIMULATION METHOD

A. Material and coarse-grained model

The model material studied in this paper is an EPN-BPA
epoxy system composed of EPN as epoxy monomer and BPA
as the cross-linking agent. The molecular structures of this
material and its curing reaction mechanisms can be found
in [16]. The CG model developed in [17] will be used. For
completeness, a brief overview of the CG model is repeated
here.

In this CG model, the monomers are represented by
beads connected by chains that maintain similar geometry
as their realistic atomistic configurations. Different monomer
structures are mapped onto different bead-chain structures (see
Fig. 1). Certain groups of atoms on epoxy monomers (EPN
3-mer and EPN 4-mer) are mapped onto reactive beads as are
the hardener monomers. During MD simulated cross-linking
process, bonds are continuously introduced between these two
types of beads.

For simplicity, it is assumed that all the beads have the
same effective mass M , which will need to be determined
together with other parameters in the interbead potential. The
nonbonded interactions between beads are described by the
Lennard-Jones (LJ) potential

ULJ (r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]
, (1)

where ε and σ represent the potential-well depth and diameter,
respectively. They are assumed to be the same for all beads.
The truncation distance for the LJ potential is set equal to 2.5σ .
In our computations, the LJ interactions are invoked only for
beads that are separated by at least three bonds.

The bonded interactions between beads are described
by a quartic function of the interbead distance r

and a purely repulsive LJ function, with a cutoff

at 21/6σ ,
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where H (x) is the Heaviside step function, k4 = 1434.3ε/σ 4,
b1 = −0.7589σ , b2 = 0, and U0 = 67.2234ε [18]. The bond
extension cutoff rc will be among the parameters to be fitted. At
rc, the potential is smoothly truncated and the bond is removed
from the system (bond breakage). Meanwhile, the LJ pair
potential given by (1) is turned on between the aforebonded
pair.

The angle bending interaction is described by a quadratic
function of the bond angle

U (i)
a (θ ) = k

(i)
θ

(
θ − θ

(i)
0

)2
, (3)

where θ
(i)
0 is the equilibrium bond angle. In this work, three

types of bond angles are defined. The angle formed by the three
beads in a BPA monomer is called type 1, whose equilibrium
angle is assumed to be θ

(1)
0 = 100◦. The angle formed by a

reactive bead in an EPN monomer and a reactive bead in a BPA
monomer is called type 2, whose equilibrium angle is assumed
to be θ

(2)
0 = 180◦. All other angles formed by beads within

each EPN monomer are called type 3, whose equilibrium
angle is assumed to be θ

(3)
0 = 180◦. These assumptions on

the equilibrium angles are made based on the geometry of the
atomistic configurations of the monomers (see Fig. 1). The
prefactor k

(i)
θ , with i = 1,2,3, will be determined through the

parameter optimization procedure.
In all, there are seven adjustable parameters in the interbead

potentials given by (1)–(3), namely, M , ε, σ , rc, k
(1)
θ , k

(2)
θ , and

k
(2)
θ , that need to be determined. This task is accomplished by

using the particle swarm optimization method [19] to itera-
tively reduce the difference between the CG model simulated
and fully atomistic model simulated material properties such
as density, glass transition temperature, and elastic constants
for non-cross-linked and 90% cross-linked epoxy molding
compound. Their optimized values are listed in Table I. Details
of the optimization algorithm and implementation are given in
[17].

TABLE I. Optimized force-field parameters.

M ε σ k4 rc b1 b2 U0 k
(1)
θ k

(2)
θ k

(3)
θ

(g/mol) (kcal/mol) (Å) (kcal/mol Å4) (Å) (Å) (Å) (kcal/mol) (kcal/mol-rad2)

55.565 1.519 4.383 5.901 5.887 −3.326 0.0 102.082 2.395 2.899 0.613
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B. Cross-linking and tensile simulation

