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We demonstrate diffusing-wave spectroscopy (DWS) in a localized region of a viscoelastically inhomogeneous
object by measurement of the intensity autocorrelation [g2(τ )] that captures only the decay introduced by the
temperature-induced Brownian motion in the region. The region is roughly specified by the focal volume of an
ultrasound transducer which introduces region specific mechanical vibration owing to insonification. Essential
characteristics of the localized non-Markovian dynamics are contained in the decay of the modulation depth
[M(τ )], introduced by the ultrasound forcing in the focal volume selected, on g2(τ ). The modulation depth M(τi)
at any delay time τi can be measured by short-time Fourier transform of g2(τ ) and measurement of the magnitude
of the spectrum at the ultrasound drive frequency. By following the established theoretical framework of DWS,
we are able to connect the decay in M(τ ) to the mean-squared displacement (MSD) of scattering centers and
the MSD to G∗(ω), the complex viscoelastic spectrum. A two-region composite polyvinyl alcohol phantom with
different viscoelastic properties is selected for demonstrating local DWS-based recovery of G∗(ω) corresponding
to these regions from the measured region specific M(τi)vsτi . The ultrasound-assisted measurement of MSD
is verified by simulating, using a generalized Langevin equation (GLE), the dynamics of the particles in the
region selected as well as by the usual DWS experiment without the ultrasound. It is shown that whereas the
MSD obtained by solving the GLE without the ultrasound forcing agreed with its experimental counterpart
covering small and large values of τ , the match was good only in the initial transients in regard to experimental
measurements with ultrasound.
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I. INTRODUCTION

Diffusing-wave spectroscopy (DWS) [1,2] is a means to
extend the application of dynamic light scattering (DLS) [3]
to multiple scattering thick media enabling the study of
thermally induced fluctuations of embedded probe particles.
Since photons take circuitous paths involving many scattering
events in their traverse through such thick objects, fluctuation
in intensity is contributed to by the small-scale mechanical
vibration of many scatterers (with displacements of the order
of a few angstroms), leading to the study of dynamics at such
length scales from the measured decay in intensity correlation.
Through this, the DWS provides an experimental tool to
explore the microscopic origin of the viscoelastic properties
of a number of soft materials such as polymer gels, emulsions,
and colloids [4]. Relieving a major restriction to the DLS,
wherein the specimen studied has to be thin, the DWS paves
the way to successfully employ light scattering methods en
route to the study of dynamics in thick turbid objects such as
soft tissues. However, the objects studied are almost always ho-
mogeneous in dynamics and the decay in intensity correlation
[g2(τ ), τ being the delay time] is used to extract mean-squared
displacement (MSD) of scattering centers, from which the
space-averaged complex elastic spectrum, pertaining to the
entire object, is extracted. In order to bring a specimen with
inhomogeneous inclusions (from the dynamics perspective)
under the scope of application of the DWS, a tomographic

*Corresponding author: vasu@isu.iisc.ernet.in

approach, called the diffuse correlation tomography (DCT),
has been suggested. Here boundary measurements of g2(τ )
are used to recover spatially varying dynamics such as particle
diffusion coefficient DB [5,6]. Without resorting to a full-
fledged tomographic inversion, there are also attempts to
recover inhomogeneous dynamics like flow in capillary tube
embedded in a thermally driven turbid medium by analyzing
the decay of amplitude autocorrelation [g1(τ )] [7,8]. Here
location of the capillary and the flow profile are successfully
recovered if the depth of the capillary in the background object
is within �11l∗, where l∗ is the transport mean-free path of
light [8].

