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Thermally activated depinning motion of contact lines in pseudopartial wetting
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We investigate pressure-driven motion of liquid-liquid menisci in circular tubes, for systems in pseudopartial
wetting conditions. The originality of this type of wetting lies in the coexistence of a macroscopic contact angle
with a wetting liquid film covering the solid surface. Focusing on small capillary numbers, we report observations
of an apparent contact angle hysteresis at first sight similar to the standard partial wetting case. However, this
apparent hysteresis exhibits original features. We observe very long transient regimes before steady state, up to
several hundreds of seconds. Furthermore, in steady state, the velocities are nonzero, meaning that the contact line
is not strongly pinned to the surface defects, but are very small. The velocity of the contact line tends to vanish
near the equilibrium contact angle. These observations are consistent with the thermally activated depinning
theory that has been proposed to describe partial wetting systems on disordered substrates and suggest that a
single physical mechanism controls both the hysteresis (or the pinning) and the motion of the contact line. The
proposed analysis leads to the conclusion that the depinning activated energy is lower with pseudopartial wetting
systems than with partial wetting ones, allowing the direct observation of the thermally activated motion of the
contact line.
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I. INTRODUCTION

Contact line dynamics has been the focus of a long-lived
debate for several decades (see for a recent review Ref. [1]).
The difficulties arise because of the many length scales in-
volved: experiments usually focus on macroscopic properties,
the contact angle, whereas its static and dynamic properties
are governed by microscopic details at the three-phase contact
point. It is worthwhile mentioning that wetting dynamics
is involved in many scientific and technological areas, for
example, in the coating industry or in biphasic flows in porous
media. Two major types of wetting are usually encountered,
depending on the sign of the spreading coefficient. The latter
is defined as the energy difference between a nonwetted solid
surface and a wetted one, i.e., by S = γs − γsw − γwn, where
γs , γsw, and γwn are the surface energies of the solid surface,
the solid phase-wetting phase interface, and the wetting phase-
nonwetting phase interface, respectively. When S is negative,
a nonzero contact angle is a solution of Young’s law, whereas
when S is positive, a wetting film covers the whole surface
at equilibrium. Such a macroscopic description is, however,
incomplete, since when considering the details of interaction
forces, another type of wetting is encountered depending on
the shape of the disjoining pressure [2]. When the interaction
forces between the solid surface and the fluid interface are
repulsive at short distances and attractive at longer ones, there
is a wetting film covering the surface similarly to complete
wetting situations, but this film coexists with a macroscopic
nonzero contact angle θe, similarly to the partial wetting case.
This situation has been referred to as pseudopartial wetting
and has stimulated several theoretical work [2–5]. A rather
limited number of observations has been reported [6–12],
but we recently argued and showed that when considering
liquid-liquid-solid systems, pseudopartial wetting is much
more frequent [13]. The aim of this paper is to focus on the
contact line dynamics of this type of wetting.
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Two main classes of models have been proposed to describe
contact line motion. The first and more popular one is based on
hydrodynamic considerations. Viscous dissipation in the liquid
wedge is responsible for an increase, respectively decrease, of
the dynamic contact angle θd for an advancing, respectively
decreasing, contact line [14–16]. Many experimental facts are
well accounted for by these hydrodynamic approaches (see for
a review Ref. [17]). The other class of models are based on
Eyring’s activated rate theory [18] and derived from Blake’s
early idea that the motion of the contact line is thermally
activated at the microscopic scale [19]. These molecular
kinetic theories (MKT) have been extended further [20,21]
and tested on various systems, but available experimental
data may not be sufficient to discriminate between the two
approaches [22].

However, both these descriptions do not describe the contact
angle hysteresis [23], which is systematically present with
partial wetting systems. The contact line is pinning and
immobile whenever the contact angle θ is greater than a
receding contact angle θr and lower than an advancing contact
angle θa . The presence of this hysteresis has been attributed
to the presence of surface defects [16,24–27], which can be
of either chemical or topographic nature. Recent experimental
evidence has shown that a single defect as small as a few
nanometers leads to a hysteresis of the contact line motion
[28], which underlines that contact angle hysteresis is a general
feature of the dynamics of partial wetting systems. In fact,
although the contact angle hysteresis could be reduced to a
few degrees with ultra-clean and atomically smooth surfaces,
it is usually much higher. Any wetting dynamics problem
needs to face this issue, which is highly important at low
capillary numbers (Ca = ηV/γ , where η is the viscosity, V

the contact line velocity, and γ the surface tension), since
the above mentioned theories predict that the dynamic contact
angle reaches a constant value for Ca < 10−4.