To build a simulation cell, a group of CG beads representing
epoxy and hardener monomers is randomly seeded in a
cubic simulation cell with periodic boundary conditions in
all three orthogonal directions. The number of different types
of monomers obeys the stoichiometric ratio 2:3:9 for 3-mer:4-
mer:BPA. The assembly of beads in the simulation cell is
then equilibrated under an NPT ensemble at a temperature of
500 K with a time step of 5 fs for 1 × 106 steps. Thereafter,
a dynamic cross-linking process is conducted during the
constant-temperature and -pressure MD simulation. In this
process, a bond is formed between an EPN reactive bead and
a BPA reactive bead when their separation is less than 1.3σ .
Note that the formation of each new bond increases the system
energy by a certain amount. To avoid a drastic change of
the system energy, the number of bonds formed during each
simulation time step should be kept low. To this end, we assign
a probability of 0.01 for the bond formation. In other words, at
each simulation time step, a bond is formed on only one pair of
EPN and BPA beads out of 100 pairs that are within a distance
of 1.3σ . Further, we allow such bond formation to take place
once every ten MD time steps. At this rate, the conversion
degree of 90% typically takes 400 000–500 000 steps. Due to
the three-dimensional periodic nature of the simulation cell,
the cross-linked network actually extends to infinity in all three
directions. After the dynamic cross-linking reaches the desired
conversion degree, the simulation cell is quenched from 500
to 300 K at 2.2 × 1010 K/s, followed by 1 × 106 steps of
the NPT simulation at 300 K to reach the equilibrium density
of 1.183 g/cm3. The results presented in the present paper
are based on a simulation cell that contains 7 834 220 beads,
corresponding to its size of �85 × 85 × 85 nm3 at room
temperature equilibrium.

The next step is to simulate the tensile behavior. This is
accomplished by subjecting the cross-linked and equilibrated
polymer network to a tensile deformation at 300 K, which is
below the glass transition temperature of 400 K for this mate-
rial, according to our previous coarse-grained MD calculations
[17]. The deformation is induced by elongating the simulation
cell along the loading axis with a strain rate of 108 s−1, while
keeping the other two perpendicular directions undeformed,
effectively creating a unidirectional strain. This strain rate is
obviously much higher than that used in quasistatic loading
in realistic laboratory tests. Therefore, the results given in the
remainder of this paper must be interpreted with this high
strain rate in mind. This scheme of deformation provides a
triaxial stress state with strong dilatation component and thus
promotes cavity nucleation and growth. Such high hydrostatic
stresses are often found in crazes and dilatational bands.

III. RESULTS AND DISCUSSION

A. Stress-strain curve

Figure 2 shows a stress-strain curve under the uniaxial
strain condition described in the previous section. It is seen
that at about 7% strain, the material reaches its yield strength
of �298 MPa. After yielding, the stress immediately relaxes
down to �110 MPa. This drastic relaxation is due to cavity
nucleation as shown in the snapshot in Fig. 3(a), where beads

FIG. 2. Stress-strain curve of the tensile deformations.

are colored by their coordination numbers. The coordination
number of a bead is the number of its neighbors within the
force-field (LJ potential) cutoff distance. Therefore, the higher
the coordination number is, the more densely packed the beads
are. In the color scheme adopted in Fig. 3, more reddish
means higher coordination number, while more blue means
lower coordination number. Following this color scheme, it
is easy to visualize the cavities in the simulation cell. These
cavities grow with increasing strain, mainly by elongating in
the direction of loading. During cavity growth and elongation,
the stress-strain curve shows a rather mild strain hardening
between 20% and 200% strain. As shown in Fig. 3(b),
cavities grow both longitudinally and laterally. Such a weak
hardening behavior is a result of the network strands realigning
themselves in the loading direction, which yields large strain
without significant stress increase. After about 200% strain,
most of the network strands are taut in the loading direction and
the entire simulation cell is changed to a network of ligaments
and cavities [see the snapshot in Fig. 3(c)]. Further increasing
the strain leads to bond stretching in the ligaments, which thus
increases the stress. Eventually, some of the bonds are broken,
creating a cascade of bond failure that leads to the final failure
of the material by rapid scission of a large number of strands
at about 230% strain [see Figs. 3(d) and 3(e)]. Failure is seen
as breakage of the ligaments.

