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Influence of primary-particle density in the morphology of agglomerates
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Agglomeration processes occur in many different realms of science, such as colloid and aerosol formation or
formation of bacterial colonies. We study the influence of primary-particle density in agglomerate structures using
diffusion-controlled Monte Carlo simulations with realistic space scales through different regimes (diffusion-
limited aggregation and diffusion-limited colloid aggregation). The equivalence of Monte Carlo time steps to real
time scales is given by Hirsch’s hydrodynamical theory of Brownian motion. Agglomerate behavior at different
time stages of the simulations suggests that three indices (the fractal exponent, the coordination number, and the
eccentricity index) characterize agglomerate geometry. Using these indices, we have found that the initial density
of primary particles greatly influences the final structure of the agglomerate, as observed in recent experimental
works.
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I. INTRODUCTION

Agglomeration of single particles to generate larger aggre-
gates is a ubiquitous physical phenomenon in nature. Not only
is the physics and chemistry of colloids and aerosols governed
by agglomeration but also more complex mechanisms occur-
ring in proteins or viruses depend on it [1]. Self-propelling
active particles such as bacteria, insects, birds, or fish may
agglomerate to form colonies swarms, flocks, or schools
[1]. Agglomeration of active or passive particles involving
Brownian motion is quite common. Inert particles arising from
combustion processes may aggregate, forming aerosols and
soot agglomerates. Soot agglomeration is very important for
industry and everyday life. Particulate matter generated during
combustion may have undesired effects, including corrosion
of boiler surfaces caused by particle deposition and chemical
activity (fouling), deposition, chemical activity, and particle
fusion (slagging) [2], and serious health problems such as
pneumoconiosis and lung cancer [3].

Aliphatic and aromatic compounds of hydrocarbons
(present in tars) volatilize very quickly (with a characteristic
time of about 10−4 s [4]) and undergo subsequent chemical
reactions, leading to the formation of soot particles (which
have lost most of their original hydrogen) and polyaromatic
hydrocarbons. Primary soot particles are mainly aggregates
of thousands of graphitic crystallites whose size is about tens
of nanometers [5]. These aggregates tend to stick together
immediately after their formation, forming “fractal-like” struc-
tures. This is the agglomeration process. Additional processes
like sintering will affect the shape and properties of the
agglomerates at much longer times. Here we want to describe
the whole agglomeration process from its early stages and
study the evolution of agglomerate structure. This is important,
e.g., for understanding vapor condensation on agglomerates in
boundary layer flows near the walls of a combustion chamber.
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The literature contains numerous models of agglomeration
processes. Many of these works use Langevin equations [6,7]
or kinetic (Smoluchowski) equations written in terms of a
collision frequency factor. Many others resort to numerical
simulations based on some randomlike collision algorithm,
e.g., Monte Carlo simulations, based on the solution of the
Langevin equation in integral form. A detailed historical
review is [8]. Most importantly, the agglomerates obtained
through all these models are fractal-like structures, a conse-
quence that has been validated by many experimental works
[9–12]. Many works simulate agglomeration starting from a
number of particles in a given volume [6,7,13–15]. In these
works, the calculated fractal exponents of agglomerates range
from 1.62 to 1.9, the particle number density is between 1014

and 1015 cm−3, whereas the expected amount of soot in a
combustion chamber is in the range of much lower values,
1010–1012 cm−3 [9]. In these works, numerical simulations
yield fractal exponents of agglomerates between 1.7 and
1.8, which correspond to three-dimensional diffusion-limited
colloid aggregation (DLCA). Recently Chakrabarty et al. [16]
observed soot fractal aggregates with fractal exponents in
the range 1.2–1.5 from ethene-oxygen premixed flames with
2.3–3.5 fuel-to-air equivalence ratio. These exponents are
noticeably lower than DLCA values (about 1.8 [17]).

