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Model for a mixture of macroions, counterions, and co-ions in a waterlike fluid
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University of Ljubljana, Aškerčeva 5, 1000 Ljubljana, Slovenia

(Received 7 April 2014; published 25 July 2014)

We propose an integral equation theory for a mixture of macroions, counterions, and co-ions in a waterlike
fluid in which all the components are accounted for explicitly. The macroions can carry positive and negative
surface charges simultaneously, mimicking in this way the situation occurring in protein solutions. To solve
this complex model numerically, we utilize the associative mean spherical approximation, developed earlier
for low-molecular-mass charge-symmetric electrolyte solutions. To illustrate the potential of this approach, we
present numerical results for various experimental conditions. Among the measurable properties we choose
to calculate the osmotic coefficient, a quantity that reflects the stability of the solution. We show that the
osmotic coefficient depends not only on the magnitude of the net charge on the macroion but also on
its sign, as well as on the nature of the low-molecular-mass electrolyte present. These specific ion effects
are the consequence of differences in hydration between the ions in solution and charged groups on the
macroion.
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I. INTRODUCTION

Highly asymmetric electrolytes such as colloids, surfactant
micelles, and globular proteins are classical objects of exper-
imental and theoretical research. Due to the different length
scales of interactions between the various species (macroions
are typically of the size of several hundred angstroms, while
solvation effects take place at distances of a few angstroms),
these systems represent a challenge for theoretical modeling.
Different approximative models have been applied to allow
(see, for example, Ref. [1]) comparison with experimental
results.

The stability of these systems, a problem of significant
practical importance, is most often considered in the frame-
work of the Derjaguin-Landau-Verwey-Overbeek (DLVO)
[2,3] theory. In this approach the solution is treated as an
effective one-component fluid, where the low-molecular-mass
electrolyte and solvent (water) are pictured as a continuum,
modifying the interactions between macroions. The theory,
originally developed for lyophobic sols, found its application
also in protein solutions. Perhaps the most recent contributions
in this direction are due to Pellicane and co-workers [4,5].
These authors were successful in rationalizing the small-
angle neutron-scattering results obtained under a variety of
experimental conditions. A somewhat different approach, but
similar in spirit, has been suggested by Valadez-Perez et al.
[6]. While DLVO-based studies are important, in principle they
cannot satisfactorily answer the question why different +1: −1
electrolytes influence the stability of proteins differently (see,
for example, [7–11] and the references therein).

Recently we applied a Hamiltonian type of approach to
analyze the osmotic properties of alkali halides in water
[12]. We proposed an equitable model of solution, where the
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molecules representing water were treated on an equal footing
with the ions. The molecule modeling water was pictured as a
hard sphere with four off-center square-well sites. These sites
served either to bind another water molecule or to solvate the
ions. The ions were imagined as charged hard spheres with
their crystal size diameters, but with the ability to bind water
through discrete attractive sites distributed on the surface. The
two basic assumptions of the study were that (i) the strength
of the ion-site–water attraction is inversely proportional to
the size of the ion and (ii) the number of available attractive
sites on an ion is proportional to its surface area. In short,
small ions bind water molecules strongly, but fewer of them.
Large ions bind water weakly, but many of them. The model
[12] was able to reproduce correctly the nontrivial ionic size
dependence of the osmotic coefficient found experimentally
for alkali-metal-halide solutions in water.

The success of this concept [12] prompted us to go one step
further. In this approach we generalize the theoretical approach
mentioned above, introducing an extra component: the charged
macroion. We examine aqueous solutions of macroions in a
mixture with low-molecular-mass salts. The principal compo-
nents in the model solution are macroions (modeling a protein
or the surfactant micelle), solvent molecules mimicking water
[12], and a +1:−1 electrolyte, represented as charged hard
spheres with their crystal radius size.

We model the macroions as uncharged hard-sphere
macroparticles with a certain number of small positively
and/or negatively charged hard spheres attached to their
surface, mimicking solvent-exposed charged groups (charged
amino acid residues) on a protein. They are attached to the
macroparticles due to the infinitely strong attraction between
the sticky sites located on the macroparticle surface and those
on the residue-forming ions.