Another approach has been proposed by Prevost et al.
[29] and leads to a description that unifies the contact
angle hysteresis and the contact line motion when viscous
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dissipation could be neglected [30]. The physical idea is
that the motion of the contact line is governed by thermally
activated local jumps between pinning sites on a disordered
surface, under a force f = γ (cos θe − cos θd ) per unit of
length. The related model is also derived from Eyring’s theory
and is thus similar to MKT; i.e., the velocity is proportional
to exp (−E∗/kBT ) sinh

(
f λ2/kBT

)
, where λ is the activation

length, kB the Boltzmann constant, T the temperature, and
E∗ an activation energy. However, the physical signification
of the activation length and activation energy is different
since they correspond to depinning events, whereas it is
related to molecular adsorption in MKT. One of the important
consequences is that this model accounts for the contact angle
hysteresis [30] and predicts that a very slow thermally activated
motion should exist between the advancing and receding
contact angles.

This model has been validated on a rather limited number
of systems. The thermally activated motion has been nicely
demonstrated by Prevost et al. taking advantage of vicinity
of the wetting transition of helium on disordered cesium
substrate [29], and tested further with liquid nitrogen [30].
Remarkably the sizes of the depinning jumps were found to
be on the same order as the size of the substrate defects, i.e.,
10 nm. More recently, various liquids were tested on gold
surfaces [31], but without such a clear relation between the
activation length and the substrate topography. It is worthwhile
mentioning that other groups reported high values of the
activation length using a thermally activated fit to their data,
as, for example, in the case of a water-dodecane system on
hydrophobic substrates [32–34], which clearly indicates the
relevance of the thermally activated depinning motion. Again,
the motion at low velocities was found to be related to the
disorder of the substrate [34]. All these studies show that
the transition from pinning to depinning is not sharp and
thermally activated. However, the depinning activation energy
is rather high, leading to a strong pinning between advancing
and receding of the contact line.

In this article, we aim at describing the motion of the
apparent contact line of pseudopartial wetting systems. This
offers an opportunity to test the above models of contact line
motion, as the presence of a wetting film covering the surface
should affect the dynamics. In a recent publication, we reported
that these systems exhibit an apparent contact angle hysteresis,
without any macroscopic pinning [13]. Here we first report that
steady state is hardly achieved in these systems in the vicinity
of the equilibrium contact angle and analyze the transient
regimes observed before steady state. Then we focus on the
steady-state velocity of the meniscus and analyze it within the
framework of the thermally activated depinning theory.

II. MATERIALS AND METHODS

A. Systems

Several solid-liquid-liquid systems are used to get various
wetting situations, and are listed in Table I. They consist in do-
decane and an aqueous solution or a fluorinated oil (FC-40), in
glass tubes grafted either with octadecyltrichlorosilane (OTS)
or 1H,1H,2H,2H-perfluorooctyl-trichlorosilane (PFTS). For
each system, the interfacial tension γ is determined using the

TABLE I. Measured interfacial tension and spreading parameter
S at 25 ◦C of the systems used. CTAB stands for an aqueous solution
of cetyltrimethylammoniumbromide at 2 × 10−6 g/L. FC-40 is a
fluorinated oil with the molecular formula C21F48N2. The viscosities
of the liquids are 0.89 mPa s (all aqueous solutions), 3.4 mPa s
(FC-40) and 1.34 mPa s (dodecane).