Another interesting observation is the network of strands
connecting the inner walls inside the cavities. An enlarged
view of a typical cavity is shown in Fig. 4. It can be seen that
within the cavity the network strands have been stretched from
their initial close-packed states to taut conformations. The
taut network strands bear high stress and break upon further
stretching, as will be discussed in detail later in this article.

B. Yielding criterion

In glassy polymers, both shear and dilatational stresses
contribute to yielding. Generally speaking, higher hydrostatic
pressure leads to higher effective yield strength. To account
for the effects of hydrostatic pressure on the yielding behavior
of glassy polymers, the pressure-modified von Mises yield
criterion [21] is often used, which states that yielding occurs
when the von Mises (octahedral shear) stress τh reaches a
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FIG. 3. (Color online) Snapshots of the deformation sequence. Strains are (a) 45%, (b) 140%, (c) 200%, (d) 255%, and (e) 260%. (f) shows
the color bar. Snapshots are made by AtomEye [20]. The dark gray corresponds to the network strands connecting the inner wall of the cavities,
the medium gray corresponds to the matrix surrounding the cavities, and the light gray corresponds to the boundary of the cavities.

threshold value τ
p

Y , i.e.,

τh = τ
p

Y ≡ (
2
3

)1/2
τY + αp, (4)

where τY is the yield strength under pure shear, p is the
hydrostatic pressure, and α is a dimensionless parameter
accounting for the effects of p. The octahedral stress can be
expressed as a function of the principal stresses σ1, σ2, and σ3,

τh = 1
3

√
(σ1 − σ2)2 + (σ1 − σ3)2 + (σ2 − σ3)2. (5)

For a given material, the value of τY can be obtained by
conducting a pure shear test. To obtain the value of α,

FIG. 4. (Color online) Enlarged view of one cavity in the simula-
tion cell at 45% of strain. Beads are colored according to coordination
number and the corresponding color map is the same as that shown in
Fig. 3. The dark gray corresponds to the network strands connecting
the inner wall of the cavities, the medium gray corresponds to the
matrix surrounding the cavities, and the light gray corresponds to the
boundary of the cavities.

multiaxial tests are needed. Such experiments are often time
consuming and expensive.

In this work, the values of τY and α for the material
considered here were obtained by simulating the yield be-
havior under pure shear and several other multiaxial loading
conditions using the CGMD simulations. Several examples of
these loading conditions are illustrated in Fig. 5. The strain rate
used in these studies was either 108 s−1 or a fraction of it. In
the directions that the stress was controlled, the Nosé-Hoover
barostat was used to maintain zero traction.

To compute the pressure-modified yield strength τ
p

Y , the
stress-strain curve σ1 versus ε1 in the vertical direction (see
Fig. 5) was computed for various loading conditions. Let σ

be the normal stress in the major loading direction and ε be
the corresponding normal strain. At the point when σ = σ max,
where σ max is the maximum on the σ versus ε curve, the
corresponding three-dimensional state of stress was used to
compute the von Mises stress τ

p

Y according to (5) and the
pressure p according to p = −(σ1 + σ2 + σ3)/3. The τ

p

Y so
computed as a function of p is plotted in Fig. 6 using the solid
squares. It is seen that the von Mises stress at yielding indeed
depends on the hydrostatic pressure p. Higher hydrostatic
pressure leads to higher yield strength. By fitting the τ

p

Y versus
p relationship in Fig. 6, the values of τY and α can be obtained.
It is seen that τY = 61.9 MPa and there are two distinctive
values of α, namely, α = 0.124 for p > −275 MPa and α =
0.334 for p < −275 MPa. Observations of the microstructure
evolution at yielding further reveal that yielding is primarily
due to shear for p > −275 MPa, while for p < −275 MPa,
yielding is primarily due to cavitation. Values of α reported
in the literature [5] range from 0.09 to 0.15, depending on
the bond potential parameter and polymer chain length. Our
results for α are in line with these literature values.