Although Langevin equations seemingly provide very
appropriate ways to tackle agglomeration, their use has been
marred by different shortcomings. For instance, Isella and
Drossinos [7] write a Langevin equation for each monomer,
which is computationally quite costly. Moreover, the equiva-
lent physical time of their simulations is very short because
the agglomerates dissolve quickly after being formed. They
also use an extremely high particle density, evidently to
accelerate the agglomeration process. Mountain et al. [6] save
computation time by the crude simplification of considering a
generic Langevin equation for noninteracting particles.

Here we reproduce the agglomeration process through a
Monte Carlo simulation considering that both single particles
and the resulting agglomerates undergo Brownian motion.
Brownian motion decreases as the particles collide and bond,
i.e., agglomerates move more slowly than particles. This speed
reduction is due to the increasing frictional resistance of the
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carrier gas. Different ways of incorporating the frictional
resistance of the carrier gas into the simulations include
using empirical expressions of diffusive mobility in fractal
aggregates coming from laboratory measurements [18] and
assimilating the agglomerate to a porous medium [19,20]. A
common feature of these methods is that in some step of the
process the agglomerate is characterized by a single parameter,
which misses somewhat the agglomerate geometry. Instead,
we have used the Riseman-Kirkwood theory that incorporates
the geometrical configuration of the whole agglomerate in the
calculation of the diffusivity (which is obtained at each time
step of the simulation) [21]. Starting from a uniform spatial
distribution, particles and agglomerates move randomly and
interact in a three-dimensional (3D) cubic lattice. They evolve
from an initial stage of diffusion-limited aggregation (DLA),
in which clusters grow by aggregating one single particle
at a time [22], to a later DLCA stage, in which clusters
stick to clusters. In order to obtain the equivalency of Monte
Carlo times and physical times, the time elapsed during a
simulated Brownian jump is calculated using Hinch’s theory
of Brownian motion [23] which, being local, is consistent with
the Riseman-Kirkwood theory (see the Appendix).

In order to compare our work to previous experimental
results [16], our simulations have been run for up to 6 s
of equivalent physical time. We have found that the fractal
exponents of the agglomerates increase with particle density
and we have also studied the effect of the latter on the evolution
of the fractal exponents. Another important point in our work
is the geometrical characterization of the agglomerates. There
are abundant references in the literature to the influence of
the prefactor and the fractal exponent in the morphology of
the agglomerate. Much more sparse are the references to the
coordination number and its influence [7]. In addition to fractal
exponent and coordination number, we introduce here the
eccentricity index (which has some precedent in the triangle
distribution function [24]). The geometric mean of the two
last indices shows an unexpected regularity for different times,
densities, and morphologies.

The rest of the paper is organized as follows. In Sec. II, we
describe the simulation algorithm. We describe and discuss
our results, validate the model, and include a geometrical
description of agglomerates in Sec. III. Section IV contains
our conclusions, and the Appendix is devoted to technical
matters.

II. SIMULATION DETAILS

Initially, Np = 8000 particles of diameter dp = 50 nm
occupy the nodes of a cubic lattice of side Sp [25] (see
Fig. 1). Then the particle number densities are in the
range 1010–1014 cm−3. Notice that expected soot particle
densities inside combustion chambers are on the order of
1010–1012 cm−3 [26]. As we explain in the next section, the
selected number of particles allows the particle distribution
function to become self-similar, with quasisteady moments,
thereby avoiding boundary effects. Self-similar size distribu-
tions have been widely observed in aerosols [27].

In the simulations, particles undergo Brownian motion with
a fixed length step (which is hp = 2dp for single particles) but
they move in random directions given by the angles shown

FIG. 1. (Color online) The cubic lattice used in the simulations.
The spacing between particles, Sp , is equal to (1/dp)(1/np)1/3, where
np is the primary-particle number density. Polar and azimuthal angles
are taken with respect to a coordinate system that moves with the
particle or the centroid of the agglomerate.

in Fig. 1. The relation between the simulation time step and
real time is such that the root mean square displacement of the
particle during a time step is 2dp. Then [28] (Appendix 5A)
and [29]

√
〈�x(t)2〉 = 2dp, 〈�x(t)2〉 = 2

∫ t

0
(s − t)〈vx(0)vx(s)〉ds.