Systems γ (N/m) S (N/m)

Partial wetting
Glass-PFTS/dodecane/water 43.2 × 10−3 −2.9 × 10−3

Pseudopartial wetting
Glass-OTS/dodecane/water 43.2 × 10−3 2.4 × 10−3

Glass-OTS/dodecane/CTAB 35.7 × 10−3 11.9 × 10−3

Glass-OTS/dodecane/FC-40 5.1 × 10−3 11 × 10−3

pendant drop method. The spreading coefficient S is defined by
S = γsw − γso − γ , where γso and γsw are the surface tensions
of the oil-solid interface and of the aqueous solution-solid
interface, respectively, and determined using contact angle
measurements of a drop of oil on the solid surface in air and a
drop of water in the same conditions. A simple combination of
Young’s law then allows deducing the value of S. The sign of
S distinguishes partial wetting systems (S < 0) from complete
or pseudopartial wetting (S > 0). Except for the glass-PFTS
surface, all the systems exhibit a positive spreading coefficient,
meaning that there is in principle a film of oil covering the
surface. This is confirmed experimentally when trying to
deposit a droplet of the nonwetting fluid on a planar solid
surface immersed in the wetting fluid. The droplet stands on the
surface and freely rolls on it when the surface is slightly tilted.

When the spreading coefficient is positive, the equilibrium
contact angle could be either zero for complete wetting
systems or nonzero for pseudopartial wetting systems. In order
to discriminate between the two possibilities, we deposit a
drop of the wetting liquid on the same surface immersed
in the nonwetting phase. In all the three systems listed as
“pseudopartial” in Table I, a droplet remains stable at long
times with a finite contact angle. The fact that these systems are
in a pseudopartial situation could be explained by contributions
of the silane layer (see Ref. [13] for further details) to the
surface interactions. Without this layer, the systems are in
partial wetting. Correlatively, and limiting ourselves to the
Van Der Waals contribution, the interaction between water
and glass is attractive; i.e., the Hamaker constant of the
glass-dodecane-water system is positive [13]. For oil films
much thicker than the one of the silane layer, the contribution
to the disjoining pressure of this layer could be neglected as the
interactions with the semi-infinite glass wall dominate. There-
fore, the interaction between the solid-wetting fluid interface
and the wetting-nonwetting fluid switches from repulsive to
attractive when increasing the thickness of the wetting fluid
layer. This leads to pseudopartial wetting, consistent with the
above-mentioned observations.

B. Experimental setup and methods

In order to investigate the dynamics of liquid-liquid-solid
contact lines, we study the displacement of a single meniscus
in a circular tube under an imposed pressure drop.
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FIG. 1. (Color online) Schematic drawing of the experimental
setup. The picture is an advancing meniscus in a glass-PFTS-
dodecane-water system.

The experimental setup, sketched in Fig. 1, consists in two
reservoirs connected by a horizontal circular glass tube of
radius R = 100 μm and length L = 8 cm, commercialized
by VitroCom (supplied by CTS) and silanized by OTS. The
capillary tube is suspended in midair by drilling two holes
about 1 cm high from the bottom of the two reservoirs, which
are glass vials of 30 ml. The tube extends several millimeters
in the interior of the two vials and are bonded by an epoxy
adhesive. The main objective of this setup is to ensure that a
single meniscus is formed between the two reservoirs.

The reservoir containing the wetting fluid is first filled,
leading simultaneously to the filling of the tube. Then the other
reservoir is filled with the nonwetting fluid. Both vials are con-
nected to a pressure controller (Fluigent MFCS), which allows
one to impose pressures, with an accuracy of about 6 Pa. By
applying a pressure on the nonwetting fluid reservoir, a single
meniscus is created in the tube. We adjust the pressure so that it
lies approximately in the middle of the tube. Its displacement
is recorded using a camera (AVT Pike 505B) mounted on an
Olympus SZX16 binocular. A precise image analysis software
allows us to measure the meniscus relative displacement with a
precision of about 200 nm. The liquid heights in the reservoir
are adjusted to equalize the hydrostatic pressure difference.
Given the high volumes of the reservoir as compared to that of
the tube, the meniscus displacement in the tube corresponds to
a negligible variation of the reservoir height. The precision of
the height measurement is about 1 mm, so that the uncertainty
on the hydrostatic pressure difference is below 10 Pa.

