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The strength of quasibrittle materials depends on the ensemble of defects inside the sample and on the way
damage accumulates before failure. Using large-scale numerical simulations of the random fuse model, we
investigate the evolution of the microcrack distribution as the applied load approaches the fracture point. We find
that the distribution broadens mostly due to a tendency of cracks to coalesce in a way that increases with system
size. We study how the observed behavior depends on the disorder present in the sample and relate the results
with fracture size effects.
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I. INTRODUCTION

The fracture strength of materials is a problem whose
general understanding is still based on empirical knowledge
that would benefit from a more solid fundamental theory (for a
review see [1,2]). In the simplest case without time-dependent
rheology or memory effects due to plastic deformation, the
only trace left in the sample by the loading history is the accu-
mulated damage. In these conditions, the size dependence of
the fracture (peak) strength can be understood by extreme
value theory and renormalization group methods [3,4]. The
main issue can be summarized as follows: Does one of the
limiting extreme value distributions (i.e., the Gumbel, Weibull,
or Frechet distribution) [5] describe fracture and why?

Engineers have used the Weibull distribution for decades on
the basis of empirical considerations [6], although a different
answer is found, in the limit of dilute disorder, considering
the stresses induced by (micro)cracks randomly arranged
in the sample [7,8]. Fracture is ruled by the subvolume with
the largest defect that induces failure at a stress that can be
estimated by linear elastic fracture mechanics [7,8]. If we
consider an initial exponential defect distribution and neglect
subsequent damage accumulation, the problem is directly
solvable in terms of a modified Gumbel distribution [7,8],
which can be shown to flow asymptotically to the limiting
Gumbel case [3]. When stress enhancements turn out to be
negligible, the Gaussian (normal) distribution arises instead
(e.g., in the fiber bundle model with global load sharing [9]).
As recently shown in Ref. [3], damage accumulation cannot
be neglected as originally believed [7,8] and should therefore
be studied to understand fracture size effects.

Damage accumulation in a disordered sample has also
important implications for damage mechanics, a widely
used method to treat the effect of microcracks by contin-
uous variables defined over representative volume elements
[10–12]. Simplified statistical physics models provide some
key answers on the role of accumulated damage [13,14],
which effectively changes the defect distribution. Recent
studies have shown that damage accumulation and microcrack
long-range interactions do not change the general form of the

distribution [4], but affect their tails in a significant way [3].
It is still unclear, however, if the change of the distribution
tail due to the accumulated damage is due to the growth and
coalescence of existing cracks or to the nucleation of new
cracks.

Here we study the development of microcracks under
loading for various disorders and as a function of sample
size by numerical simulations of the random fuse model
[15]. In this discretized scalar fracture model, one can keep
track of the additional element failures and analyze in detail
the microcrack geometries and densities. The main result we
obtain is that the development of a broad damage distribution
tail, of large defects, is a rare-event phenomenon: In each
sample, the largest crack contributing to that tail is a unique
case and it typically arises from the coalescence of two smaller
microcracks. This phenomenon exhibits scaling with disorder
and sample size and indicates how the details of the damage
mechanics will influence the stress in a quantitative way. This
is because of the general form of the defect population, which
merely dictates the form of the extremal distribution and the
scaling of failure stress with sample size.

The structure of the rest of this paper is as follows. In Sec. II
we present briefly the numerical model, concentrating more
on the analysis of damage and crack evolution. Section III
presents the results. First we discuss the development of
damage as a function of various parameters up to the maximum
stress (current) and connect it to the known scaling of the
peak stress. Then we analyze the microcrack distributions at
maximum and pay particular attention to where the largest
cracks (in each sample) come from. We present a scaling
analysis of their properties with sample size and disorder.
Finally, we look more closely at the creation of the largest ones
to examine what the role of damage is in crack coalescence.