(1)

In the simplest case, the velocity autocorrelation is that of an
Ornstein-Uhlenbeck process [30,31], whereas a more realistic
expression is provided by Hinch’s theory of Brownian motion
[23]. Both mean squared displacements are listed in the
Appendix. Inserting these expressions in (1) and solving that
equation for the time step, we obtain Ornstein-Uhlenbeck
and Hinch times. The larger of the two is usually the Hinch
time, which we select as our time step. The random polar
(� = πδ1) and azimuthal (� = 2πδ2) angles are referred to a
coordinate system that moves with each particle. δ1 and δ2 are
random numbers uniformly distributed between 0 and 1. This
choice avoids unequal chance fluctuations in long sequences of
random angles [32] and it does not require random generation
of angles out of a uniform spherical distribution as in [33].
We have used periodic boundary conditions to preserve the
particle density during the simulation, i.e., particles that move
out of the domain are reinjected from the opposite boundary.

As agglomeration criterion, we consider that two particles
(single or pertaining to an agglomerate) whose centers get
closer than 2dp will agglomerate. We prevent overlapping by
calculating whether the jump length leading to collision along
a random direction is smaller than 2dp. As the agglomerates
increase their size, drag forces due to friction with the carrier
gas increase too, and we expect a reduction in the agglomerate
velocity. To take into account this effect, we calculate the trans-
lational diffusion coefficient of each agglomerate, anytime
a new bond is formed, by means of the Riseman-Kirkwood
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theory [21]:

Da = Dp

Na

⎛
⎝1 + dp

2 Na

∑
i

∑
j

1

Rij

⎞
⎠,

where Dp is the particle diffusion coefficient (see the Ap-
pendix), Da is the agglomerate diffusion coefficient, Na is the
number of particles in the agglomerate, and Rij is the distance
from the ith to the j th particle in the agglomerate. Notice that
as the size of the agglomerate increases, Na increases and then
the diffusion coefficient tends to decrease. The Brownian jump
of each agglomerate, ha , is given by the following simple rule:

ha = hp

Da

Dp

.

A jump length of 2dp occurs only for primary particles: the
agglomerates jump over smaller distances as they grow. Our
algorithm is summarized in the following lines:

(1) Set the number of particles and distribute them homo-
geneously in a cubic lattice.

(2) Choose a particle number density which leads to a
particle spacing (Sp) for the initial distribution.

(3) Fix the size of the primary particle jump (hp = 2dp)
and calculate the physical time (tstep) corresponding to one
simulation time step.

(4) Pick a maximum real time for the simulation (T ).
(5) While t < T

(a) Generate random angles for each particle or agglom-
erate in the simulation.

(b) Produce jumps and update positions.
(c) Check distances between external particles and

agglomerates and join to the latter all the external particles
within a distance <2dp (to prevent overlapping).

(d) Update diffusion coefficients and jump lengths (ha).
(e) t = t + tstep.

(6) End.
Most Monte Carlo simulations of agglomeration processes

use different algorithms for the DLA and DLCA stages
[8,13,15]. The particles or clusters that join together and
the way in which they join are determined by a random ad
hoc procedure that does not have a correspondence to the
actual physical system. Instead, we use a single algorithm that
does not distinguish between DLA and DLCA stages. In our
algorithm, contacts between particles and clusters and between
clusters and clusters occur as a result of the Brownian motion
of particles and clusters themselves in a real-scale space. We
have ignored cluster rotation for simplicity.

III. NUMERICAL RESULTS AND DISCUSSION

In our simulations, we have used parameter values
corresponding to soot formation inside a combustion chamber
as indicated in Table I. In the table, ρp, dp, np, T , Pa , μa ,
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FIG. 2. (Color online) Size distribution function in terms of the
scaled size ξ = i/N (t), where N (t) is the number of aggregates at
time t . The simulation lasts 6 s and the initial particle density is
4 × 1010 cm−3.

ρa, and kB are the soot density, the primary-particle diameter,
the primary-particle number density, the air temperature, the
air pressure, the air viscosity (calculated using the Sutherland
relation), the air density (considered as an ideal gas), and the
Boltzmann constant, respectively.

