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Self-similarity and scaling of thermal shock fractures
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The problem of crack pattern formation due to thermal shock loading at the surface of half space is solved
numerically using the two-dimensional boundary element method. The results of numerical simulations with
100–200 random simultaneously growing and interacting cracks are used to obtain scaling relations for crack
length and spacing. The numerical results predict that such a process of pattern formation with quasistatic crack
growth is not stable and at some point the excess energy leads to unstable propagation of one of the longest
cracks. This single-crack scenario should be understood in a local sense. There could be other unstable cracks
far away that together can form a new pattern. The onset of instability has also been determined from numerical
results.
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I. INTRODUCTION

The development of a hierarchical crack patterns is common
in the failure of brittle material in response to loading by a
thermal shock. The thermally induced stresses are released by
the formation of an initial array of small cracks that grow in
time as the cooling front propagates into the body, forming
a system of cracks of different lengths. A similar process
is the development of desiccation cracks in mud or paste
drying [1–3] or columnar joint formation in cooling lava lakes
[4–8]. Chemical decomposition of solids also can generate
crack patterns [9,10]. Depending on the cooling and drying
conditions, different crack patterns can be formed [11–16].
Many important characteristics of brittle solids such as fluid
and heat transport properties depend on the number and length
of the cracks; therefore, significant efforts were undertaken
to develop the theory of thermal shock fracturing. In [17,18]
the combination of strength theory and fracture mechanics
was used to study the initiation and propagation of cracks
due to the thermal shock of a brittle solid. The development
of hierarchical crack patterns was explained in [19,20] by
bifurcation instability analysis. In particular, it was concluded
that at a certain length, the quasistatic propagation of an array
of equidistant cracks becomes unstable and only every second
crack continues to grow until a new instability point, where
a reduced number of cracks would continue to propagate,
is reached. The formation of a crack pattern in quenched
glass or ceramic slabs was studied both experimentally and
theoretically in [21–24].

Most of the existing studies of the hierarchical crack pattern
formation used a simplified model of symmetric equidistant
edge cracks. In real solids the locations of cracks at the moment
of initiation are affected by the local variation in strength, so the
generated crack pattern is not symmetric. However, it can be
expected that, on average, the crack pattern that develops from
such a random array of cracks has deterministic characteristics
[25]. Only a few works have studied the formation of such
random crack patterns. In [26] the crack pattern formation
due to thermal shock loading was modeled using a simplified
potential for crack growth and interaction and it was found
that the average crack spacing does not depend on the initial
crack configuration. Similar results were obtained in [27]

using the two-dimensional boundary element method based
on a complex hypersingular integral equation (CHIE) [28,29].
In this paper the CHIE method is used to simulate the
simultaneous growth of many random cracks and to study the
scaling relations that govern the formation of crack patterns
resulting from instantaneous cooling of the surface of a half
space. The CHIE method is an accurate and efficient way of
solving problems dealing with cracks and crack propagation
as demonstrated, e.g., in [30–32].

In the present work, two-dimensional boundary element
method is used to build the numerical model of the formation
of crack patterns that develop from an initial array of many
small cracks randomly located at the surface of a half space in
response to the thermal stress related to a nonstationary thermal
field. The numerical modeling accounts for the mechanical
interaction of growing cracks and the arrest of some of the
cracks, followed by the formation of a hierarchical pattern.
Such numerically generated crack patterns are used to study the
scaling laws that characterize the length and average density
of the thermally driven cracks.

II. THERMAL CRACKING OF THE SURFACE
OF HALF SPACE

A. Single crack

Before considering the propagation of many cracks under
thermal stress, it is useful to study the behavior of a single
crack and its growth in time under thermal stress. Consider a
half space with an initial temperature T0, subjected to instant
cooling at its surface using a temperature drop of �T =
T0 − TS , where TS is the half-space surface temperature. The
problem can be solved analytically and the temperature profile
at any moment in time equals [33]

T (z) = T0 − �T erfc

(
z

L

)
, (1)

where z is the distance from the surface, L is the cooling
depth, which equals L = √

4tκ , t is time, and κ is the
thermal diffusivity of the solid. The cooling of the surface
creates a thermally induced stress in the material and for the
two-dimensional plane strain condition, the tangential thermal
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stress component is given by

σth(z) = Eα[T0 − T (z)]

1 − ν
, (2)

where E is Young’s modulus, ν is Poisson’s ratio, and α is the
coefficient of linear thermal expansion.