As will be detailed in the next section, a steady state is
not reached immediately for pseudopartial wetting systems.
Transient regimes as long as hundreds of seconds are observed
depending on the applied pressure drop. It is thus necessary to
respect a strict protocol in order to obtain reproducible results.
In particular, every change of the applied pressure drop needs
to be followed by a long waiting time in order to be able
to reach a steady state and thus to erase memory of previous
pressure variations. We have systematically used the following
protocol. Starting with a meniscus a few centimeter away from
the observation field, a first pressure drop �Pi is applied. When
the meniscus enters the observation field (usually more than
10 min after), a sudden change of pressure drop from �Pi to
�P is made, and the meniscus displacement is monitored.

III. RESULTS

Let us first focus on the meniscus velocity measured
just after a sudden change of the pressure drop, for the
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FIG. 2. (Color online) Examples of menisci positions measured
after a step in the imposed pressure drop for the glass-OTS-dodecane-
water system. For each example, the left axes displays the pressure
drop as a function of time, and the right axes the corresponding
meniscus position. The experimental meniscus position data (red
circles) are fitted (blue solid lines) with Eq. (1). The fitted parameter
for these three cases are (a) τ = 0.1 ± 0.05 s, v∞ = 1708 ± 50 μm/s,
(b) τ = 28.1 ± 0.5 s, v∞ = 30.1 ± 0.4 μm/s, and (c) τ = 2.5 ±
0.5 s, v∞ = −754 ± 50 μm/s.

pseudopartial wetting systems. Starting from a steady state
under a pressure drop �Pi , a step in pressure from �Pi to
�P is applied at t = 0. Figure 2 displays some examples
of the measured meniscus position z as a function of time.
Despite the pressure controller setting the pressure in much
less than 1 s, the meniscus displacement exhibits a tran-
sient regime during which the unsigned velocity decreases
asymptotically towards constant value. This effect can occur
for both advancing and receding menisci. The time scale of
this transient regime is highly dependent on the pressure drop
�P , since it can hold as long as several tens of seconds,
as in Fig. 2(a), but can also be too short to be observable,
as in Fig. 2(b). We even occasionally observed durations of
the transient regimes of several thousands of seconds, but
these situations were hard to reproduce, meaning that the
characteristic time can be very sensitive to the experimental
conditions.

Since the data are consistent with an exponential relaxation
for the meniscus velocity, we systematically fit the meniscus
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FIG. 3. (Color online) Diagram showing the couples (�Pi , �P )
that have been investigated for the system glass-OTS-dodecane-water.
The symbol shapes indicate the order of magnitude of the transient
regime. Squares correspond to experiments where the steady state
is reached almost instantaneously (lower than 2 s), triangles to
experiments where 2 < τ < 500 s, and circles when τ > 500 s.

position z with the following relation:

z − z0 = A exp

(
− t

τ

)
+ v∞t, (1)

where z0 is the meniscus position at t = 0, v∞ is the
asymptotic meniscus velocity, and τ a characteristic time.
As shown in Fig. 2, this empirical model well describes the
experimental data.

We first test the dependence of the duration of the transient
regime on the two pressure drop �Pi and �P , i.e., the pressure
drops imposed before and during the transient regime. Figure 3
represents the amplitude of the value of the characteristic
time τ in this space parameter. Long transient regimes clearly
occur in a domain where, for the glass-OTS-dodecane-water
system, �P lies between 500 and 1000 Pa, independently
of the pressure drop �Pi . This means that the characteristic
time does not depend on the pressure history. Accordingly, we
have checked that the asymptotic meniscus velocity v∞ is also
independent on �Pi , so that we refer to it in the following as
the steady-state velocity.

Figure 4 displays the characteristic time τ and the steady-
state meniscus velocity v∞ as a function of the pressure drop
�P .

The meniscus velocity displays at first sight three regimes:
at low and high values of �P , the velocity increases linearly
with the pressure drop. In between, the velocities are rather
small, typically below 1 μm/s, and an apparent plateau is
observed. It is important to note that, though very small,
the meniscus velocity never vanishes in this regime (see the
semilog plot in insert of Fig. 4); the contact line is not pinned.
This is in contrast with partial wetting systems, where a
contact line hysteresis is observed, leading to a regime at first
sight similar but with vanishing velocities due to contact line
pinning. In a previous communication [13], we already report
this observation with various systems and referred to as an
apparent contact angle hysteresis.