We have computed 100 sets of simulations for a primary-
particle number density of 4 × 1010 cm−3 and ten sets for nine
other different densities between 1010 and 1014 cm−3 in order
to observe the effect of the primary-particle density in the
resulting structures. 61 samples per simulation were taken to
study in detail the time evolution of the system. Simulations
for the different densities were run for up to 6 s of equivalent
physical time. We compare the size distribution obtained
through our simulations with a log-normal distribution because
the latter describes very well atmospheric aerosols, mainly
those coming from a single source [34]. This is shown in Fig. 2
for a primary-particle number density of 4 × 1010 cm−3. For
Np = 8000 particles, the size distribution function becomes
self-similar after sufficient time. This implies that there are no
boundary effects. To further check this, we have calculated the
time evolution of the geometrical as well as the logarithmic
moments (from the second to the sixth moment),

〈ηk〉 = 1

N

∑
i

ηk
i ni = μk

μk
1

Nk−1,

〈(ln η)k〉 = 1

N

∑
i

[ln ηi]
k ni,

μk =
∑

i

ikni,

TABLE I. Constants and parameters used in the simulation.

ρp dp np T Pa μa ρa kB

(g cm−3) (nm) (cm−3) (K) (Pa) (N s m−2) (kg m−3) (kg m2 s−2)

2 50 1010–1014 1900 1.01325 × 105 6.20 × 10−5 0.173 1.38 × 10−23
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FIG. 3. (Color online) Time evolution of the averaged geometric
(top) and logarithmic (bottom) kth moments, obtained from the
simulations.

where 〈ηk〉 is the kth geometric moment of f (η,t), 〈(ln η)k〉 is
the kth logarithmic moment of f (η,t), ni(t) is the number of
agglomerates with i particles at time t , ηi(t) = iN (t)/μ1(t),
and N = N (t) = μ0(t) is the number of agglomerates at time
t . Assuming that the size distribution function is self-similar,
ni(t) = f (i/N(t)), and we get

μk =
∫

ikf

(
i

N (t)

)
di = [N (t)]k+1

∫
ξkf (ξ )dξ

=⇒ 〈ηk〉 =
∫

ξkf (ξ )dξ

[
∫

ξf (ξ )dξ ]k
,

so that the kth moment is independent of time. Similarly, the
logarithmic moments should be independent of time once the
self-similar size distribution is established.

Figure 3 shows the averaged geometric (top) and logarith-
mic (bottom) moments for a total number of 8000 particles.
For a physical time of 6 s, the lower-order geometric and
logarithmic moments reach a steady state which indicates that
a self-similar size distribution function has been reached. This
indicates that we obtain reliable results from simulations with
8000 particles.

FIG. 4. (Color online) Different-sized agglomerates (a) with 245
particles, (b) with 1484 particles, and (c) with 8000 particles, corre-
sponding to densities 4 × 1010, 1012, and 1014 cm−3, respectively.

A. Fractal exponents of the agglomerates

Figure 4 shows three agglomerates with 245, 1484, and
8000 particles for primary-particle number densities of 4 ×
1010, 1012, and 1014 cm−3, respectively. It can be appreciated
that very open fractal-like structures appears for low density
values, evolving to more compact shapes as the density
increases. In an agglomerate, the number of particles Na is
related to the radius of gyration rg (mean squared radius) by

Na = kar
Ef

g , where Ef is the mean fractal exponent and ka is
a prefactor [27]. From the linear fit,

ln(Na) = ln(ka) + Ef ln(rg),

r2
g = 1

Na

Na∑
j=1

(rj − r̄)2 = 1

2N2
a

Na∑
i,j=1

(ri − rj )2

(where rj is the position of particle j in the agglomerate
of size Na and r̄ is the mean position), we can extract
the fractal exponent Ef that characterizes agglomerates; see
Fig. 5. Figure 6 shows that Ef varies with time for different
values of the primary-particle number density (from 1010 to
1014 cm−3). For most of the primary-particle number densities,
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FIG. 5. (Color online) Number of particles per agglomerate ver-
sus radius of gyration for a primary particle density of 4 × 1010 cm−3

and equivalent physical times of 0.5, 1, 2, and 6 s which give
Ef = 1.42 for the latter times. Different points correspond to different
simulations and we have fitted a straight line through the points
corresponding to 6 s. Note that there is no indication of transient
behavior.