The net charge of such a macroion is equal to the difference
between the positively and negatively charged small hard
spheres bound to the macroparticle. We can prepare macroions
with negative, positive, or zero net charge, while the system as
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FIG. 1. (Color online) Model of a macroion with three positively
charged residues npD

= 3 (small red spheres) and one negatively
charged residue npE

= 1 (small blue sphere) attached to the macropar-
ticle (large sphere) due to the infinitely strong interaction between
sticky sites of type D on the macroparticle and the positively charged
residue-forming ions and between the E-type sticky sites on the
macroparticle and the negative residue-forming ions. Light green and
light red semispheres denote the range of the square-well site-site
interaction between the C-type sites, which belong to two different
macroparticles, and between A and B types of sites, which are
positioned on the positively and negatively charged species in the
system, respectively.

a whole is electroneutral in all cases. The model (schematically
shown in Fig. 1) is not new; in Refs. [13,14] similar
models were used to represent a lysozyme. The macroions
and small ions are distributed in a collection of waterlike
molecules, modeled as in our previous paper [12]. We focus
on calculation of the osmotic properties in such mixtures.
Namely, the osmotic pressure is a measure of the stability of
a macroion solution (see, for example, [15,16]). Particularly
important is the correlation between the osmotic second
virial coefficient and the solubility of proteins. Experimental
data suggest that proteins crystallize when the second virial
coefficients assume slightly negative values [17–23]. The
origin of this important correlation has been investigated
by Rosenbaum et al. [23]. This is perhaps the first integral
equation study of osmotic pressure, treating all the components
in the aqueous macroion-electrolyte solution on an equal
footing.

II. MODELING MACROIONS IN AQUEOUS
ELECTROLYTE SOLUTION

For the sake of calculation we discriminate eight species:
model water molecules denoted w, monovalent anions a

and cations c, uncharged macroparticles p, with attached
positive r+ and negative r− hard-sphere residues, and the
corresponding negatively and positively charged counterions
c− and c+, respectively. The species are modeled as charged
or uncharged hard spheres of size σi with ni

L
square-well

(or sticky) sites placed randomly at a distance di from the
corresponding hard-sphere center. Here the subscripts i and L

denote the particle species and the type of site, respectively.

Sites of type A and B are located on charged species
and account for the ion-water (note that our water model has
no dipole), charged residue-water, and possible ion-ion, ion-
residue, and residue-residue association effects. The A-type
site plays the role of the positive charge and the B-type site the
negative charge. Water molecules have sites of both type: two
A sites representing hydrogens and two B sites representing
the lone-pair electrons.

In addition to either A or B types of sites, each residue ion
has one of either D (for positively charged) or E (for negatively
charged) type of sticky site located on the surface. Sites of
the same types are also positioned on the macroion surface,
i.e., it has np

D
and np

E
sites of D and E type, respectively.

Owing to these sites, macroions with npD
positive and npE

negative charges are formed (see Fig. 1). In addition, each
model macroion possesses np

C
square-well sites of C type,

which are used to model the van der Waals (vdW) interaction
between protein molecules.

III. PAIR POTENTIAL AND MODEL PARAMETERS

The pair potential Uij (12) used here can be represented as
a sum of the hard-sphere term U

(HS)
ij (r), the Coulomb term

U
(C)
ij (r), and the term describing association U

(as)
iMjL

(12):

Uij (12) = U
(HS)
ij (r) + U

(C)
ij (r) +

∑
ML

U
(as)
iMjL

(12), (1)

where M and L assume values A,B,C,D,E and the labels 1
and 2 denote positions and orientations of the two particles.
Here

βU
(C)
ij (r) = LB

zizj

r
, (2)

where β = 1/kBT , kB is the Boltzmann constant, T is the
absolute temperature, LB = βe2

0/4πε0ε, zie0 and zj e0 are the
charges of the particles (e0 is the elementary charge), ε0 is the
permittivity of a vacuum, and

U
(as)
iMjL

(x) =
{
εiMjL

�iMjL
, x � wiMjL

0, x > wiMjL
,

(3)

where the subscripts M and L take the values A, B, and C. Fur-
ther, x is the distance between the square-well sites and εiMjL

and wiMjL
are the square-well depth and width, respectively.