II. MODEL

We perform numerical simulations of the two-dimensional
random fuse model (RFM) [15]. In the RFM we study a set
of conducting fuses, with unit conductivity σ0 = 1, that are
arranged on a 45◦-tilted square lattice of size L × L. A voltage
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FIG. 1. (Color online) Sample snapshot from a 512 × 512 system. A fraction nr = 0.10 of bonds has been removed at the beginning (in
gray narrow segments, or black if belonging to the final spanning crack). In red (dark gray) the bonds broken during the prepeak damage and
in cyan (light gray) or blue the ones that belong to the final avalanche. The inset in (a) shows a section of neighborhood for the final crack
containing the red (dark gray) bonds in particular. More detail is shown in the two smaller insets: (b) the initial configuration and (c) the
configuration at the peak. The bonds broken from the beginning contribute by bridging to increase the length of the cracks that will fail the
entire sample. Here Cmax indicates the maximum current and Cmax + 1 the next current value, as the current has discrete values for each of the
bonds failed.

drop is applied along two parallel edges of the lattice while
periodic boundary conditions are imposed along the other two
edges. Initially, a fraction nr of the bonds are removed at
random to result in a statistically homogeneous damage field.
It is easy to show, as already noted in the early extensive studies
of this model [7], that an exponential distribution describes the
initial microcrack distribution P0,L(w), where w is the crack
width, defined as the length of the crack projected on the
horizontal direction. The external voltage is then increased
adiabatically and the current in each fuse is obtained by a
solution of the Kirchhoff equations. When the current ij in fuse
j overcomes a unit threshold t = 1, the fuse burns irreversibly.
In practice, fuses are broken one by one starting from the one
with the largest current until the lattice is disconnected in two
parts [1]. To quantify the damage, we consider the connected
crack clusters for each L and show results for their number
Nclu(w) in what follows. We then analyze the evolution of the
microcrack distribution PN,L(w), where, as indicated above
in the case of the initial distribution, we denote by N the
number of bonds (fuses) failed in each sample as a result of
loading.

The following analyses are conditioned by the percola-
tion threshold (nr,c = 0.5 for the current geometry). One
expects to observe different damage development in both the
weak disorder and percolation limits. Larger values of nr

make the numerical study of crack geometries cumbersome,
thus most of the results are confined to nr � 0.35. This
also excludes the crossovers from percolation-dominated to
bulklike fracture that happens with increasing L in the
proximity of the percolation value nr,c at which other phe-
nomena would happen [16]. We first look in detail at the
relevant damage, before concentrating on its role in the
formation of the critical microcracks and the crack population
dynamics.

III. DAMAGE ACCUMULATION AND CRACKS

Figure 1 shows an initial damage state and the system
at peak current Cmax, with the damage at peak being
Nmax ≡ N (Cmax) = 5. This quantity Nmax is a fundamental
one to characterize damage: How does its average scale with
disorder and sample size and how does it vary from sample
to sample? We notice the following details in the damage
development. The prepeak damage is small (that is, the values
of N up to the maximum current Cmax, Nmax). Part of that
damage, if not all of it, is concentrated locally around some
preexisting crack, creating (right small inset in the figure) a
microcrack that turns out to be the critical one. This crack
is created by the coalescence of microcracks by damage and
bridging bonds in a process that we analyze separately below.
Finally, an unstable avalanche creates the final fracture surface,
which is indicated by the blue bonds in the figure. Thus,
in addition to N and Nmax, also the role of the particular
failed fuses is important. One can a posteriori study if the last
failure event increasing the damage from Nmax − 1 to Nmax is
a bridging bond or not.

A. Scaling of damage

Figure 2 shows the peak damage sample-averaged Nmax in
a plot where L and Nmax are depicted on logarithmic scales.
Note that the z axis starts from unity, since one needs always
to break at least one fuse to bring the system to failure. Across
the variety of disorder strengths nr and L values present here
it is clear that the typical damage is small, while the strength
distribution itself is of the modified Gumbel-type. In both
limits of nr we see that the damage approaches the minimum
value. In between, there is a peak in the damage for an nr

value, which shifts with L and might seem to saturate (i.e., not
approach nr,c as would be the opposite case).
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FIG. 2. (Color online) The amount of peak damage (number of
broken bonds at maximum current) varies as a function of both the
disorder nr and the size of the system L (Nmax and L on logarithmic
scales). For every size a peak develops for some nr , whose location
(dashed line) increases with both the size and the initial disorder, but
that seems to reach an asymptotic value for large sizes.