the fractal exponent reaches a constant value within the
computational time interval. After a 1 s equivalent physical
time, the maximum Ef varies between 1.4 and 2.8 for the
considered densities, as depicted in Fig. 7. The fractal exponent
tends to a constant and larger value for larger times (with one
exception). Thus the fractal exponent obtained after 1 s is a
lower bound of the asymptotic value of the fractal exponent.
In the case of the outlier, with primary-particle number density
of 1014 cm−3, 1 s is sufficient for bringing to completion the
agglomeration process. To attain the asymptotic value of the
fractal exponent in that case, we should have used a much
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FIG. 7. (Color online) Fractal exponent Ef versus primary-
particle number density np after 1 s. The steeper part, at the right,
is indicating that bigger clusters are formed more rapidly due to the
higher densities of primary particles (>2 × 1012 cm−3).

larger value of the total number of particles, which would have
increased considerably the computational cost. The average
agglomerates fractal exponents reach values between 1.4 and
2.8 for the range of initial particle densities we use.

In the literature, the calculated fractal exponents of ag-
glomerates range from 1.62 to 1.9, for particle number
densities between 1014 and 1015 cm−3 [6,7,13–15]. These
fractal exponents are in the range of 3D DLCA, about 1.8 [17].
Recently Chakrabarty et al. [16] have observed soot fractal
aggregates with much lower fractal exponents in the range
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FIG. 6. (Color online) Time evolution of the fractal exponent Ef for different primary-particle (soot) number densities np . The exponents
corresponding to densities seen in combustion processes are depicted as solid lines. The uppermost curve is interrupted because an agglomerate
comprising all the particles is formed before 6 s.
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1.2–1.5 from ethene-oxygen premixed flames with 2.3–3.5
fuel-to-air equivalence ratio. While these fractal exponents
are lower than those found in the literature [6,7,13–15], the
initial number density in the experiments is in the range
1010–1012 cm−3, which is also lower than the np values used
in the numerical work. The fractal exponents observed in
experiments are like those found in our simulations for the
same number density range. Note that the fractal exponent
rises more abruptly for np above 1012 cm−3 to within the
DLCA range found in [6,7,13–15].

B. Geometrical characterization of the agglomerates

In addition to the fractal exponent, we may characterize
agglomerates by other indices of geometrical nature. In an
agglomerate, the relative number of particles n

j
g surrounding a

given one j (at a distance not larger than 2dp) gives an idea of
the compactness of the latter, and we call it the coordination
index,

ijc = n
j
g

12
∈ [0,1], coordination index of j th particle.

i
j
c = 0 corresponds to an isolated particle and i

j
c = 1 gives

close packing of the particles. The coordination number
defined as in [7] is 12 times our coordination index.

We have also defined the eccentricity index as follows:

ije = |rc.m. − rj |
re

, eccentricity index of j th particle,

where rc.m. is the position of the center of mass of the system
formed by the j th particle at rj and its surrounding neighbors
(at distances no larger than 2dp), and re is the enveloping
radius that corresponds to the maximum distance between the
center of mass of the system and the center of the neighbors
surrounding the j th particle. This eccentricity index measures
the way the particles connect in an agglomerate. A particle with
ie = 0 is surrounded in a spherically symmetrical way, whereas
a particle with ie = 1 has the most asymmetric distribution of
its surrounding particles.