In addition, we assume that the interaction between the sites
representing charges takes place only between different types
of sites, while the interaction between the protein vdW sites
occurs only between themselves. These rules are enforced by
the function �iαjβ

,

�iαjβ
= (1 − δip)(1 − δjp)(δαAδβB + δαBδβA)

+ δipδjpδαCδβC, (4)

where α,β = 0,A,B,C. Here α,β = 0 denote the nonbonded
states of the particles.

The system is studied in the limit of the infinitely strong
sticky interaction, acting between the sites of D type,
positioned on a macroparticle and positively charged ions
forming residues. The same holds true for sites of E type
on the macroparticle and on negatively charged (residue-
forming) ions. Thus, for the corresponding Mayer functions
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we have

f̄p
D

r+
D

(r) = Kp
D

r+
D
δ(r − σpr+ ),

(5)
f̄p

E
r−
E

(r) = Kp
E

r−
E
δ(r − σpr+ )

with Kp
D

r+
D
,Kp

E
r−
E

→ ∞. In summary, due to the sites of types
D and E, model protein molecules with npD

positive and npE

negative charges are formed. Here

f̄iαjβ
(r) = 〈

f
(as)
iMjL

(12)
〉
	1	2

, (6)

where f
(as)
iMjL

(12) is the Mayer function for the associative
potential acting between the sites L and M of particles of the
types i and j and 〈· · · 〉	1	2 denotes the orientational averages
over the angles 	1 and 	2 of particles 1 and 2, respectively.

As in our previous study [12], we assume that the
depth of the site-site square-well potential, acting between
charged species, is inversely proportional to the sum of their
diameters:

εiAjB
= 2kij

σi + σj

. (7)

The depth of the charged species-water square-well site-site
potential is inversely proportional to the hard-sphere size of
the corresponding ion or residue

εwAiB = kw−
σi

, εwBiA = kw+
σw + σi

, (8)

and the number of square-well sites on the ions and residues
is proportional to the square of their hard-sphere sizes

ni
L

= s±σ 2
i . (9)

In the present study the model parameters are chosen to be
the same as in our previous paper [12]. The only exception
is the proportionality coefficient kij in Eq. (7) for charged
species-residue associative interaction. To account for the
reduction of the dielectric constant in the vicinity of the
protein, we assume a six times larger value for the depth
of the corresponding square-well associative potential, i.e.,
while for i,j �= r±, kij = −675 K [12], for i = a,c,r±,c±
we have kir± = −4050 K. Other model parameters remain
unchanged. For the square-well potential depth εww, width
www, and site displacement dw of the water molecules we have
εww = −1625 K, www = 0.679σw, dw = 0.279σw, and σw =
3.099 Å. Instead of the square-well width and displacement,
similarly as before [12], we use the so-called bonding volume
Vij as an input parameter for the other site-site associative
interactions. This quantity represents the volume available for
bonding and we assume it to be the same for all interacting
species, i.e., Vij = Vww, with Vww obtained from Eq. (14).
Finally, for the proportionality coefficients in Eqs. (8) and
(9) we have kw+ = −5050 K Å, kw− = −3200 K Å, and
s± = 0.6921 Å−2.

IV. ASSOCIATIVE MEAN SPHERICAL APPROXIMATION

The thermodynamic properties of the model under con-
sideration are calculated using the associative mean spherical
approximation (AMSA) (or its extension, the polymer MSA)
approach developed earlier [24–28]. The theory is composed of
the multidensity Ornstein-Zernike (OZ) equation, MSA-type

closure conditions, and the relation between the density of the
particles in different bonding states (the statistical-mechanical
analog of the mass action law). Taking into account the
symmetry of the OZ equation, which arises as a consequence
of the equivalence of the square-well sites, we have

ĥij (k) = ĉij (k) +
∑

l

ρl ĉil(k)αl ĥlj (k). (10)

Here ρi is the number density of the particles of species i and
αi , ĥij (k), and ĉij (k) are matrices with the elements

αi =

⎛
⎜⎜⎜⎜⎝

1 niL niM · · ·
niL niL(niL − 1) niLniM · · ·
niM niM niL niM (niM − 1) · · ·

...
...

...
. . .

