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Self-propelled particle transport in regular arrays of rigid asymmetric obstacles

Fabricio Q. Potiguar,1,* G. A. Farias,2 and W. P. Ferreira2,†
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We report numerical results which show the achievement of net transport of self-propelled particles (SPPs) in
the presence of a two-dimensional regular array of convex, either symmetric or asymmetric, rigid obstacles. The
repulsive interparticle (soft disks) and particle-obstacle interactions present no alignment rule. We find that SPPs
present a vortex-type motion around convex symmetric obstacles even in the absence of hydrodynamic effects.
Such a motion is not observed for a single SPP, but is a consequence of the collective motion of SPPs around the
obstacles. A steady particle current is spontaneously established in an array of nonsymmetric convex obstacles
(which presents no cavity in which particles may be trapped), and in the absence of an external field. Our results
are mainly a consequence of the tendency of the self-propelled particles to attach to solid surfaces.
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I. INTRODUCTION

Self-propelled particles (SPPs), also called swimmers, are
entities that consume internal energy to generate motion [1–4].
They are usually associated with motile microorganisms,
artificial (Janus) microparticles, and flocking animals. Physical
models that simulate such particles are divided between flock-
ing (Vicsek model) [5,6] and angular Brownian motion (ABM)
types [7] (which also include run-and-tumble dynamics,
RTD [8,9]). Among the characteristics of these systems are the
spontaneous appearance of motion orientational order [5,10]
and giant number fluctuations [7,10,11]. It was seen that SPPs
are capable of turning gears and produce net work on large
objects [12–15], provided that there is an intrinsic asymmetry
in such objects. Also, it is possible to separate SPPs based on
their rotational diffusion [16]. In addition to these phenomena,
particle motion rectification was shown to occur when SPPs
are in the presence of funnel-shaped channels [6,8,17–19]. It
was also shown that self-propelled rods can be trapped by
moving barriers similar to funnel channels [20]. Finally, Volpe
et al. [21] showed that it is possible to sort swimmers using
a periodic array of convex obstacles (ellipses) and an external
drift force.

In all these investigations, medium asymmetry is a crucial
ingredient for rectification to take place, and it is due to the
broken time symmetry [22] in particle-obstacle interactions. In
this paper, we report a rectification effect similar to the one seen
in Refs. [6,8,17–19] for concave obstacles, but here employing
periodic arrays of either symmetric (circles) or asymmetric
(half circles) convex obstacles (which present no cavity in
which particles may be trapped), without the influence of any
external drift force. We argue that the use of convex obstacles
produces two distinct types of steady states: (i) in the half-circle
case, there is transport of particles with a nonzero mean drift
velocity (also found in arrays of funnel objects [19]) and a
constant density profile; (ii) in the circle case, we observe a
variable particle density profile and a zero drift velocity (no
transport). Here, we will show only detailed results regarding
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the half-circle case, postponing the circle case for future work.
Our results point to the possibility to devise sorting devices
based on regular arrays of solid, convex obstacles.

II. MODEL

Our model is of the ABM type and consists of a two-
dimensional (2D) system with N swimmers in an L × L box,
in which there is an array of N0 static obstacles arranged in
a square lattice with unit cell length (UCL) a. The obstacles
are circles or half circles of diameter D. Unless it is explicitly
stated the normal direction to the flat side of the half circles
is the +x direction. The swimmers are modeled as soft
disks of diameter d, which interact through linear springs
of stiffness κ . There is no specific interparticle and particle-
obstacle alignment rules [23]. The swimmers move with a self-
propelling velocity vi = v0 cos θi(t)i + v0 sin θi(t)j, whose
random direction, θi(t), is proportional to a Gaussian white
noise ηi(t), which satisfies 〈ηi(t)〉 = 0 and 〈ηi(t)ηj (t ′)〉 =
(2η�t)1/2δij δ(t − t ′), with η the noise intensity, and �t the
time step. The particles follow a dynamics similar to the one
presented in Ref. [7]; i.e., there is no thermal Brownian motion.
Interactions with obstacles are also of the linear spring form,
but with a stiffness constant κ0 � κ , in order to approximate
the rigid-body limit. The equations of motion for swimmer i

are written, in the overdamped case, as

∂ri

∂t
= vi + μFi ,

∂θi

∂t
= ηi(t), (1)

where μ is the particle motility, Fi = ∑
j Fij is the total

force in particle i (sum is over j particles and obstacles),
Fij = καij r̂ij , if αij > 0 (Fij = 0 otherwise), and αij =
1
2 (di + dj ) − rij is the overlap distance between disk i and
object (disk or obstacle) j , di = d, and dj = d (dj = D) for
particle-particle (particle-obstacle) contact (for a contact with
the flat side of a half circle, dj = 0), and rij is the distance
between i and j . Lengths are given in terms of the particle
diameter d and the time unit is set by v0 = 1. Other parameter
values are L = 100, κ = 10, κ0 = 1000, μ = 1, �t = 0.001.
In all simulations we employed periodic boundary conditions
(PBCs) in both the x and y directions. The equations of motion
are integrated using a second-order, stochastic Runge-Kutta