The coordination index of an agglomerate is calculated
as the mean value of the coordination indices of all the
particles comprising it. The same applies for the eccentricity
index. These coordination and eccentricity indices depend
on the agglomerate size i, the realization of the Brownian
motion ω, and the particle number density np, ic,e(i,np,ω).
For a given value of primary-particle number density, the
coordination indices versus size for different realizations of
noise (corresponding to different simulations) are depicted in
Fig. 8. The expected values of the indices (over all simulations)
are the average indices 〈ic〉(i,np) and 〈ie〉(i,np). Figures 9(a)
and 9(b) show the average coordination and eccentricity
indices for np = 1010 cm−3. Note that 〈ic〉 increases with
agglomerate size, whereas 〈ie〉 decreases. As the agglomerate
size increases, the agglomerates change from being stringy
structures with low 〈ic〉 and large 〈ie〉 to becoming more
compact, with both indices about 0.45; see Fig. 4. Figure 10
shows the variation of the average coordination index of all the
agglomerate sizes (calculated after a 1 s equivalent physical
time) with the primary-particle number density. Similarly to
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FIG. 8. (Color online) Coordination index of aggregates in terms
of its size for different simulations and a primary-particle number
density np = 4 × 1010 cm−3.
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FIG. 9. (Color online) (a) Variation of the average coordination
index 〈ic〉 with agglomerate size Na . (b) Variation of the mean
eccentricity index 〈ie〉 with agglomerate size Na . Primary-particle
(soot) number density in both plots is 1010 cm−3 for an equivalent
physical time of 1 s.
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FIG. 10. (Color online) Average coordination index ic of all
aggregate sizes versus primary-particle number density np after
1 s equivalent physical time.

the fractal exponent behavior in Fig. 7, this index increases
with the density np.

The coordination and eccentricity indices and their geomet-
ric mean have the following properties:

(a) The plot of ic(i,np,ω) as a function of i in Fig. 8, for np =
4 × 1010 cm−3 and different realizations, has a very organized
pattern for low np but does not present a recognizable structure
for high np (e.g., for 1014 cm−3).

(b) ic and ie exhibit an asymptotic behavior for large Na as
Fig. 9 shows (see also [7,35]). The evolution to constant values
of these geometric parameters and of the fractal exponent
for large times is a sign that the internal structure of the
agglomerate tends to become self-similar. The aggregates grow
with time and, as they become larger, they become closer to
self-similar and some connectivity pattern is repeated.

(c) The average indices 〈ic〉 and 〈ie〉 probe the local structure
of aggregates and they seem to be related for large aggregate
size. Their geometric mean igm = √〈ic〉 〈ie〉 becomes almost
constant for large Na , as shown in Fig. 11 for three different
densities. As the aggregates size Na grows, the increasing
coordination index and the decreasing eccentricity index seem
to compensate. Assuming an ad hoc very dense particle
packing representing an upper limit for ic, we have created
a sequence of configurations and obtained the geometric mean
igm which is bounded between 0.4 and 0.5.

(d) The cluster distribution evolves to become self-similar
and, at the same time, the fractal exponent and the coordination
index evolve to constant values as shown in the highest part of
Fig. 12, where points accumulate. Both the fractal exponent
(Fig. 7) and the average coordination index (Fig. 10) of all the
agglomerate sizes increase with the primary number density
np. This seems reasonable as they both probe the self-similar
structure of the clusters and are therefore related.

IV. CONCLUDING REMARKS

We have simulated the agglomeration of single particles
for different initial number densities by a Monte Carlo
method. The range of initial number densities covers the
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FIG. 11. (Color online) Geometric mean of the average coordi-
nation and eccentricity indices vs agglomerate size after 1 s for
three different values of np: (a) 4 × 1010 cm−3, (b) 1012 cm−3, and
(c) 1014 cm−3.

values expected for soot particles in combustion processes and
also higher values used by other authors in their simulations
[6,7]. Initially, 8000 particles occupy a cubic domain with
periodic boundary conditions (to preserve particle density).
This size produces a self-similar log-normal size distribution
function after a short time, with quasisteady moments. After an
equivalent physical time of 1 s, a self-similar size distribution is
reached. The fractal exponent increases with primary particle
number density, first slightly and, beyond np = 1012 cm−3,
more abruptly. Below that density, the fractal exponent is
no larger than 1.5 and it remains so no matter the duration
of the process. For such low densities, particle spacing is
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FIG. 12. (Color online) Evolution of the fractal exponent and the
coordination index, for a primary particle density of 4 × 1010 cm−3,
considering sizes >15. Each point represents values at a given time
and, as time increases, these points tend to accumulate in the upper
part of the figure.