The process of crack growth due to the thermal shock
loading has two intrinsic length scales: the depth of the cooling
zone L and the characteristic length of the material ξ , defined
as

ξ ≡
(

KIc(1 − ν)

Eα�T

)2

, (3)

with KIc being the fracture toughness of the material. The
characteristic length ξ is the ratio of the energy required to
create a new crack surface and the thermoelastic energy that is
generated in the solid by the thermal shock. From dimensional
considerations the stress intensity factor (SIF) at the tip of a
single edge crack of length a, normal to the solid surface, and
loaded by thermally induced stress can be expressed as

KI = Eα�T

1 − ν

L√
a
f

(
a

L

)
, (4)

where the nondimensional function f has to be determined
numerically and can be approximated as

f

(
a

L

)
= 0.87 tanh

(
2.2

a

L

)
. (5)

For short cracks, i.e., when a/L< 0.5, the SIF is approximately
proportional to

√
a and such a crack is unstable. For long

cracks (when a/L > 1) the function f is approximately
constant and the crack length can be estimated as

a =
(

0.87
Eα�T

KIc(1 − ν)

)2

L2. (6)

Therefore, as L = √
4tκ , the length of the single crack

subjected to thermal shock is a linear function of time.

B. Array of random cracks

To study the process of an interaction of many cracks, we
start the simulations from an initial array of many small cracks
with length a0 and average spacing d0, as shown in Fig. 1.
Using the superposition principle, the thermal load is applied
at the faces of the cracks. The randomness of the initial crack

FIG. 1. Array of edge cracks with length a0 and spacing d0,
subjected to the thermally induced stresses σ↑th.

array is introduced via perturbations in the cracks locations:
Each initial crack is shifted from its position by a random
value ±�d, keeping the average spacing between the cracks
d0 constant. The simulation results show that after several crack
increments, when some of the initial cracks stop, the resulting
crack pattern does not depend on the initial geometry in the
average sense, so the crack spacing follows a single curve
irrespective of the initial crack’s configuration. To replicate
a large number of cracks, an initial array of 100–200 small
cracks with periodic boundary conditions (so that the whole
random array is repeated) was used in the simulations. For
accurate determination of the resulting average crack spacing,
normally about six independent simulations with different
random crack locations were performed for each value of
characteristic length ξ .

The cracks propagate when the stress intensity factor at their
tips exceeds the fracture toughness of the material KIc. The
propagation criterion is applied to every crack tip at every time
step and if the criterion is fulfilled, the cracks are advanced by
a small increment. The propagation angle is chosen according
to the principle of local symmetry: The crack grows along
the path where the stress intensity factor in mode II equals
zero (KII = 0). The algorithm suggested in [34] is used in the
present work to find the propagation angle simultaneously for
all advancing crack tips.

The crack patterns for different values of normalized initial
crack spacing d0/ξ are presented in Fig. 2. As one of the cracks
stops growing, the neighboring cracks change their direction
of propagation, redistributing evenly in space. The numerical
results suggest that the process of crack pattern formation is
self-similar, i.e., the crack pattern repeats itself on different
time and length scales. The results of simulations, i.e., the
maximum crack length (the length of the longest crack at a
given time) and average crack spacing (measured at a given
depth z at the end of the simulation when all shorter cracks
are arrested and do not grow) normalized with respect to
the material constant ξ , are presented in Figs. 3 and 4 on a
logarithmic scale. The power-law curve fits shown correspond
to Eqs. (7) and (8), respectively:

a

ξ
= 1.1

(
L

ξ

)1.075±0.005

, (7)

d

ξ
= 5.5

(
z

ξ

)0.74±0.01

. (8)

C. Cooling the surface of a body subject to stress

Let us assume that the instantly cooled surface is that of
a body subjected to a compressive stress σ∞ (compression
is considered negative) applied at infinity. Such compressive
stress could be the in situ stress in earth’s crust or the residual
stress often observed in material coatings. We assume that
the absolute value of the compressive stress is smaller than
maximum thermal stresses at the surface [Eα�T/(1 − ν)], so
there is a zone of tensile stress near the surface that changes to
compressive stress deeper in the body. It could be expected that
cracks will not penetrate the compressive zone and the crack
pattern is mainly governed by the shape of the temperature
profile in the tensile region near the surface. The shape of
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FIG. 2. Crack patterns formed in simulations of thermal shock fracture with different values of normalized initial crack spacing d0/ξ . The
length scales and time are different in each figure, but the pattern development in time is similar.

the stress profile now depends on the ratio of the compressive
stresses to the thermal stresses at the surface λ = |σ∞| /σth(0).
For λ = 0, the scaling law (8) can be applied for crack spacing.
However, as λ tends to unity, the stress profile in the tensile
zone becomes closer to a linear function as shown in Fig. 5.