The variations of the characteristic time τ with the
pressure displayed in Fig. 4, evidence a correlation with the
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FIG. 4. (Color online) Top: Steady-state velocity v∞ for the
glass-OTS-water-dodecane system as a function of the imposed
pressure drop. The solid lines are the best linear fit to the data in the
upper and lower viscous branches. The slope is 1.22 × 10−5 m/s/Pa.
Their intersections with the zero-velocity line defines an apparent
receding pressure drop of −γ cos θr = 151 Pa and an apparent
advancing pressure drop of −γ cos θa = 882 Pa. In between these
pressure drops and as shown in the insert (same data), the velocity
does not vanish but is very small. Bottom: Characteristic time τ of the
transient regime for the same system. The insert displays the empiric
correlation of the characteristic time with respect to the absolute value
of the steady-state velocity. The solid lines correspond to a power law
of exponent −1 and −0.5. When no transient regimes are observed,
τ is arbitrarily set to 0.1 s.

steady-state velocity. The long transient regimes coincide with
the apparent hysteresis region. In the two linear branches,
values of τ are very small. The correlation between τ and v∞ is
illustrated in insert of Fig. 4. For both advancing and receding
menisci, the characteristic time falls on a single monotonically
decreasing curve when plotted as a function of the unsigned
steady-state velocity. The smallest steady-state velocity, the
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highest relation time. Although the scatter in the data does
not allow us to state concerning a robust scaling, the global
trend might be captured using a power law, τ ∝ vn

∞, with an
exponent lying between −0.5 and −1. If one forces it to −1,
then a length scale appears from this empiric scaling and is on
the order of 1 mm.

The results presented above have been obtained using
the pseudopartial wetting system glass-OTS-dodecane-water.
Similar transient regimes also occur with the other pseu-
dopartial wetting systems (see Table I). In contrast, we have
never observed such regimes with partial wetting or complete
wetting systems. Therefore, it seems that the transient regimes
reported here are, similarly to the apparent hysteresis [13], a
particular feature of pseudopartial wetting.

IV. DISCUSSION

A. Steady-state velocity

As detailed in the previous section and in Ref. [13], all
the pseudopartial wetting systems we have studied exhibit a
similar behavior in steady state. The meniscus velocity exhibits
three regimes as a function of the pressure drop. In both the
low- and high-pressure regimes, the velocity increases linearly
as a function of the pressure drop, and in the intermediate
regime, the velocity is much smaller but the contact line is not
pinned. Since the length of the tube is about 1000 times the tube
radius, the additional dissipation in the meniscus region could
be safely neglected together with end effects, and the Poiseuille
law applies upstream and downstream from the meniscus. By
summing the upstream, downstream, and Laplace pressure
contributions, the total pressure drop should verify

�P = −2
γ cos θd

R
+ 8vL

R2
[η1z + η2(1 − z)], (2)

where η1 and η2 are the liquid viscosities, z̃ is the relative
meniscus position in the tube, and v the meniscus velocity,
corresponding to the mean flow velocity. The dynamic contact
angle θd is defined in the nonwetting phase.

Using thereafter nondimensional quantities defined by P̃ =
�PR/2γ and Ṽ = 4η̄vL/γR, where η̄ = (η1 + η2)/2, the
previous equation reduces to

P̃ = − cos θd + Ṽ
η1z̃ + η2(1 − z̃)

η̄
= − cos θd + aṼ . (3)