A more detailed look at the damage scaling in Fig. 3
indicates actually the same peak effect, as the largest disorder
case (i.e., nr = 0.35) illustrates. All the finite-size effects
seem to adhere to a power-law increase of Nmax(L), which
is subextensive Nmax/L

2 ∝ Lb, with b negative. Note that
the exponent b changes monotonically with nr and the peak
damage behavior with nr arises thus from a decrease in the
prefactor of the power law. This would imply that the apparent
asymptotic saturation of the peak damage in Fig. 2 is just
illusory and extending the simulations to larger L should
confirm this.

B. Crack populations at peak strength

The main question to address is how the damage influences
the cracks at peak strength. Figure 4 shows both a typical
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FIG. 3. (Color online) Peak damage (cf. Fig. 2) Nmax as a function
of the size L for various disorders nr . For every fixed disorder nr ,
Nmax(L) is well described by a power law Nmax(L)/L2 = aLb. The
fitting parameters for different disorders are showed in the insets:
(a) prefactor and (b) exponent.
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FIG. 4. (Color online) (a) Average number of clusters Nclu(w)
of a given width w per sample. The data corresponding to various
disorder values, labeled from top to bottom in the legend, are
displayed in the figure from left to right. The distribution at the
beginning is exponential (solid line), while at the peak it develops a
tail with a different slope (data points only). (b) Two distributions for
a given disorder (nr = 0.15) and size (L = 1024) [blue (light gray)
triangles, y axis on the left] and their difference [red (dark gray)
circles, y axis on the right]. The open-triangle data points present the
two distributions at the peak obtained by subtracting the largest and
the second-largest crack.

result and the main concepts of a detailed analysis to this
end. One can compare at the peak current Cmax among several
microcrack populations: the original at zero damage (N = 0),
the actual one at peak strength, and the one obtained by
subtracting for each sample from the peak strength one the
largest and second-largest microcracks.

As was already pointed out in Ref. [3], a wider exponential
tail develops at the peak. This, by looking at the difference of
the peak and original distributions, arises from the coalescence
of original microcracks. By direct observation as such, but also
by looking at the distributions with the largest microcrack (or
second largest as well) removed, it becomes clear that the tail
is indeed averaged over the largest cracks in each sample.

Interestingly, Fig. 5 shows that the mass transport (change
of probability distribution from the initial distribution) of the
size distributions of cracks exhibits for all nr a power-law
scaling with L. The inset of Fig. 4 allows us to identify
three particular values for each L and nr : the negative
minimum, the positive maximum, and where the difference
of the distributions is zero. All three follow for each nr

a power-law scaling with the same exponent. The prefac-
tors and power-law exponents show monotonic trends with
disorder.

Given that one can find the largest crack in each system, the
question remains how w and Nmax correlate with the strength
(Cmax) of each sample and with each other. Obviously, there
might be a slight correlation between the two geometrical
quantities, since the largest cracks should develop if the system
undergoes more failures N . The initial step, with N = 1, is
related to the initial strength C1 (or current C at which the
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FIG. 5. (Color online) Evolution of crack distributions up to the
peak. (a) For nr = 0.15 the points (measured in w units) of the
maximum and minimum of the differences of distributions as well
as the point of zero difference (showed as red circles in the inset of
Fig. 4) all scale following a power law w(L) = ALB with the same
slope. This is true for every disorder, as shown in (c) (just the case of
the maximum here). Also shown are the parameters resulting from
the fitting: (b) The prefactor and (d) the exponent increase with the
disorder.
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FIG. 6. (Color online) Scatter plot of peak strength values Cmax

vs the sample maximum defect size w. The figure includes a 50-point
running average over the w values (black line). The data represented
here are obtained from 105 realizations of a sample of size L = 512
with initial disorder nr = 0.10.