For simplicity, the linear temperature distribution was
chosen as

T (z) =
{
T0 − �T L−z

L
, 0 � z < L

T0, z � L.
(9)

The results show that scaling laws of the crack pattern for
a linear temperature distribution are different from scaling
laws for an error-function distribution. In the case of a linear
temperature profile, the crack length does not depend on the
material’s fracture toughness and the length of the longest

FIG. 3. (Color online) Scaling relation between maximal crack
length a (length of the longest crack at given time) and cooling
depth L for two shapes of temperature profile. Symbols represent the
numerical results and lines show the power-law fit [Eqs. (7) and (10)].

crack is always approximately equal to the cooling depth L:

a = L. (10)

The crack spacing, however, does depend on fracture
toughness and can be approximated by a power-law scaling
similar to Eq. (8):

d

ξ
= 5.8

(
z

ξ

)0.59±0.01

. (11)

These scaling relations are also presented in Figs. 3 and
4 together with those for the case of instant cooling of the
surface. As will be shown in the next section, there exists
a smooth transition from one scaling law to another as the
temperature profile changes from an error function to a linear
function.

FIG. 4. (Color online) Scaling relation between crack spacing d

and depth for two shapes of temperature profile. Symbols represent
the average numerical results and lines show the power-law fit [Eqs.
(8) and (11)].
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FIG. 5. Stress profile near the surface for simultaneous action of
tensile thermally induced stress and a compressive far-field stress.

In the case of simultaneous action of thermal stress and a
compressive far-field stress, the characteristic length scale can
be defined as

η ≡
(

KIc

Eα�T/(1 − ν) + σ∞

)2

. (12)

It could be expected that by changing the fracture toughness
and keeping the stress ratio (parameter λ) constant, a single
scaling law should be obtained. In contrast, by changing
the confining stress σ∞ and thus changing the shape of
the stress profile different scaling laws should be obtained
with exponent values between 0.59 and 0.74 (corresponding
to the two temperature profiles considered previously). The
normalized crack spacing for these two cases is presented
in Fig. 6. The red lines present the scaling for two extreme
cases: the error function (8) and the linear (11) temperature
profile. Figure 6(a) presents the normalized crack spacing of
four different simulations using different fracture toughness
values but with the same stress ratio parameter λ = 0.5 (the
corresponding values of characteristic length scale η are shown
in figure). Figure 6(b) presents results of simulations with the
stress ratio parameter λ equal to 0.0825, 0.25, and 0.625 with
scaling exponents equal to 0.66, 0.64, and 0.60, respectively.
As could be expected, the scaling exponent depends on the
stress profile, with a smooth transition between 0.74 and
0.59 corresponding to the error function and linear profile,
respectively.

The length of the cracks in the case of an existing
compressive stress can be estimated using the assumption that
thermally driven cracks do not propagate into the compressive
zone. To simplify the analysis, the actual temperature profile
can be replaced by an equivalent parabolic profile [19]

T (z) =
{

T0 − �T
(
1 − z√

3L

)2
, 0 � z <

√
3L

T0, z �
√

3L.
(13)

Then the maximum cracks length can be found from the
condition σth + σ∞ = 0, which gives [35]

a =
√

3L

(
1 −

√
−σ∞(1 − ν)

Eα�T

)
. (14)

FIG. 6. (Color online) Average crack spacing in the presence of
confining compressing stresses. Results are shown for (a) λ = 0.5
and four different characteristic length scales η and (b) λ = 0.0825,
0.25, and 0.625.

III. STABILITY OF CRACK GROWTH

From Eq. (7) it follows that the depth of the random array of
thermal cracks for the instantaneous cooling of a half space is
approximately proportional to the square root of time. It should
be noted that the scaling laws (7) and (8) are quite close to
those derived in [36] based on a simplified bifurcation analysis
that resulted in a simple relation between the crack length
and spacing ad = 1.74L2 [36]. Combining Eqs. (7) and (8)
yields ad = 6ξ 0.13L1.87 for our analysis. The scaling relation
for crack spacing in [36] is not a power function, but the
numerical values for the normalized depth in the range 101–104

are quite close to those obtained in our work. Outside this
range, the solution is not physically meaningful. For a/ξ < 10,
a crack initiation criterion has to be applied to determine the
smallest possible crack size and spacing. Such an analysis
[37,25] shows that the initial crack length is of the order of ξ .
A theoretical limit for the crack spacing was obtained in [25]
using the known solution for the stress intensity factor for an
array of long cracks with spacing equal d in a uniform stress
field K = σ