The DCT which can recover both the inhomogeneous
optical properties [such as absorption coefficient, μa(r)] and
dynamics [9] can be considered as an extension of the well-
known diffuse optical tomography made popular through its
extensive application in medical diagnostic imaging [10]. It has
recently been demonstrated that a localized recovery of μa(r)
and mechanical properties such as elasticity modulus [E(r)]
and density with an improved spatial resolution is possible by
bringing in an external perturbation with a focused ultrasound
(US) beam. The effect of the US beam on the fluctuations of
speckle formed by coherent light transport through the insoni-
fied region was first discussed in [11]. This modification known
as ultrasound-assisted optical tomography [12–14] has been
successfully employed even for quantitative, spatially resolved
recovery of both μa(r) and E(r) pertaining to the insonified
focal volume [referred to as the region of interest (ROI)].
Even though the effect of the localized mechanical vibration
is seen in the measured g2(τ ) in the boundary as a sinusoidal
modulation superimposed, it was not known how to extract the

1539-3755/2014/90(1)/012303(11) 012303-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.012303


CHANDRAN, SARKAR, KANHIRODAN, ROY, AND VASU PHYSICAL REVIEW E 90, 012303 (2014)

decay in the intensity autocorrelation that pertains only to the
localized dynamics of the ROI from the perturbed g2(τ ). In
this work we suggest that such a “local” decay is available in
g2(τ ) as the decay of the superimposed modulation depth (M).
However, its extraction from M is not quite straightforward,
owing to the fact that the stochastic process describing the
light amplitude (or intensity) that in turn carries information
on the dynamics of particles in the ROI is nonstationary.
This happens as the localized dynamics in the ROI, induced
by the sinusoidal forcing, is nonstationary. Therefore, a
proper statistical description could be through an evolutionary
autocorrelation (and an evolutionary power spectrum) of the
detected intensity [15]. As described below, we achieve this in
a straightforward manner: by computing short-time autocorre-
lations and finding the power contained in it at the ultrasound
drive frequency ωa . That we need only to extract information at
a single frequency in the spectral domain (i.e., correspondent to
a zero spectral bandwidth in the evolutionary power spectrum)
gives us the freedom to have the slowly evolving power spec-
trum be computed at a time resolution as high as allowed by the
modulation frequency ωa . The evolutionary power at τ = τi is
computed by Fourier transforming the short-time autocorrela-
tion evaluated around τ = τi and finding the modulus of the
Fourier transform at ω = ωa , the drive frequency of the US
transducer.

From the decay of M(τ ) with τ we extract visoelastic
spectra, pertaining to the ROI, and call this new method “local
DWS.” A number of advantages hitherto unattainable with the
usual DWS can be reaped. As demonstrated experimentally
here, using a jelly-like, inhomogeneous polyvinyl alcohol
(PVA) phantom, one can extract viscoelastic spectra pertaining
to different regions in the object from the experimentally
measured decays in M(τ ) with the US focal volume in those
regions. In addition, it is conjectured (not demonstrated here,
but reserved for a future publication) that the local DWS
can detect capillary flow hidden deep within anywhere in a
turbid thermally driven object (not restricted to a multiple
of l∗ from the boundary as in [8]) from the way M(τ ) vs
τ decays when the US focal volume intercepts the capillary,
and also extract quantitative information on the flow profile.
Moreover, by making the ROI small enough by “beating”
two US focal volumes at its thinnest waist region, one can,
with proper selection of scattering particle density in the ROI,
ensure that there is only one scattering event in the ROI.
With this, from the measured M(τ ) vs τ , one can extract
particle size distribution and viscoelastic properties following
the theoretical framework of DLS [3]. Thus DLS can be
employed in a large volume turbid object to any selected small
ROI within.

A summary of the rest of the paper is as follows: In Sec. II
we model the temperature-induced dynamics of the particles
in the ROI using a generalized Langevin equation and arrive
at their MSD (The dynamics in the presence of external US
forcing is considered in the Appendix.). Section III describes
the experiments done to gather the modulated g2(τ ) from a
composite PVA phantom with the US focal volume in either
of the two regions of the phantom. From g2(τ ), M(τ ) is found
which is used to arrive at the storage and loss modulus spectra.
The results are discussed in Sec. IV and our conclusions are
set forth in Sec. V.