We note that the process described above to compute τ
p

Y

is somewhat different from that used in [5] where τ
p

Y is
taken as τmax

h , where τmax
h is the maximum value of the τh
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FIG. 5. Examples of the loading conditions considered.

versus ε curve. In all the loading cases considered in our
studies, we found that the strain ε at which σ = σ max is
always less than or equal to the strain ε at which τ

p

h =
τmax
h . Therefore, we believe that using the stress state at

σ = σ max to compute τ
p

Y as described in the previous para-
graph is more appropriate, since the loading is displacement
controlled.

C. Cavity formation and growth

An important aspect of the deformation and failure mecha-
nism of the studied epoxy-based thermoset is cavity nucleation
and growth. One may speculate that cavities appear at the
locations where the epoxy has a less interconnected network
in its initial configuration. In order to find out whether the
formation of cavities is related to the polymer network’s
cross-linking structure, the spatial distribution of the cross-
links is studied. The cross-links are defined as the beads
having at least three strands reaching out and linking to
other such beads in the cross-linked polymer network. We
find that the cross-links in our simulations cell are rather
uniformly distributed, indicating that the cross-linked polymer
network does not have inherent inhomogeneity that could
lead to the cavity nucleation sites upon loading. One may
then conclude that the locations of cavitation sites are not
related to the initial cross-linked network structure. As a
further confirmation, we found that if the tensile simulation
starts at different equilibrium states of the same initial cross-
linked network structure, the locations of cavitation sites are

FIG. 6. (Color online) Pressure-modified von Mises yield
strength versus hydrostatic pressure.

different, an indication that the initiation sites of cavities are
not intrinsically related to the initial cross-linked network
structure.

Furthermore, we found that regardless of the statistical
difference in the initial cross-linked network structure and the
difference in the cavity nucleation sites, the stress-strain curve
remains the same so long as the conversion is the same. This
implies that the nucleation of cavities has a random nature.
However, the cavitation processes for materials with the same
conversion are statistically similar, so the resulting stress-strain
curve is the same.

After the cavities are initiated, they grow with increasing
deformation. To differentiate cavities from their surrounding
matrix materials and to track the evolution of the cavities, the
entire simulation cell is divided into Voronoi cells by using
each bead as the center of the Voronoi cell. The volume of the
ith Voronoi cell will be denoted by V Voro

i , so the total volume
of the simulation cell is V = ∑

i V
Voro
i . During deformation, a

cavity is considered nucleated when the volume of a Voronoi
cell becomes greater than a threshold value V Voro

th . Clusters of
beads with Voronoi cell volume larger than V Voro

th are shown in
Fig. 7, where the threshold volume V Voro

th is determined such
that the mass density of the cavity is less than 3% of the mass
density of the surrounding matrix.

FIG. 7. (Color online) Visualization of clusters of beads with
Voronoi cell volume larger than a threshold volume. Beads are colored
according to their Voronoi cell volumes.
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FIG. 8. (Color online) Total cavity volume (black diamonds) and
the cavity volume fraction (blue squares) versus axial strain in the
loading direction.

The total volume of the cavities in the simulation cell is
given by

V c =
∑

i

V Voro
i

∣∣∣∣
V Voro

i >V Voro
th

. (6)

In Fig. 8 the total volume and the volume fraction of the
cavities are plotted as functions of the axial strain in the loading
direction. The symbols are from our CGMD simulations and
the solid lines are the best fits of the data. It can be seen
from the plot that the total cavity volume increases linearly
with increasing strain throughout the deformation process and
the ultimate failure of the material occurs when the volume
fraction of cavities reaches about 60%. Although not shown
here, observations of the cavity evolution indicate that the
increase of V c is due to both the expansion of the already
nucleated cavities and the continuous nucleation of additional
cavities with increasing loading.