√
0.5d . It immediately follows from this solution
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that the theoretical minimum normalized spacing d/ξ equals
2. In [37] the formation of the system of cracks in the shrinking
slab was studied using the energy minimization principle. It
was found that for a thick slab, which corresponds to the
semi-infinite body studied in the present work, the minimum
initial normalized crack spacing approximately equals 8. In
our work an arbitrary system of initial cracks can be generated
at the beginning of simulations; however, it was observed that
for the stable evolution of such a crack system the normalized
crack spacing should be �10. For smaller spacing most of
the initial cracks will not advance at all, indicating that such
an initial configuration is not physical. Therefore, the scaling
laws (7) and (8) can be applied only after the initial cracks
advance and begin to interact.

For the long-range values of normalized crack length
the numerical solution becomes unstable. The nature of this
instability can be explored by considering the elastic energy of
the system. The elastic energy induced in the body by cooling
is proportional to the cooling depth L. Using relations (7) and
(8), the total length of all cracks per unit length of the cooled
surface can be estimated as

Stotal =
∫ a

0

1

d
dz ∼ ξ−0.28L0.28. (15)

Equation (15) predicts that the total length of all cracks
grows much slower than the cooling-induced elastic energy.
The excess energy is accumulated in the system and this
energy eventually may be released by the unstable growth
of some cracks. Physically, this means that at some stage
of propagation, the classical alternating bifurcation solution
[19,20], where every second crack stops at the bifurcation
point, is no longer favorable and it is replaced by another
solution with only a single growing crack. The unstable growth
of one crack was observed in all numerical simulations where
the simulation time was sufficiently large. There is a possibility
that other cracks may start to grow unstably far away so that
these cracks do not interact with each other, resulting in the
formation of a new pattern in the future; however, this was not
observed in numerical simulations due to the limited size of
the domain.

The global energy analysis only shows the possibility of
unstable growth of the cracks. For a more detailed analysis
of instability, a particular simulation was stopped at three
different times t1< t2< t3 and one of the longest cracks
was manually extended, keeping all other cracks and the
temperature profile constant. The stress intensity factor of
the manually extended crack is plotted in Fig. 7. The results
show that the crack is stable at early times and the SIF
decreases with a small extension of the crack and then
starts to increase again for larger crack extensions. However,
at later times the behavior changes and crack becomes
unstable and the SIF increases even for small increments
of the crack growth. Similar behavior was observed for
other cracks, but eventually only one crack dominates and
starts to grow unstably, suppressing the growth of other
cracks.

In Eq. (15) we have assumed that an infinite number of
infinitesimal cracks exist. Since in both real materials and
numerical simulations the process of thermal shock cracking
starts from an initial array of cracks with finite lengths, the

FIG. 7. Stress intensity factor of an extended crack at three
different time moments t1< t2<t3.

onset of instability depends on the initial configuration, i.e.,
the initial crack length and initial spacing. However, assuming
that at the beginning of simulations all cracks have subcritical
length, in other words, in the first time increments all cracks
grow in a stable manner until the first bifurcation point
is reached, only one remaining geometrical parameter may
control the crack pattern evolution: the initial spacing between
cracks.

The critical crack length at the onset of instability shows
a strong correlation with the normalized initial spacing d0/ξ

and can be approximated by a power-law function

acr

ξ
= 90

(
d0

ξ

)0.72±0.01

. (16)

The critical crack length is plotted in Fig. 8 together with
the power-law fit. It should be noted that the limited size of the
domain in the numerical simulations may impact the instability
onset, but we did not observe any dependence on either the

FIG. 8. (Color online) Onset of instability during quasistatic
growth of an array of edge cracks. Symbols represent the numerical
results and the line shows the power-law fit.
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number of initial cracks, e.g., from 50 to 200, or the span of
the simulated domain.

IV. CONCLUSION

Extensive two-dimensional numerical simulations of crack
propagation under thermal shock have been performed using
the complex variable hypersingular boundary element method
with a periodic array of about 100–200 simultaneously
growing random cracks. The numerical results have shown
that the crack pattern is self-similar. The scaling relations
for the crack length and crack spacing were obtained by
analyzing the numerically simulated patterns. It has been found
that the scaling exponent depends on the actual shape of the
temperature profile and there is a smooth transition in scaling
laws as the temperature profile changes from an error function
to a linear function. It was found that the total length of
all cracks grows much slower than the strain energy of the

thermal stress due to cooling. This excess energy may lead to
the unstable propagation of some cracks. Such a process has
been observed in numerical simulations and has been used to
determine the onset of instability.
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