II. A GENERALIZED LANGEVIN MODEL OF THE
DYNAMICS

Here one aims at modeling the dynamics of the particles
in the ROI, which is roughly the ultrasound (US) focal
volume. These temperature driven particles are subjected
to an externally applied sinusoidal forcing, the strength of
which is kept “small” and the frequency large enough to
meet the sampling frequency requirement for extracting the
viscoelastic spectrum. Under this circumstance the dimen-
sionless Péclet number (a measure of the relative strength of
the external force on the particle vis-à-vis the thermal forces)
is small and therefore the dynamics of scattering particles
corresponds essentially to a fractional Brownian motion
(fBm) with a “small” deterministic sinusoidal perturbation
superimposed [16]. As already indicated, coherent light in
its passage through the object, in addition to picking up
a phase modulation, suffers a loss of coherence owing to
the fBm-type diffusion of particles, which is reflected in
the decay of the intensity (or amplitude) autocorrelation
of the light scattered from them. The phase modulation is
reflected in the autocorrelation as a superimposed almost-
sinusoidal modulation. In the experiment described in Sec. III,
the decay in this modulation depth is measured and related to
the MSD of the particles in the ROI.

The aim of the present Langevin model is limited to
verifying the MSD of the Brownian particles in the ROI
obtained from the experimentally measured decay in M .
Towards this, we first consider a homogeneous viscoelastic
object with properties made up of the material of the ROI,
subject to an fBm-type subdiffusive motion driven only by
temperature, i.e., without the external forcing from the US
transducer. Let t0 denote the initial time so that τ = t − t0 is
the delay time. Since we consistently use t0 = 0, the symbols
τ,t are interchangeably used to denote both the delay time
and the current time. The fBm-type dynamics of a particle in
the ROI, a viscoelastic medium, may be modeled through a
GLE [17,18], such that the variance of the particle position
increases only sublinearly in time. A typical such particle
experiences a history-dependent viscous drag modeled with
the help of an integral term dependent on the velocity history
{ẋ(s); 0 < s � t} of the particle, where t denotes the current
time. An important component of this integral term is the
memory (friction) kernel η(t − s). While for a memoryless
frictional kernel, i.e., η(t − s) = 2ηδ(t − s)[η is a constant and
δ(t) the Dirac delta function], a purely viscous Stokes friction
force is experienced by the particle, a nondecaying frictional
kernel η(t − s) = η induces a quasielastic cage forcing. For a
viscoelastic object, such as the polyvinyl alcohol phantom of
the present study, one may adopt a power law function η(t −
s) = ηα(t−s)−α

�(1−α) , which may be interpreted as an interpolation
across the above two extreme scenarios [19]. Here �(·) denotes
the gamma function and subdiffusive dynamics implies that
0 < α < 1. Assuming a parabolic potential, the GLE is then
given by [16]

mẍ(t) +
∫ t

0
η(t − s)ẋ(s)ds + ω2x(t) = ξ (t), (1a)

where m is the particle mass, ω2 is the stiffness coefficient, and
η(t − s) is the friction kernel. ξ (t) is a zero-mean Gaussian
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stationary stochastic (thermal) forcing function arising from
the environment (i.e., the harmonic bath oscillators in the
Langevin approach). Moreover, Kubo’s second fluctuation-
dissipation theorem [20] requires that its autocorrelation is
related to the memory kernel via 〈ξ (t)ξ (s)〉 = kBT η(|t −
s|) [21], where kB is the Boltzmann constant and T = 298 K,
the room temperature. Alternatively, based on a statistical-
mechanical derivation of the above GLE, one may argue that
the power spectrum S(ν) := 2

∫∞
0 ξ (s)ξ (0) cos νsds of ξ (t)

is related to the spectral density B(ν) ∼ ηανα of the bath
oscillators via S(ω) = 2kBT B(ω)/ω. The above model of
viscoelasticity thus corresponds to the sub-Ohmic bath with
0 < α < 1, wherein the motion would be strictly subdiffusive
only if ω2 = 0.