Since z̃ is set around 0.5 and does not vary significantly during
the experiments, and since the fluid viscosities are on the same
order of magnitude, a is close to unity. From Eq. (3), one could
directly interpret the two linear branches of the �P − V exper-
imental relations. They correspond to a fixed dynamic contact
angle. These have been experimentally verified and reported
in Ref. [13]. As recalled in the introduction, the dynamic
contact angle is known to increase for advancing menisci and
to decrease for receding ones. This effect is well accounted for
by hydrodynamic theories such as the Cox-Voinov law [15]. It
becomes significant for capillary numbers ηv/γ greater than
10−3. In our experiments, the capillary number never exceeds
this value, so that we expect constant dynamic contact angles,
consistent with our measurements in the low and pressure drop
regimes. In the intermediate regime, the dynamic contact angle
varies, but this is not due to viscous forces.
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FIG. 5. (Color online) Normalized meniscus velocity as a func-
tion of cos θd for the OTS-dodecane-water (pseudopartial wetting).
Experimental data (circles) are displayed in linear (left) and log
scale (right). The three lines correspond to the thermally activated
depinning model [Eq. (4)] with three couples of parameters λ and
E∗: 2 nm, 31 kBT (solid line), 3 nm, 43 kBT (dashed line), and 5 nm,
72 kBT (dashed dotted line). We decide that the values of λ around
3 nm and E∗ around 43 kBT describe best the data.

We use Eq. (3) to extract the dynamic contact angle. To
do so, we first measure the empiric value of the constant a,
which is simply the slope of the two linear branches at high
and low pressure drops. The constant a remains close to unity,
but due to some uncertainties, its value is typically between
0.9 and 1.1. Knowing this value, the dynamic contact angle is
deduced from Eq. (3). Figure 5 displays the resulting plot of the
meniscus velocity as a function of the dynamic contact angles,
for the glass-OTS-water-dodecane system. The data exhibit
two asymptotic dynamic contact angles for advancing and
receding velocities, separated by a region where the contact
angle varies significantly, recalling the contact angle hysteresis
commonly observed with partial wetting systems. Contrary
to standard contact angle hysteresis, the contact line is not
pinned but exhibits a small velocity as shown in the log axes
in Fig. 5. This velocity is positive for cos θd < −0.55 and
negative otherwise.

Such a variation of the contact angle with very small ve-
locities has been reported for partial wetting systems but with
very low viscosities [29,30]. To describe these experiments,
the authors proposed a thermally activated depinning theory.
The idea is that the contact line jumps from one pinning site
to another, due to thermal energy. Neglecting hydrodynamic
forces, this model leads to the following prediction for the
contact line velocity [29,30]:

v = λν0 exp

(
− E∗

kBT

)
sinh

[
λ2γ

kBT
(cos θe − cos θd )

]
, (4)

where ν0 is the thermal frequency (kB/h), E∗ the activation
energy, θe the equilibrium contact angle, and λ the typical
size of the contact line jumps. Although it has been argued
that the E∗ and λ could depend on the sense of the contact
line motion [30], we were not able to detect a clear symmetry
difference between advancing and receding menisci. Thus, we
choose in the following to use the same values for receding
and advancing menisci.

Given the rather important scatter in the experimental data
at very low velocities, we did not try to fit them directly using
Eq. (4). This choice is also motivated by the huge variations
of the sinh function in the range of velocities measured. Three
unknown parameters appear in Eq. (4): E∗, λ, and cos θe. It is
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intrinsically not possible to know the value of θe for pseu-
dopartial wetting systems from independent measurements
without the knowledge of the disjoining pressure. Since our
data show a rather good symmetry from the middle of the
two asymptotic values of the dynamic contact angle (see
Fig. 4), we set the equilibrium contact angle at this value.
We are left with two fitting parameters, but these are highly
constrained by the two asymptotic values of the dynamic
contact angle in the high-velocity branches. For a given value
of the jump length λ, we first determine the activation energy
E∗ that describes the range of the apparent hysteresis. Indeed,
as pointed out by Rolley and Guthmann [30], the contact
angle hysteresis verifies cos θr − cos θa � E∗/λ2. Then we
manually choose the best (E∗,λ) couple that accounts for the
order of magnitude of the velocity in the apparent hysteresis
region. This is achieved graphically. As shown in the log plot
in Fig. 5, a small variation of the jump length λ leads to huge
variations of the meniscus velocity. Therefore, though far to
be accurate, this procedure enable us to find the appropriate
model parameter that describes the observations in a robust
way. For the glass-OTS-water-dodecane system displayed in
Fig. 5, we find typical values of λ = 3 nm and E∗ = 43 kBT

for this system.
Although the scatter in the data prevents us from a convinc-

ing verification of Eq. (4), the latter accounts reasonably well
for the low velocities measured inside the apparent contact
angle hysteresis.