1539-3755/2014/90(1)/012307(5) 012307-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.012307


POTIGUAR, FARIAS, AND FERREIRA PHYSICAL REVIEW E 90, 012307 (2014)

(a)

0 100
X

0

100

Y

(b)

0 100
X

0

100

Y
0.0

0.8

|v|

(c)

0 100
X

0

100

Y

(d)

0 100
X

0

100

Y

0.0

1.5

|v|

FIG. 1. (Color online) The configuration [(a) circle, (c) half
circle] and the average velocity field [(b) circle, (d) half circle] of
SPP in the presence of a single obstacle. Other system parameters are
D = 50, φ = 0.596, η = 0.005.

algorithm [24]. The rectification effect is characterized by the
mean drift velocity 〈vi〉 (i = x,y), which is studied in terms
of the UCL of the obstacle lattice (a), the obstacle size (D),
the angular noise magnitude (η), and the area fraction (φ). The
latter is the ratio between the area occupied by the SPP and the
area available to them, i.e., φ = Nπd2/[4(L2 − ST )], where
ST is the area covered by the obstacles. Notice that φ is related
to the density n of SPP, i.e., φ = πd2n.

III. RESULTS AND DISCUSSION

A. Arrays of symmetric and asymmetric obstacles

We start by discussing qualitatively how the presence of
convex obstacles affects the dynamics of the swimmers. In
Fig. 1 we show the average velocity field and the corresponding
snapshot configuration in systems with a single obstacle.
Common features are that particles aggregate around the
obstacles, and they follow a vortex-type motion around the
curved surfaces with a direction (clockwise or counterclock-
wise) chosen spontaneously, such vortices are also observed
in distinct contexts, see [25,26]. Notice that the swimmers
strongly overlap near the obstacle boundaries, rendering very
dense clusters there. This occurs due to the low value of the
hardness of the linear spring interaction, κ . Larger κ values
yield weaker contact overlaps, since particles repel each other
more strongly, although there would be still a large number of
particles close to the obstacle. Care should be taken, though,
when increasing the value of κ regarding the value of the time
step �t : it should be decreased when κ is increased, so that two
swimmers do not overlap, even modestly, when they perform
their inherent displacement, v0�t , since the repulsive force
would be very large, forcing particles large distances apart in a
single time step. The velocity fields in Figs. 1(b) and 1(d) were
measured for distinct time intervals, the former being 100 times
longer than the latter. We observe that although particles attach

(
)

(
)

FIG. 2. (Color online) Normalized particle displacement prob-
abilities along the x direction, P (�x), for (a) circular and (b)
half-circular obstacles. In both cases the obstacle diameter is D = 5
and φ = 0.244, η = 0.005. The cumulative distributions for positive
F (�x > 0) (solid lines) and negative F (�x < 0) (dot-dashed lines)
displacements in the lattice of half-circle obstacles are shown as inset
in (b) for a = 10 (black) and a = 50 (red, gray).

to the obstacles, the vortex motion is sustained only on the
circular one. In the half-circle obstacle, the vortices quickly die
out, since there is a very small probability for SPPs to change
their motion sharply to follow the flat side when emerging
from the curved side. On top of that, particles already in the
flat side provide an additional barrier that prevent the vortex
from forming. In our model, we do not consider hydrodynamic
interactions (which are believed to be responsible for the
motions observed in Ref. [27]), which could force the disks to
attach to the solid surfaces. In fact, we observed that a single
swimmer trajectory in a lattice of half circles differs little
qualitatively from a trajectory realized in a lattice of circles
with the same initial conditions. We checked such results for
several values of the noise intensity (η = 0.0001,0.01,1) and
UCL of the obstacle lattice (a = 10,100). Since there can be no
net transport in a lattice with circular obstacle (it is completely
symmetric), a single swimmer would not yield a nonvanishing
current in a lattice of half circles. Therefore, these features
appear only as a collective effect, where contacts among the
swimmers are key to clustering [7,28]. Notice that aggregation
is facilitated by the convex obstacles, since we always observed
some degree of clustering around them.