The solution x(t) to the GLE (1a) is clearly a non-
Markovian stochastic process. However, a reduction of the
above form to a higher dimensional system of stochastic
differential equations (SDEs), whose solution would be
Markovian, is possible [21]. This may be accomplished
by first effecting a decomposition of ξ (t) as a sum of
independent filtered white noise components, i.e., by writing
ξ (t) = ∑N−1

j=0 ϑj (t), where 〈ϑj (t)ϑj (s)〉 = kBT exp(−υj |t −
s|). The memory kernel η(t − s) then admits the con-
sequent decomposition η(t − s) = ∑N−1

j=0 ηj exp(−υj |t − s|).
Here υj = υ0/d

j is the inverse autocorrelation time of the
j th filtered white noise component, d a dilation parameter,
υ0 the high frequency cutoff of ξ (t), ηj = ηαυ0

�(1−α)dj C(d) the
j th weight in the memory kernel expansion, and C(d) a
constant. Note that each filtered white noise component ϑj (t)
in the expansion of ξ (t) is a solution to the first-order SDE
dϑj = −υjϑjdt +√

2ηjυjkBT dWj (t), where {Wj (t)} is a
family of N -independent standard Brownian noise processes,
〈Wi(t)Wj (s)〉 = δij δ(t − s). This yields the following (N + 2)
dimensional system of SDEs as a Markovian representation of
the GLE:

dx(t) = v(t)dt, (1b)

dv(t) = (−ω2/m)xdt + (1/m)
N−1∑
i=0

uj (t)dt, (1c)

duj (t) = [−ηjυj − υjuj (t)]dt +√
2υjηjkBT dWj (t).

(1d)

In the presence of an externally applied sinusoidal forcing
term with frequency ωf and amplitude A, Eq. (1c) may be
modified as

dv(t) = (−ω2/m)x(t)dt + (A/m) sin(ωf t)dt

+ (1/m)
N−1∑
i=0

uj (t)dt. (1e)

Denoting the solution vector as Xt = {xt ,vt ,u1, . . . ,u16}T
and noting the linearity of the vector field, one may formally
write the general solution to the GLE as

Xt = �tX0 + �t

∫ t

0
�−1

s Fsds + �t

∫ t

0
�−1

s HsdWs .

Here �t is the fundamental solution matrix (FSM), Ft the
deterministic force vector (containing the sinusoidal forcing

FIG. 1. (Color online) Light emitted from laser source L, illumi-
nates the ROI insonified by confocal ultrasound transducer (UST).
The scattered intensity of the light is detected by the detector
(PC-PMT) and is given to the correlator DAC and then to a computer
C. The UST is driven by power amplifier (PA) that takes input from
a dual-channel function generator (DCFG). The sample consists of
two slices of PVA, of different storage modulus values, 11 kPa (1)
and 23kPa (2), and an ergodic medium (3).

term as the only nonzero entry), Ht the diffusion coefficient
matrix, and Wt a suitably zero-padded vector of pure Brownian
components.

For the GLE (1a) without the sinusoidal forcing, the typical
numerical values of the parameters used in the numerical
simulations are α = 0.5 and υ0 = 103 for d = 2; N = 64 with
C(2) = 0.389, corresponding to region 1 of the composite
phantom used in the experiments described in Sec. III; and
α = 0.5, υ0 = 103, d = 10, and N = 16 with C(16) = 1.3
for region 2 (see the setup in Fig. 1). The set {uj (t)}N−1

i=0
contains only dummy variables and does not represent any
physical quantity. {uj (0)} are independently sampled from
a Gaussian distribution with variance kBT ηj . A stochastic
Heun scheme is used to integrate the coupled SDEs in
Eqs. (1b)–(1d) to generate an ensemble of paths within a
Monte Carlo setup and thus compute the sample estimate
〈x(t)2〉, from which the sample approximation to the MSD
〈δx(t)2〉 := 〈x(t)2〉 − 〈x(0)2〉 is retrievable. Note, however,
that in the local DWS the US force introduces a perturbation
driving the system (the particles in the ROI and the bath
oscillators) away from thermal equilibrium. The numerical
simulations are carried out with α = 0.5 and ω computed using
the experimentally measured shear modulus values of the PVA
phantoms, the objects used in the experiments described in
Sec. III. The results of simulations are given in Sec. III along
with their experimental counterparts.