It follows from the data shown in Fig. 8 that V c = αε1,
where ε1 is the engineering strain in the loading direction and
α = 533 333 nm3 is the slope of the straight line in Fig. 8.
Since the deformation is a uniaxial strain and the initial
simulation box is a cube of dimension L, the total volume
of the simulation box during the uniaxial strain deformation
is V = (1 + ε1)L3. Therefore, the cavity volume fraction is
given by fc = V c/V = αε1/(1 + ε1)L3 (see the blue squares
in Fig. 8). It is interesting to compute the ratio of the total
cavity volume and the volumetric change of the simulation
cell V c/(V − L3) = α/L3 = 0.87. This means that 87% of the
volumetric change of the simulation cell is due to cavitation.
The volumetric change of the matrix accounts for only 13%
of the total volumetric change of the simulation box. In other
words, during uniaxial strain, the deformation is primarily
accommodated by voiding.

D. Network strand scission

As mentioned in Sec. III A, polymer network strands are
continuously pulled taut and may break if bonds reach the
cutoff length given by the potential. To quantitatively study
this process, we measured the distances between cross-links.
As described in Sec. III C, cross-links are those beads having

FIG. 9. (Color online) Illustration of one piece of cross-linked
polymer network with two linked cross-links marked.

at least three strands reaching out and linking to other such
beads in the cross-linked polymer network. In Fig. 9 a pair
of such linked cross-links is shown. For convenience, we use
d to denote the distance between the two cross-links and l

to denote the equilibrium length of the strands connecting
them. In the initial configuration, d/l < 1 for most cross-
links, since strands are mostly coiled in the undeformed
configuration. As deformation increases, d approaches l when
strands are pulled taut. Thus the ratio R = d/l gives a good
measure of the degree to which strands are pulled taut. The
probability distribution of R was studied for various deformed
configurations and is plotted in Fig. 10. It is evident that R
approaches 1.0 as the overall strain increases. In the initial
configuration, the peak of theR distribution is centered around
R = 0.47. This peak shifts toward the right and becomes
lower as deformation proceeds and eventually vanishes. In
the meantime, a second peak emerges at R = 0.8 after the
strain reaches 45%. As the strain increases further, this second

FIG. 10. (Color online) Probability distribution of R at various
strain levels.
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FIG. 11. Fraction of broken bonds versus strain.

peak shifts to R = 0.9 at about 240% strain, with its height
significantly increased. These trends clearly demonstrate that
strands are continuously being pulled from close-packed to
linear states.

A covalent bond may break when strands are stretched
longer than their maximum length defined by the bond
potential (2). Figure 11 plots the fraction of broken bonds
(among a total of �8 × 106) with respect to the applied uniaxial
strain. It is evident from the plot that the number of broken
bonds per unit increment of strain increases significantly
beyond a strain of �150%. This finding is consistent with
the data shown in Fig. 10 in that it is only after most
of the strands are extended to taut configurations that the
rate of bond breaking increases significantly. Also, a strain
of �150% coincides with the starting point of the strain
hardening regime of the stress-strain curve, as discussed in
Sec. III A, which indicates that the strain hardening is indeed
accompanied by rapid scission of a large number of strands.
Further investigation of the stress distribution confirms this
conclusion. In Fig. 12, where beads are colored by their atomic
stress along the loading direction, it is shown in Fig. 12(c)
that the chains bearing high stress (chains with lighter color)
can be found throughout the entire simulation box, while in
Figs. 12(a) and 12(b) they are localized around the cavities.
Therefore, many more covalent bonds are expected to break in
the strain hardening process.

E. Comparison with thermoplastic glassy polymers

We have shown that, in thermoset polymers such as
cross-linked epoxy under high hydrostatic tensile stress,
yielding occurs via cavitation. Molecular dynamics studies
of thermoplastic glassy polymers [10,15] reported a similar
phenomenon of cavitation and, accordingly, a drastic stress
relaxation after yielding in the stress-strain behavior. In other
words, under high hydrostatic tensile stress, thermosets and
thermoplastics both yield through cavitation.