We have used this procedure for the different pseudopartial
wetting systems and for the partial wetting one. All the
pseudopartial wetting systems exhibit a very similar behavior,
i.e., an apparent contact angle hysteresis without pinning. The
partial wetting system is rather different. There is a clear
pressure drop range where the contact line is pinned, between
the two linear viscous branches. Even when waiting a few
hours, no meniscus displacement could be observed. This is
depicted in Fig. 6 where we arbitrary set the velocities of the
pinned menisci at very low values. The fact that there are
pinned or unpinned menisci for a given cos θd value probably
originates from different locations in the tube. In order to
account for the observation of pinned contact lines, the only
possibility is to set the E∗ parameters at a value that is greater
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FIG. 6. (Color online) Normalized meniscus velocity as a func-
tion of cos θd for the PFTS-dodecane-water (partial wetting). The
lines correspond to the thermally activated depinning model [Eq. (4)]
with three couples of parameters λ and E∗: 1 nm, 26 kBT (solid line),
3 nm, 57 kBT (dashed line), and 5 nm, 120 kBT (dashed dotted line).
In order to capture the zero velocities, we decide to choose values of
λ larger than 5 nm and E∗ equals 120 kBT . The zero velocities are
arbitrary set as V = 10−10 m/s in the log-scale axis.

TABLE II. Estimated parameters of the thermally activated
depinning model for the various partial and pseudopartial wetting
systems studied.

Systems θe (◦) λ (nm) E∗/(kBT )

Partial 97 5 120 (>120)
Water 124 3 43 (35, 50)
CTAB 150 3 35 (30, 45)
FC-40 165 20 43 (38, 50)

than 120 kBT . Lower values would lead to velocities that we
would have detected experimentally. Note that the value of
120 kBT falls in the range of the previously reported one,
which is 100–1000 kBT [1].

Table II summarizes the parameter values for the three
pseudopartial and for the partial wetting system. There is a
striking difference between the two sets of systems concerning
the order of magnitude of the activation energy. It is much
higher for the partial wetting system than for the pseudopartial
ones. Let us recall that this activation energy is the argument
of an exponential factor so that the consequences of this
difference are huge. In usual conditions with partial wetting
systems, the thermally activated motion of the contact line is
not observed. The contact line is strongly pinned by the surface
defect until the departure from equilibrium reaches a high
value. The transition from a strong pinning to a moving contact
line is sharp, and once it starts to move, viscous dissipation
controls the dynamics. This behavior matches the classical
picture of contact angle hysteresis.

For pseudopartial wetting, the important decrease of the
activation energy might be understood as due to the wetting
film, which smoothes the defects of the surface. The local
jumps from one pinning site to another are much more frequent
than without this wetting film. Pseudopartial systems thus offer
in usual experimental conditions the opportunity to observe
the thermally activated motion of the contact line, “inside” the
contact angle hysteresis.

The values of the jump length λ are not easy to understand
without a good knowledge of the surface. Unfortunately it
is rather hard to perform some measurements inside the tube,
such as atomic force microscopy. Furthermore, we do not think
we can use flat surfaces as references, as it is not possible to
perform the exact grafting procedure used in tube. The values
of λ reported in Table II are, however, on the order of a few
nanometers, which seems quite reasonable for a silanized glass
surface. The high value of λ measured for the FC-40 system
is larger, although it was obtained with the same surface. Note
that the difference with the other systems is quite important.
It has been recently argued and shown that this length is
not simply related to the surface characteristic distances and
could vary on the same surface from one system to another
[31]. Clearly future experiments will need to be conducted on
surfaces having well-defined properties to be able to go further
with the interpretation of the jump sizes.

B. Transient regimes

Let us now come back to the observation of long transient
regimes. As shown in Fig. 4 the long transient regimes we
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reported seem to be closely linked to the apparent contact
angle hysteresis since characteristic times are long only in
this regime. When the steady-state velocity is below 1 mm/s,
characteristic times are greater than a few seconds and increase
significantly (up to hundreds of seconds) when the absolute
value of the steady-state velocity decreases. According to the
thermally activated depinning theory, the velocity is related to
the departure from equilibrium. Thus, it seems that the closer
to equilibrium, the higher the relaxation time.