An attempt at direct numerical simulation of the sinu-
soidally forced GLE [with Eq. (1c) replaced by Eq. (1e)]within
a Monte Carlo framework, however, faces difficulties in a high
sensitivity of the simulated paths to the choice of �t , the time
step size. Specifically, for d = 10 and N = 16, the FSM
�t could be severely ill-conditioned given that the parameters
υj ,ηj go from large to very small as j increases. In other words,
for large j , the drift (and even the diffusion) terms in the SDEs
for uj (t) will be negligibly small. Thus, during numerical
integration, the error in computing the drift term containing the
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deterministic forcing vector Ft could be substantial, especially
so for relatively large ωf � ω. This is actually the case for the
PVA phantom used in the experiments here, when ωf is of the
order of 1 kHz. In addition, as the forcing amplitude A becomes
larger, a possible coupling of the dynamical system parameters
[e.g., η(t − s) and ω2] with the forcing term could render
Kubo’s second fluctuation-dissipation theorem untenable and
even the present model questionable.

Given the complexities involved in numerically simulating
the response of the sinusoidally forced GLE in the transient
regime, an alternative approach based on a change of measures
is outlined in the Appendix, wherein an integral expression for
the MSD is analytically derived [see Eq. (A14)]. As indicated
during the derivation, an advantage of this approach is that any
modeling errors, such as those in converting the GLE from
its non-Markovian to Markovian form, are accounted for in a
weak stochastic sense. Of specific interest is the last term on
the right-hand side of Eq. (A14) that describes the contribution
of the external forcing to the MSD. Since this term, which is a
time integral, has a strictly positive integrand, it constitutes a
monotonically increasing function in t . However, for small t ,
because of the presence of an A2 term, its contribution is small,
and the early transient of MSD follows the one corresponding
to the nonforced case. Indeed, the contribution of this term
becomes significant only when t is sufficiently large, i.e.,
t ≈ O[(1/A2)]. Assuming that, for t large enough, the MSD
attains a plateau, this would correspond to a steady state of the
evolution equation (A14) such that πt (x2) = πt+�(x2), where
� 	 π/ωf . From the form of Eq. (A14) and its derivation in
the Appendix, it is clear that the present plateau is of higher
magnitude compared to that obtained from the GLE without
the external forcing.

It is seen from the analysis above that the introduction of
the ultrasound local forcing has not influenced the extraction
of MSD except for large values of t when it attains a steady
state. Since we use the transients in MSD for the computation
of the viscoelastic spectra, the extracted spectrum by the
“local” DWS truly represents its average in the ultrasound
focal volume, and is unaffected by the introduction of the
eternal force.

III. EXPERIMENTS

We now proceed to experimentally demonstrate our claim
that the decay of M(τ ) with respect to τ indeed is caused by
the Brownian motion of particles belonging to the ROI. The
object used in the experiments is a composite PVA phantom
consisting of two rectangular slabs of dimensions 30 mm ×
50 mm × 8 mm each sandwiched. One is of storage modulus
11 kPa and the other 23 kPa (the corresponding viscous moduli
are found to be 2.5 and 4.4 kPa, respectively). The PVA
gel does not exhibit ergodic behavior, and therefore the time
average 〈E(r,t)E∗(r,t + τ )〉 measured cannot be equated to
the ensemble average G(r,τ ). In order to restore ergodicity
to the medium and thus enable the use of standard theoretical
framework to compute complex moduli spectra, we sandwich
an ergodic medium (a cuvette with polystyrene spheres of
diameter 2 μm and particle density 1.05 g/cc) behind the
composite PVA object. Because of the continual random
motion of the scattering centers an average of the amplitude

autocorrelation across the ensemble is ensured for detection
over a finite length of time.

The experimental setup is shown in Fig. 1. The composite
PVA phantom (a slab consisting of two sandwiched blocks as
described earlier) together with the cuvette is illuminated by
the unexpanded beam of light from a He-Ne laser (HRR170,
Thorlabs). A confocal ultrasound transducer (UST) mounted
on an x-y translation stage provides a focused US beam,
whose focal volume can be adjusted to fall fully within either
the first or the second block of the composite slab. The axis
of the transducer is aligned carefully to be perpendicular to
the direction of the light beam. The beam itself is adjusted
to intercept the object in the middle region of the US focal
volume, which is found to be approximately hyperboloidal.
For acoustic impedance matching, the phantom and UST are
kept immersed in a water bath.