After the stress relaxation, the stress in thermoplastic
polymers stays on a plateau value, i.e., the drawing stress,
and the range of this plateau regime, measured by the stretch
ratio Lz/L

0
z , is roughly 4 according to the results presented

FIG. 12. (Color online) Atomic configurations with beads col-
ored by their atomic stress along the loading direction. The corre-
sponding strains are (a) 90%, (b) 145%, and (c) 200%. The light gray
corresponds to higher stress and the dark gray corresponds to lower
stress.

in [10,15]. It is well understood that craze grows during this
process through void expansion and chain disentanglement.
Stable crazes are characterized by a well-defined network of
interconnecting voids and fibrils [15]. Although cavity growth
also occurs during the postyielding deformation process
of the cross-linked thermosets, the behavior is different in
that postyielding stress increases instead of staying at a
constant value. This is due to the continuous orientating and
scission of rather short polymer network strands, as has been
demonstrated in Sec. III D (Figs. 10 and 11). As can be
seen from Fig. 4, inside the cavities the network strands
have been stretched from their initial close-packed states to
taut conformations. Thus growth of the cavities causes more
strands to change from a coiled state to a linear state.

In thermoplastics, crazes fail through disentanglement for
shorter chains or chain scission for long chains (N � 2Ne)
[10]. In thermosets, neither of these two mechanisms plays
a role. Instead, it is the scission of permanently cross-linked,
much shorter chains, which occurs significantly more rapidly
prior to failure. In [10] the stretch ratio Lz/L

0
z required from

the end of stress plateau to the ultimate failure is roughly
3 for thermoplastics, while the value is less than 1 for the
thermoset epoxy studied in this paper. In other words, the
highly cross-linked network structure makes thermosetting
polymers more brittle than thermoplastic polymers. This is
because the chemically cross-linked network forbids chain
disentanglement and leads to breakage of chains and thus
brittle failure of the material.

F. Comparison to experimental observations

It has been found in experimental studies that in epoxies
localized plastic deformations usually occur within a very
narrow band measured over several hundred nanometers [1–4].
In both crazing [1–3] and dilatation bands [3,4], it was
observed that the crack tip consists of parallel bands of coarse
fibrils bridging the crack surfaces and cavities in between. This
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resembles our simulated deformed configurations in which
stretched ligaments are separated by cavities. Our simulation
results reveal the detailed microstructure and quantitative
aspects of the localized plastic deformation, including stretch
ratio, strength, and cavity volume fraction, which are not easily
accessible through experiments. Therefore, they provide valu-
able information for continuum-mechanics-based modeling of
fracture of thermosetting polymers.

IV. CONCLUSION

In the current investigation, large-scale MD simulations
based on a CG model were conducted to study the deformation
and failure mechanisms of an epoxy molding compound.
The CG potential was developed based on matching key
thermomechanical properties of the epoxy molding compound.
The cross-linked network structure of the epoxy was built by
running MD simulations of polymerization from the mixture
of monomers. Major findings of the CGMD simulations are as
follows.

(a) We found that yielding in the epoxy molding compound
is caused by cavitation under high hydrostatic tension. At
low hydrostatic tension or compression, yielding is caused
by shear. Such yielding behavior can be described by
the pressure-modified von Mises yield criterion. Through
extensive numerical simulations, we obtained the material

parameters in the pressure-modified von Mises criterion for
the epoxy considered here.

(b) Cavities nucleate randomly and grow under increasing
load. It was found that cavitation accounts for much (87%) of
the volumetric change during the uniaxial strain deformation.
The sample fails when the cavity volume fraction reaches
�60%.

(c) Polymer strands in the network are continuously
stretched to linear states and broken in the postyielding strain
hardening process. When most of the strands are stretched to
their taut configurations, the material shows rapid scission of
a large number of strands within a short range of strain, which
eventually leads to fracture.

(d) The simulation results show that the thermosetting
polymers, such as cross-linked epoxy, are much more brittle
than glassy thermoplastic polymers. Such brittleness is at-
tributed to the chemically cross-linked network of very short
chains, which forbids chain disentanglement.

The above findings provide valuable insights into the lo-
calized plastic deformation of thermosetting polymers. Future
work based upon them may lead to atomistic-to-continuous
multiscale modeling frameworks for cracking in thermosetting
polymers.
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