much larger than particle size. Then the agglomerates are
elongated and treelike even at the beginning of the aggregation
process. This is particularly true for small agglomerates,
as confirmed by the small value of the coordination index
and the larger eccentricity index. These indices give a more
complete description of the agglomeration process than the
fractal exponent and its prefactor [36] alone. In fact, these
indices provide information about the local connectivity and
mass distribution inside the agglomerate. Their behavior in
terms of agglomerate size is opposite; the average coordination
(eccentricity) index increases (decreases) with agglomerate
size so that the geometric mean of both indices is roughly
constant with agglomerate size.

The main achievements of our work can be recapitulated as
follows:

(a) The fractal exponent is not a fixed value determined
by the kind of aggregation process (DLA or DLCA) that has
taken place. Instead, the fractal exponent is closely related to
the density of primary particles that will agglomerate. We base
this assertion on Monte Carlo simulation results carried out in
real physical space.

(b) The aggregates are characterized by the fractal exponent
and by two other geometric parameters, the coordination and
eccentricity indices. The behaviors of these indices reinforce
the conclusion that aggregates become self-similar for large
times if their size is sufficient. The geometric mean of the
coordination and eccentricity indices is almost the same for
different primary densities (and therefore for different fractal
exponents) which suggest that these indices are related once
self-similarity has set in.

Although our simulations refer to particle agglomeration
during combustion, the simulation algorithm is applicable to
many other agglomeration processes. In particular, we may
also generalize the algorithm to include thermophoretic forces
over the agglomerates during agglomeration. We are currently
working in this direction.
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APPENDIX: PHYSICAL TIME EQUIVALENCE

To establish the simulation time step according to (1),
we need the time-dependent mean squared displacement
of a particle, 〈�x2〉. For the Ornstein-Uhlenbeck velocity
autocorrelation, (1) is

〈�x2〉 = 2Dp

{
t + �

[
exp

(
− t

�

)
− 1

]}

� = m

ζ
, particle relaxation time,

Dp = kBT

ζ
, particle diffusion coefficient,

ζ = 3πμadp

C
, particle friction coefficient,

C = 1 + 2 la

dp

[
1.257 + 0.4 exp

(
− 0.55 dp

la

)]
,

la = 1√
2πd2

ana

, mean free path of air molecules,

where C is the slip correction factor, m is the particle mass, T is
the fluid (air) temperature, da is the fluid (air) mean molecular
diameter, na is the fluid (air) number density, and μa is the
fluid (air) viscosity.
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FIG. 13. (Color online) Mean square displacement as a function
of time according to Hinch’s and the simplest theory of Brownian
motion. Time step corresponding to the adopted jump length of 2dp

(102) is greater than the particle relaxation time (�), as indicated.
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Hinch’s theory of Brownian motion takes the hydrodynamic interactions between particles and fluid into account, and it
produces the following mean squared displacement [29]:

〈�x2〉 = 2Dp

{
t − 2

√
τ t

π
+ 2τ

9

(
1 − ρp

ρa

)
+ 3√

τ (5 − 8ρp/ρa)

[
1

a3+
ea2

+terfc(a+
√

t) − 1

a3−
ea2

−terfc(a−
√

t)

]}
,

a± = 3

2

[
3 ± √

5 − 8ρp/ρa√
τ (1 + 2ρp/ρa)

]
,

τ = d2
p ρa

4 μa

, time for diffusion of vorticity across a particle radius,

where ρp is the particle mass density, and ρa is the fluid (air) mass density. The slip correction factor makes these expressions
valid for both the continuum and the free molecular regimes. The time corresponding to a jump length of 2dp, according to
Hinch’s theory is 2 × 10−7 s approximately, which is larger than the particle relaxation time, as can be seen in Fig. 13.
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