A single-mode fiber is carefully aligned using a micropo-
sitioner to capture a single speckle maximum in the pattern
that is available in the light exit plane. Since the signal-
to-noise ratio (SNR) in the captured intensity for the signal
component, which is the sinusoidal oscillation introduced by
the US forcing in the ROI, is usually poor, the alignment
of the fiber to maximize SNR is quite critical towards the
success of the experiment. The light which is captured by
the fiber is delivered to a photon-counting photomultiplier
tube (PMT) (Hamamatsu, H7360-03) [22]. The resulting
photon current in time (proportional to the light intensity)
is converted to a voltage signal and stored in a computer. In
a standard DWS experiment, the intensity is autocorrelated
via a hardwired autocorrelator, using the so-called multi-τ
scheme to compute g2(τ ) over a large spread in τ , the delay
(decay) time, which could be several orders of magnitude
(typically from microseconds to tens of seconds) [23,24]. In
this scheme the spacing in τ is (quasi) logarithmic which
helps to encompass a delay time spanning several decades.
However, in our experiments, our objective is to capture (the
decay in) the modulation depth which necessitates uniform
sampling of intensity beyond the Nyquist rate which in this
case is set by the US frequency. Therefore we abandon the
multi-τ scheme for the so-called “photon mode” which helps
us acquire just the intensity data at any (uniform) rate, bound on
the lower end by 16.7 ns, which is the minimum delay interval
of the digital autocorrelator used (DAC, Flex 021d, from
www.correlator.com, Bridgewater NJ 08807). The acquired
intensity data, acquired over an appropriately small time
window is autocorrelated using a MATLAB 1-d autocorrelation
routine [24]. (The width of the window should be large enough
to contain a few periods of the superimposed sinusoidal
modulation on g2(τ ); the modulation frequency is chosen
so that it is larger than the Nyquist frequency required to
recover the largest frequency of interest in the viscoelastic
spectrum of the object being investigated.) In order to reduce
the required sampling rate to reasonable values and ensure
shear-dominated vibration in the ROI, we have employed a
confocal dual-beam UST working at 1MHz and 1.001 MHz
producing a beat-frequency forcing in the ROI at 1 kHz. With
this frequency the sampling rate at which g2(τ ) is sampled
should only be larger than 2 kHz.

As mentioned earlier, the ergodic medium used is a 4%
solution of polystyrene beads (of average diameter 2 μm) in
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glycerol (l∗ 	 737 μm from Mie theory [25]). The “double
cell” consisting of the phantom and the cuvette shows forth an
ergodic behavior. The thickness of the phantom composite and
the suspension (Li , i = 1,2, respectively) and their transport
mean-free paths l∗i (i = 1,2) are selected such that their optical
densities are Li/l

∗
i = 4 and 2, respectively, for i = 1 and 2.

A multiplication rule for the double cell [26], which can be
applied to relate the g1(τ ) of the sandwiched ergodic medium
to the individual g1(τ )’s of the PVA composite and the cuvette,
gives us the relation [27,28]

g1(τ,L1L2) = g1(τ,L1)g1(τ,L2). (2)

Here, g1(τ,L1L2), g1(τ,L1), and g1(τ,L2) are the normalized
field autocorrelations of the double cell, composite PVA gel,
and the ergodic medium, respectively.