⎞
⎟⎟⎟⎟⎠ ,

ĉij (k) =
⎛
⎝ ĉi0j0 ĉi0jL

ĉi0jM
· · ·

ĉiLj0 ĉiLjL
ĉiLwM

· · ·
ĉiMj0 ĉiMjL

ĉiMjM
· · ·

⎞
⎠ ,

where L and M assume the values A,B,C,D,E, depending on
which type of site is assigned to the particles of a given type.
The dimensionality of these matrices is defined by the number
of different site types that are associated with particles of a
given species. For example, the dimensionality of the matrices
αw and ĉwp(k) are 3 × 3 and 3 × 4, respectively, since water
has two types of sites A and B and protein has three types
of sites C, D, and E. The elements of the matrices ĥij (k)
and ĉij (k) are Fourier transforms of the partial correlation
functions hiαjβ

(r) and ciαjβ
(r) (α,β = 0,A, . . . ,E), describing

the correlation between the particles in different bonding
states. Here α = 0 denotes the nonbonded state and α = L

the state with the site L bonded. The total pair correlation
function hij (r) is equal to the sum of the partial correlation
functions hiαjβ

(r) over all bonding states, i.e.,

hij (r) =
∑
αβ=0

hiαjβ
(r). (11)

The AMSA closure relation is

cij (r) = −Eij βU
(C)
ij (r) + δ(r − σij )

2πσij

tij ,

r � σij = 1
2 (σi + σj ) (12)

hij (r) = −Eij , r < σij ,

where [Eij ]αβ = Eiαjβ
= δα0δβ0, σi is the diameter of species

i,

tiαjβ
= XiαXjβ

Kiαjβ
gi0j0

+ δαβ

2ρp

(
δαD

npD
σpr+

�ij ;pr+ + δαE

npE
σpr−

�ij ;pr−

)
, (13)

gi0j0 is the contact value of the partial distribution function
gi0j0 (r) = hi0j0 (r) + 1, �ij ;kl = (δikδjl + δilδjk), and

Kiαjβ
= 2π

σij

(1 − δα0)(1 − δβ0)
∫

f̄
(as)
iMjL

(r)r2dr

= (e−βεij − 1)Vij�iαjβ
. (14)
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Here Vij is the volume available for bonding and XiM denotes
the fraction of particles not bonded at a site M . The latter
quantity follows from the relation [26,28]

2XiM

∑
j

ρjσij

∑
L

KiMjL
g

ij

00XjL
+ XiM − 1 = 0. (15)

The OZ equation (10), the AMSA closure conditions (12),
and the density relation (15) form a closed set of equations.
The solution of this set of equations was derived earlier [26]
and we refer the reader to our previous paper for more details.
The Helmholtz free energy, pressure, and chemical potentials
are calculated numerically using thermodynamic integration,
with subsequent differentiation of the resulting free energy
with respect to volume and number of particles of each species.
The resulting thermodynamic properties are given with respect
to the reference values. The reference system is represented by
the “ions” stripped of charges, i.e., for zi = 0 and its properties
evaluated by the thermodynamic perturbation theory [28–31].

In the present version of the theory we combine the MSA-
type closure for the long-range Coulomb interaction and the
ideal network approximation [28,32] to account for the asso-
ciation between particles. In the ideal network approximation
it is assumed that the partial correlation functions ciαjβ

(r) and
hiαjβ

(r) describing the correlation between particles with more
than one site bonded (with either α and/or β denoting the set of
more than one attractive site) are small and can be neglected.
Thus the right-hand side of the closure conditions (12) and
the relation between the densities (15) include the contact
values of the partial distribution function between nonbonded
particles gi0j0 only. As a result, the pair distribution function
gpp(r) between macroions is not sensitive to their charge and
for highly charged macroions the repulsive contribution is
underestimated. As a consequence, the predicted values for
the fraction of the protein particles XpC

not bonded on site C

are too small since the value of gp0p0 is too large.
We choose to correct this drawback of the theory at the

level of the reference system assuming Debye-Hückel repul-
sion between macroions. According to the thermodynamic
perturbation theory used to describe the reference system, the
Helmholtz free energy of the model in excess of its hard-sphere
value is expressed in terms of the fractions of particles X

(ref)
iL

not bonded on the site L [28–31]. These fractions satisfy the
same set of equations used to calculate the values XiL (15)
for the original system, i.e., Eq. (15). The only difference is
that in the corresponding equation for the reference system
contact values g