From an experimental point of view, the existence of a
very long transient regime requires a precise protocol. In order
to measure the steady-state velocity, it is necessary to wait
a great amount of time. This is why we have used for the
experiments in steady state such a precise protocol. If the
pressure is changed during the transient regime, then meniscus
displacement is very hard to understand, and reproducibility
is difficult to ensure. It seems that the meniscus movement
is then governed by the history of the pressure variations.
The slow motion observed in the apparent hysteresis regime
is observed only with a fixed pressure drop. If the pressure
drop is fluctuating, then the meniscus velocities remain higher
than a few hundreds of micrometer per seconds. We could
also extrapolate that the menisci velocities will remain at high
values in situations where the geometry is more complex than
in a tube of constant radius.

Similar transient regimes have also been observed occa-
sionally in other systems. With a water-cyclohexane system,
Chertcoff et al. have studied the meniscus dynamics in a
millimeter-size glass capillary tube initially saturated with
cyclohexane, which is water wet [35]. Their setup is very
similar to the one we have used, since the meniscus movement
is controlled by a pressure difference. After a sudden change
of pressure, they report transient regimes of characteristic
time that could be as high as a few hundreds of seconds.
These effects are particularly strong at very low capillary
numbers between 3 × 10−9 and 5 × 10−7. It seems that these
observations are very similar to ours, but unfortunately the
authors do not specify the exact type of wetting of their system.
Given the fact that we have only seen these kinds of transient
regimes in pseudopartial wetting conditions, it is attractive
to think that the systems they used are also in pseudopartial
wetting conditions. The authors suggest that the relaxation
is due to adsorption sites with a wide range of characteristic
times: decreasing the velocity increases the number of sites
active for adsorption and enhances the wetting of a high-energy
glass surface by water. However, such an interpretation does
not really explain why there exists long transient regimes

at very low capillary numbers. Their theoretical description
remains an open issue.

V. CONCLUSION

We have studied the dynamics of a liquid-liquid meniscus
in a circular tube at small capillary numbers in pseudopartial
wetting conditions. With this particular class of wetting
systems, there exists a wetting film covering the solid surface
which coexists with a macroscopic contact angle. The results
reported here highlight the unusual properties of the wetting
dynamics of these systems. Compared to partial wetting
and complete wetting, two main differences are observed.
In between an advancing contact angle and a receding one,
the meniscus velocity in steady state is very slow but never
vanishes, in contrast with partial wetting systems which exhibit
contact angle hysteresis with a strong pinning of the contact
line. In this regime, steady state is, however, hard to reach since
transient regimes involving higher velocities are surprisingly
as long as hundreds of seconds. None of these two observations
could be accounted for by standard viscous dissipation either
in the bulk or in the liquid wedge close to the contact line.

We propose here an interpretation of the apparent contact
angle hysteresis that is based on the thermally activated
depinning motion of the contact line. In this theory, initially
proposed by Prevost and Rolley [29], a strong dissipation arises
from contact line fluctuations close to the equilibrium contact
angle and leads to slow velocities. In partial wetting systems
such as the one reported in the literature together with the one
reported here, activation energy corresponding to local jumps
of the contact line to one pinning site to another is greater than
100 kBT , which implies that the pinning is strong, in agreement
with standard contact angle hysteresis. With pseudopartial
wetting systems, we find that the activation energy is much
lower, from 30 to 50 kBT . Such a value allows an observable
contact line motion inside the contact angle hysteresis, at
room temperature. Although more precise measurements are
needed to be able to claim a clear agreement with the model
which contains two fitting parameters, the experimental results
reported here are rather well described by this approach.
It is not clear yet if this framework could be compatible
with the observation of long transient regimes. A time-
dependent out-of-equilibrium thermodynamic theory seems to
be needed.

Future work should deal with better defined solid surfaces
in order to be able to link the thermally activated depinning
motion to the substrate topography.
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