In order to gain additional insight into the stationary state,
we present in Fig. 2 the normalized probability function for
a particle to perform a horizontal displacement P (�x) in
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a lattice of obstacles as a function of a. The curves were
obtained in the long-time limit, enough for a particle to cover
a distance equivalent to |�x| = 1000. In general, the curves
are more narrowed and peaked around �x = 0 for smaller a,
which means that more particles have their motion restricted
for denser lattices as a consequence of the accumulation of
particles around the obstacles (aggregates). The probability
for a particle to be caught in a given aggregate is proportional
to the size of the aggregate. It is reasonable to assume that the
aggregate size depends on the density of particles, obstacle
size, and noise intensity, but not on a (we checked the
dependence of the aggregate size on η by measuring the density
profile around the obstacles, and found that it decreases with
increasing η). However, while decreasing a, and keeping all the
other parameters constant, the aggregates approach each other,
decreasing the free space for the SPP to move, and restricting
their long-time displacement.

From Fig. 2 we also notice that P (�x) depends on the
shape of the obstacles. For half circles, Fig. 2(b), the curves
are nonsymmetric regarding �x = 0, implying a preferred di-
rection in the motion of the SPP (rectification). Quantitatively,
in the case of half-circle obstacles the cumulative distribution
for positive displacements, F (�x > 0), inset Fig. 2(b), black
curves, is larger than the one for negative displacements,
F (�x < 0), red (gray) curves, which indicates that particles
drift in the +x direction, producing a steady particle current.
The difference between these two cumulative distributions is a
measure of the strength of the particle current, and it increases
with decreasing a. The probability function for displacements
along the y direction P (�y) is essentially indistinguishable
for both obstacle shapes due to the symmetry along the y

direction.
From the previous discussions we learn that (i) SPPs present

a vortex-type motion around convex symmetric obstacles even
in the absence of hydrodynamic effects. Such a motion is
not observed for a single SPP, but it is a consequence of the
aggregation of SPPs around the obstacles. (ii) A steady particle
current rises spontaneously in a lattice of nonsymmetric
convex obstacles, and in the absence of an external field.

B. Half-circular obstacles

Now we take a closer look at the behavior of SPPs in the
array of half circles by systematically studying the average
drift velocities 〈vx〉 and 〈vy〉 in terms of η, a, D, and φ. In
general, our measurements yield only positive 〈vx〉, indicating
that SPPs move along the direction normal to the flat side of
the obstacles (+x direction), while perturbations along the y

direction are symmetric, resulting in 〈vy〉 = 0. In Fig. 3(a)
we present 〈vx〉 as a function of the noise η for a = 10,
three distinct area fractions φ = 0.244 (black squares), 0.488
(red circles), and 0.732 (green triangles), and two different
obstacle sizes, D = 5 (solid symbols) and D = 7.5 (open
symbols). The η dependence of 〈vx〉 is fairly insensitive to
φ. In general, low noise favors higher 〈vx〉 (which seems to
reach a plateau for η � 0.001), while 〈vx〉 → 0 for η � 1.
In addition, we observe that 〈vx〉 increases with increasing
obstacle size D, but this is noticeable only for small noise
(η � 0.1). For large noise values (η � 0.1) 〈vx〉 presents little
dependence on both φ (related to the density of SPPs) and

FIG. 3. (Color online) (a) The average x component of the drift
velocity 〈vx〉 of the SPPs (in a lattice of half-circle obstacles) as a
function of noise η (log scale) for a = 10, two obstacle sizes D = 5
(solid symbols) and 7.5 (open symbols), and three different area
fractions φ. (b) Same quantity, but now as a function of a, for two
obstacle sizes D = 5 (solid symbols) and 7.5 (open symbols). (c) x

and y components of the drift velocity as a function of the orientation
angle δ of the half-circle obstacles with respect to the x direction
(inset).

D. In Fig. 3(b), 〈vx〉 is presented as a function of a for
φ = 0.244, two distinct values of the noise η = 0.01 (black
squares) and 1 (red circles), and obstacle size D = 5 (solid
symbols) and 7.5 (open symbols). For large noise (η � 1), the
drift velocity vanishes for any value of a. Such a behavior was
also observed for the other values of φ considered in Fig. 3(a).
For small noise (η = 0.01), the drift velocity 〈vx〉 �= 0, and
it increases with decreasing a. We showed earlier that large
noise disfavors aggregation, while small noise favors the
accumulation of SPPs around the obstacles. Since the results
presented in Figs. 3(a) and 3(b) relate higher 〈vx〉 to smaller
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η, and smaller a or larger D, our findings indicate that cluster
formation around the obstacles is essential for the occurrence
of rectification (particle current) [8,27]. The drift velocity
increases with increasing D (and decreasing a). Therefore,
〈vx〉 can be enhanced by bringing the obstacles closer (since
decreasing a is equivalent to increasing D). This trend is due to
the overlapping of neighboring aggregates, which forces more
particles in the +x direction.