(ref)
i0j0

are substituted by hard-sphere contact

values g
(HS)
ij . To account for the protein charge effects we

assume Debye-Hückel repulsion between macroparticles and
suggest the following approximation for the corresponding
contact value:

g(ref)
p0p0

= g(HS)
pp exp (−βUDH ), (16)

which is then used in the equation for X(ref)
pC

. Here

βUDH = U0LB

σp

(
npD

zr+ + npE
zr−

1 + κσp/2

)2

, (17)

κ2 = 4πLB

∑
i ρiz

2
i , and U0 (chosen arbitrarily) is 0.15. For

zero value of the protein charge, i.e., npD
= npE

, UDH = 0 and
g(ref)

p0p0
= g(HS)

pp .
The results are not very sensitive to the particular choice

of U0; in broad limits of U0 values the theory qualitatively
correctly reproduces the ion specific effects. The value of U0

may depend on the type of the protein studied.

V. RESULTS

The quantity of interest is the osmotic coefficient φ, defined
as

φ = 

ρkBT
= 1 + B2ρ + · · · , (18)

where  is the osmotic pressure, ρ the protein number
concentration, and B2 the second virial coefficient. Osmotic
pressure is determined [12] by considering the equilibrium
distribution of water molecules and low-molecular-mass elec-
trolyte between the aqueous electrolyte solution and protein-
water-electrolyte mixture. The two subsystems are assumed
to be separated by a membrane permeable to water and
small ions, but not to protein molecules. At equilibrium
the activity coefficients of water and low-molecular-mass
electrolyte must be equal on both sides of the membrane.
Under such conditions, the pressure difference between the
two subsystems is equal to the osmotic pressure  (also called
Donnan pressure). Note again that activity coefficients are
calculated by differentiation of the free energy with respect to
the number of water molecules or the particular ionic species.

To illustrate the potential of the approach we calculated φ

for the solution where the hard-sphere diameter of the model
protein, attached charged groups, and counterions are σp =
34 Å, σr+ = 4.57 Å and σr− = 1.6 Å, and σc− = σa and σc+ =
σc, respectively. The water molecules and electrolyte ions are
modeled as in our previous study [12], i.e., water is represented
by a hard sphere of size σw = 3.099 Å with four off-center
square-well sites and ions by charged hard spheres with sticky
sites to bind water molecules and other ions. The hard-sphere
sizes of anions and cations in solution are chosen to be equal
to their crystal sizes [12]. For Li, Cs, Cl, and I ions this is 1.2,
3.38, 3.62, and 4.32 Å, respectively. Using these values of σ±
and corresponding values of the proportionality coefficients
kw± and kij , the depth of the square-well site-site potential (3),
εiAjB

, εwaiB , and εwBiA can be calculated from Eqs. (7) and (8).
In Figs. 2–4 we present the results for φ of the model

macroion in aqueous electrolyte solutions of LiI, LiCl, CsI, and
CsCl at salt concentrations of c = 0.1 and c = 0.4 mol/dm3.
Macroions with three different net charges are studied: (i)
+16:−1 (npD

= 16, npE
= 1), (ii) +1:−16 (npD

= 1, npE
=

16), and (iii) +16:−16 (npD
= npE

= 16). Thus, in the first
case the protein net charge is positive, while in the second
and third cases it is negative and zero, respectively. In all
cases we assume that number of the macroparticle sites
responsible for the vdW attraction is npC

= 40 and the depth
of the corresponding square-well site-site potential is εpp =
−1180 K. Note that the numbers of positive and negative
charges on the model macroion, as well as the number of vdW
sites and the depth of their square-well potential, are chosen
arbitrarily. Numerical results are presented in Figs. 2–4 merely
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(a)
CsCl

CsI

LiCl

Li I
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0.00160.00120.00080.00040

1.6

1.5

1.4

1.3

1.2

1.1

1

(b)

CsI

LiCl ≈ CsCl

Li I

cp

0.00160.00120.00080.00040

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

φ
φ

FIG. 2. (Color online) Osmotic coefficient φ as a function of
protein concentration for the protein model with 16 positive residues
and one negative residue: +16:−1. The solid red line denotes LiI
and the dashed red line LiCl; the solid green line denotes CsI and
the dashed green line CsCl. The cations (a) c = 0.1 mol/dm3 and (b)
c = 0.4 mol/dm3. Note that on the scale of the figure the curves for
LiCl and CsCl in (b) coincide.

to illustrate the potential of the proposed approach. Here the
results for LiI are shown by solid red lines, for LiCl by dashed
red lines, for CsI by solid green lines, and for CsCl present in
the system by dashed green lines.