first bond fails). There seems to be a slight anticorrelation
in that a large C1 implies a smaller final w. If the first bond
breaks late, then relatively speaking there is less crack growth.
Figure 6 shows the correlation of Cmax and w: Obviously,
this does not follow a naive linear elastic fracture mechanics
prediction (Cmax ∝ 1/

√
w) one to one. It moreover illustrates

that the damage that develops is able to decorrelate Cmax

from C1. This is not a novelty, since it is known that in the
RFM C1 has a similar modified Gumbel scaling [8] as Cmax

but with different parameters and that there is no one-to-one
correspondence between Cmax and C1, which would otherwise
render fracture prediction for any sample rather trivial [8].
However, the comparison of w with Cmax and C1 allows us to
conclude that such a decorrelation must be due to the fact that
the final, critical defect experiences a stress that has a random
component in addition to the one present at C1.

C. Crack coalescence

The results presented above indicate that a small amount of
damage is enough to have a profound influence on the kind of
dominating microcracks at peak and thus also on the sample
strength. Theoretically, the question could be formulated by
a Smoluschowsky-like system of rate equations for defects of
size w to a degree of some generality indeed. As we have
already indicated, in the current case of dilutionlike random
disorder the most important mechanism seems to be crack
coalescence of fusion.

The defining rates or processes for PN+1,L(w) when N →
N + 1—in other words a bond is broken—are (i) joining two
cracks, (ii) crack growth (w → w + 1), and (iii) nucleation
of a crack of size one (w = 1). One can now check what the
effect at Nmax is like and Fig. 7 shows the likelihood of the first
of these three processes averaged over last failures to reach
Nmax. Three major features emerge. First, the microfailures
have a large probability to contribute to crack coalescence
as Pbridging � 0. Second, this probability increases with L.
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FIG. 7. (Color online) Bridging probability as a function of the
disorder. The probability Pbridging that a broken bond joins two
preexisting cracks increases with the system size and, while the
behavior for the large systems is not clear, the probability presents a
maximum at a given disorder value for each L.
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Third, there appears again to be a maximum efficiency for
this process to contribute or happen, at a certain disorder,
which shifts slowly with L. Attempts to find a scaling form
for coalescence due to bridging events (bond failures) or the
probability Pbridging with nr and L were not successful, leaving
an important unanswered question: Does it saturate for a given
disorder to a value smaller than unity?

IV. CONCLUSION

In this paper we have performed a systematic analysis
of damage mechanics in brittle fracture, using the random
fuse model. The approach is interesting for a number of
reasons, including the fact that the problem is extremely hard to
study experimentally to even a limited extent. What transpires
from our results is that the peak damage and the microcrack
populations in our samples at peak stress are determined by the
microscopic dynamics of crack growth, which occurs mostly
by coalescence. This dynamics is quantitatively dependent to a
large extent on the disorder strength and the system size. While
the general questions of size effects and fracture strength in
these test systems are now finally well understood [3,4], the mi-
croscopic details turn out to be quite important: It is from them
that the parameters of the coarse-grained (modified) Gumbel
distributions ensue. Thus the present damage study highlights a
connection between the microscopic and macroscopic, beyond

the link that ensues during a renormalization or upscaling of
sample-size-dependent strength distributions.

A number of open avenues for future research must be
listed. The detailed connection of the damage scaling(s)
and those of strength distributions should be analyzed. The
particular case at hand is characterized by a very small
damage degree at peak load. Scenarios where the crack
population undergoes more a complicated development up to
Cmax would be of great interest for further studies, such as
where the initial one has a power-law form [4,16]. In a more
general sense, our results highlight the old engineering ideas
of improving fracture resistance by inhibiting crack growth:
Minute effects in the fracture resistance may influence the
strength quantitatively.
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