Up to here we considered the flat face of the half-circle
obstacles perpendicular to the x direction. In order to show
the possibility to control the direction of the particle current,
we present in Fig. 3(c) both 〈vx〉 (black squares) and 〈vy〉
(red circles) as functions of the angle δ between n and the x

direction [see inset in Fig. 3(c)]. The results clearly indicate
the possibility to control the direction of the particle current
by changing the orientation of the obstacles. Notice that 〈vx〉
and 〈vy〉 have, approximately, inverse variations with δ, which
indicates that the drift velocity is in a direction close to that of n.

C. Circular obstacles

Our previous results and discussion indicate that no steady
particle current (i.e., 〈vx〉 = 0) exists in a regular array of
circular obstacles. Nevertheless, it is possible to induce rectifi-
cation in the motion of SPPs using this type of obstacle. Since
medium asymmetry is essential for the motion rectification to
occur, we can build a 2D square lattice of circular obstacles
whose diameters are increasing functions of x in order to
produce such asymmetry. That this type asymmetry will lead
to motion rectification can be seen as follows. From the results
shown in Fig. 1, we may assume that the chance for a particle
to get stuck in an aggregate is proportional to its size, and
particles have a higher probability to move towards larger
obstacles, in the present case, in the +x direction. Therefore,
the rectification we mean here is essentially particles moving
from smaller towards larger obstacles. However, we observe
that in the long-time limit 〈vx〉 = 0 in all cases studied (this
occurred even for periodic boundary conditions, since for solid
ones this quantity would vanish). This can be explained by the
fact that swimmers will move in a particular direction as long
as there is a larger obstacle ahead in that direction, which
can only occur in an infinite, nonperiodic lattice. Hence, this
rectification effect is a transient phenomenon in a finite lattice.
Nevertheless, the steady state of this system, although it has
a vanishing particle current, displays a nonuniform density
profile along the x direction, because when particles reach
the boundary of the system (either periodic or solid), in which
there are no more larger obstacle for them to reach, they do not
return to the smaller ones, precisely by the reason we pointed

out above; they have a higher probability to get stuck in higher
aggregates, in other words, around larger obstacles.

From these considerations, we studied the density profiles
as functions of the same quantities as before (noise intensity
η, unit cell length a, and obstacle size D, and periodic
boundaries) and observed that more particles aggregate around
larger obstacles (which can be interpreted as stronger particle
separation, similarly to what was seen in [6]) for smaller
noise intensity, and denser lattices. We also observed that, for
large noise values, η � 1, the density profile is inverted, and
swimmers tend to move towards the smaller obstacles, while
producing hardly any aggregation around any obstacle. We in-
terpret this result on account of the need for the particles, when
moving under such large noise values, to have more free space
to move (since they change their motion direction strongly
in only a few moves), in comparison to the situation seen at
low noise values, therefore accumulating, preferentially, in the
region where there are the smallest obstacles [but not around
the obstacles themselves, as seen in Fig. 1(a)].

IV. CONCLUSIONS

We reported numerical results on the behavior of self-
propelled particles in regular arrays of convex obstacles: either
half circle or circles. We showed that such an environment
provides a means to rectify the swimmer motion. In the
half-circle lattice, this rectification yields a finite drift velocity
in the direction of the normal to the flat side of the obstacle,
and homogenous spatial density. The drift velocity depends on
density (area fraction), noise magnitude η (low η yields high
speeds, and vice versa), and density of the obstacles (larger
rectification is found for denser lattices). We also showed that
it is possible to control the direction of rectification (steady
velocity) simply by adjusting the orientation of the half-circle
obstacles. In the lattice of circular obstacles, rectification ap-
peared when a size gradient in the diameter of the obstacle was
considered. It is a transient effect which produces a migration
of SPPs towards larger obstacles, resulting, in the long-time
limit, in a vanishing drift velocity and a nonhomogeneous
particle density. We found that the swimmers move towards
the denser part of the lattice (larger obstacles) for low noise,
while this tendency is reversed for high noise. We expect that
our results open the way for new rectification (or separation)
devices of active matter based on simple and symmetric lattices
of convex obstacles.
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