It is clear from Fig. 2 (upper curve), where the +16:−1
macroion is examined, that the slope of the osmotic coefficient
curves is less steep in the case of higher concentration of
added low-molecular-mass electrolyte. This is due to stronger
electrostatic screening in the latter case, the effect of which
is correctly predicted by the classical DLVO theory. The
influence of the nature of salt can be observed in the same
figure. The difference between the LiI (red) and LiCl (green)
curves is clearly visible; notice that anions are counterions in
this case. The effect of the nature of co-ion is small under these
conditions. The difference between the two salts gets smaller
at higher concentration of added electrolyte (see lower panel
of Fig. 2).

Next we discuss Fig. 3. Within the DLVO theory the results
should be identical to those in Fig. 2; however, we see that this
is not the case. The reason is that, as for real proteins, negative
charges on the model macroion (mimicking carboxylic groups)
are differently solvated than the positive ones. As expected, the
nature of the cation is more important here; the results for CsI
(green) are different from those of LiI (red). In Fig. 4 we
present the results for the model macroion with net charge
zero (iso-ionic point) +16:−16. The slope is negative here,
indicating possible precipitation under such conditions. This

(a)

CsCl

CsI

LiCl
Li I

cp

0.00160.00120.00080.00040

2.6

2.4

2.2

2

1.8

1.6

1.4

1.2

1

(b)

CsCl

CsI

LiCl
Li I

cp

0.00160.00120.00080.00040

1.3

1.2

1.1

1

0.9

φ
φ

FIG. 3. (Color online) Osmotic coefficient φ as a function of
protein concentration for a model protein with one positive and 16
negative residues: +1:−16. The color code and other parameters are
the same as in Fig. 2.

(a)
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CsILiCl
Li I
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0.00160.00120.00080.00040

1
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0.8
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(b)
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φ
φ

FIG. 4. (Color online) Osmotic coefficient φ as a function of
protein concentration for a model protein with 16 positive and 16
negative residues: +16:−16. The color code and other parameters
are the same as in Fig. 2.
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TABLE I. Reduced second virial coefficient B∗
2 for +16:−1

macroions (top), +1:−16 macroions (middle), and +16:−16
macroions (bottom) in the presence of 0.1M and 0.4M concentrations
of added electrolyte.

c/M LiI LiCl CsI CsCl

+16:−1
0.1 19.5 20.8 19.3 20.9
0.4 4.0 4.4 4.0 4.6

+1:−16
0.1 27.4 27.2 29.9 29.6
0.4 7.9 7.7 10.3 9.9

+16:−16
0.1 −5.3 −5.2 −3.9 −3.8
0.4 −4.1 −4.1 −2.0 −2.2

result is predicted by the DLVO theory as being a consequence
of the zero net charge on the protein.

To put the results presented in Figs. 2–4 on a more
quantitative basis we calculated the second virial coefficient
B2 [Eq. (18)], reflecting binary interaction between macroions.
This quantity, which can be determined experimentally, is of
special importance for protein solutions [17–23]. George and
Wilson [17] pointed out that in order to grow well defined
crystals the second virial coefficient must be negative in a
narrow range of values termed the crystallization slot.

The reduced quantity presented here is defined as B∗
2 =

B2/B
(HS)
2 , where B

(HS)
2 = (2/3)πσ 3, with σ the diameter of

the protein modeled. Notice that the values of B∗
2 smaller than

unity signal attractive interaction among particles. The results
collected in Table I confirm qualitative conclusions inferred
from Figs. 2–4. Strongly positive B∗

2 values suggest stability
of such solutions and are (see the case of the +16:−1 solution)
the consequence of strong electrostatic repulsion.

Here we wish to focus on the salt specific effects, which
cannot realistically be accounted for by the theories that do
not include solvent explicitly. As seen from Table I the second
virial coefficient of the model +16:−1 macroion solution is
higher in the presence of chloride than iodide anions. This is
consistent with experimental results for solubility of aqueous
lysozyme [11] solutions, measured in the presence of various
salts. The experimental results [11] at pH = 4.0, where the net
charge on the protein is +8, indicated that anions decrease the
lysozyme solubility in the order F− < Cl− < Br− (the inverse
Hofmeister series).

Rosenbaum et al. [23] report the B∗
2 values for lysozyme-

salt mixtures at pH = 4.6, T = 298 K, and ionic strength
0.35M . At this pH the protein should have net charge [33]
around +10. The static light scattering results for B∗

2 listed
in Table I of Ref. [23] are −0.9 for lysozyme-NaCl and
−0.6 for lysozyme-KCl mixtures. Our calculations, without
any adjustment of parameters, yield values B∗

2 = −0.65 and
−0.22 under such conditions. The errors in experimental
determination are around ±0.2.

On the other hand, for +1:−16 macroions (negative net
charge) the B2 values are higher in the case of the cesium
salts than in the presence of lithium salts. In both cases
an increase of the low-molecular-mass electrolyte content

decreases the ion specific effects. The nature of co-ions plays
a less important role here. For the net charge zero, the second
virial coefficient is negative, indicating marginal stability of the
model solution under such conditions. A low value of B∗

2 is a
consequence of the absence of the Coulomb repulsion between
the model macroions. The result is in qualitative agreement
with experimental data, which indicate that proteins are most
easy to precipitate around their iso-ionic points.

VI. CONCLUSION

The DLVO theory treats an aqueous electrolyte solution as a
structureless fluid that merely modifies the interaction between
charged macroparticles. All the properties of this complex
solvent are subsumed in the Debye screening length, which
depends on the ionic strength (concentration in the case of a
+1:−1 electrolyte) and also on the dielectric constant of the
solvent and the temperature. Neither cations and anions nor
solvent molecules are included explicitly in such calculations.
Accordingly the macroion-macroion interaction, besides the
central symmetric van der Waals forces, is characterized
only by the net charge of the macroparticle, and not by the
value of the positive and negative charges, separately. For
such models, there is no obvious way of accommodating the
solvation effects, which yield the ion specific results. The
latter effects are local; they occur on contact of the surface
charge with the solvent and ionic atmosphere and by putting
the charges in the center we lose them. In other words, while
the so-called colloidal models are very useful for describing the
macroion-macroion correlation in scattering experiments, they
are not subtle enough to explain differences in the solubility
of proteins in the presence of different +1:−1 electrolytes.

The approach presented herein, though still approximate
in its treatment of solvent, allows systematic investigation
of how the nature of charged groups on the macroion and
electrolyte in solution affects the stability of the system. A
more detailed study of the effect of different low-molecular-
weight electrolytes on the osmotic second virial coefficient
B2, which is recognized as an important parameter related
to protein crystallization, is beyond the scope of the present
paper.

A limitation of the present approach is associated with
the fact that the waterlike molecules representing solvent
interact only via the short-range interaction. In other words,
there is no dipole or any higher moment associated with our
model solvent. This may frustrate an accurate determination of
thermal properties such as enthalpy of dilution and/or mixing.

We can summarize this work as follows. (i) The osmotic
coefficient is lower for solutions with higher content of added
electrolyte. (ii) The model protein with a zero net charge has a
negative slope of the osmotic coefficient at low concentrations
and is accordingly less stable than a macroion solutions
with a nonzero net charge. These results merely confirm the
findings obtained by the DLVO approach. (iii) Effects of the
electrolyte type are clearly visible. As expected, the nature of
the counterion (with respect to the net charge) is generally more
important than the nature of the co-ion. Our calculations are
consistent with experimental data for solubility of lysozyme in
the presence of different salts. A semiquantitative agreement
with static light scattering data for B2 is demonstrated. (iv) It

012308-6



MODEL FOR A MIXTURE OF MACROIONS, . . . PHYSICAL REVIEW E 90, 012308 (2014)

is not only the net charge that plays a role; as seen from the
results, our model discriminates between the +16:−1 and the
+1:−16 case. In summary, the proposed theoretical approach
possesses enough flexibility to model realistic situations in
protein solutions.

Note added. Recently, we became aware of a work by
Bernard et al. [34]. These authors used a similar theoretical
approach, based on Wertheim’s theory, but they examined
a different model of solution than ours. The most notable

difference from our work is in their treatment of water as
continuous dielectric.
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