The specific details of the data gathered through the
experiment are given below. First the intensity fluctuation with
ergodic medium alone is collected at uniform samples of delay
time and stored, and then similar data from the double cell
formed between the composite PVA phantom and the cuvette
containing the ergodic medium. Two sets of data are collected
for the composite phantom: (i) the first corresponds to the US
focal volume being centered at the 23 kPa slab and (ii) when
it is at the 11 kPa slab. From these intensity data sets g2(τ )’s
for the three cases, namely, pertaining to the ergodic medium,
and the composite slabs with US in the 23 and 11 kPa
slabs, are computed using the MATLAB autocorrelation routine.
The modulus of the normalized amplitude autocorrelation
is obtained from g2(τ ) using the Siegert relation which is
g2(τ ) = 1 + f |g1(τ )|. The coupling constant f is evaluated
from the measured g2(τ ) at τ = 0 (corresponding to one of
the data sets) using g2(0) = 1 + f [29]. Through the use of
a multiplication rule we have extracted g1(τ )’s corresponding
to the composite object, which are shown in Fig. 2. From the
g1(τ )’s of Fig. 2 we have extracted decay of the superimposed
sinusoidal modulation with delay time using short-time Fourier
transform. We have used a rectangular time window of length
4 ms and slid the window over the entire range of g1(τ ). The
Fourier transform magnitude at ωa = 1 kHz, the beat frequency
of the superimposed US beams in the ROI [M(τ )] is plotted
against τ and the plots are shown in Fig. 3 corresponding to
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FIG. 2. (Color online) Normalized field autocorrelation plots for
individual phantoms, with US in 11 kPa (- - -) and 23kPa (—),
extracted using the multiplication rule [Eq. (2)].

10
−4

10
−2

10
0

10
2

0

0.02

0.04

0.06

0.08

τ (s)

M
(τ

)

 

 

11 kPa

23 kPa

FIG. 3. (Color online) Modulation depth decay when the ROI is
in either of the two regions in the composite phantom.

the two cases of the US focal volume in the two regions of the
phantom. Since the US beat frequency which modulates g1(τ )
is 1 kHz, the sampling time used inside the time window to
extract M(τ ) should be at least 0.5 ms. On the other hand, a
sample time of less than 2.0 ms is pointless in M(τ ), for the
1 kHz US modulation “samples” g1(τ ). Owing to this and also
because of the logarithmic scale used for τ in Fig. 3, M(τ )
corresponding to relatively small values of τ appears noisy
and broken. However, the decay of M(τ ) from τ = 10−1 s to
1 s which is properly brought out, is clearly seen to depend on
where the US focal volume is in the phantom.

The vibration in the US focal volume, induced by the
sinusoidal forcing, causes the modulation we have observed
on the measured g2(τ ). Because of temperature-induced
fluctuations of the scattering centers in the ROI, the strength of
the cross-correlation term (i.e., the modulation depth) detected
in the speckle intensity, whose genesis is the sinusoidal
oscillation generated at the ROI, decays with τ . Neglecting
optical absorption in the ROI, M(τ ) is related to 〈δx2(τ )〉, the
mean-squared displacement of scattering centers undergoing
Brownian motion through [30]

M(τ ) = exp

[
−
(

L

l∗

)2

k2
0〈δx2〉

]
. (3)

Here L is the thickness of the US focal volume where the
induced forcing is nonzero. From 〈δx2(τ )〉 the frequency-
dependent complex modulus of elasticity G∗(ω) is determined
using the established procedure used in DWS. The method
uses the following relations [31]:

G∗(ω) = kBT

πςiωF {〈δx2(τ )〉} , (4)

where T is the temperature in Kelvin, ς is the mean
scattering center size, and F represents the operator for Fourier
transformation. The storage and loss moduli spectra G′(ω) and
G′′(ω) are computed using [32,33]

G′(ω) = G(ω){1/[1 + β ′(ω)]}

× cos

[
πα′(ω)

2
− β ′(ω)α′(ω)

(π

2
− 1

)]
, (5)
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FIG. 4. (Color online) Comparison of storage moduli spectra
obtained by localized ultrasound-assisted DWS from the measured
M(τ ) decay (-+-+- when the US forcing is in the 11 kPa block
and -◦-◦- when the US forcing is in the 23 kPa block) with those
obtained from the usual DWS-based measurement of g2(τ ) decay for
individual homogeneous phantoms (* * for the 11 kPa block and ♦ ♦
for the 23 kPa block).

G′′(ω) = G(ω){1/[1 + β ′(ω)]}

× sin

{
πα′(ω)

2
− β ′(ω)[1 − α′(ω)]

(π

2
− 1

)}
,

(6)

where

G(ω) = kBT

πς
〈
δx2

(
1
ω

) 〉
�[1 + α(ω)][1 + β(ω)/2]

, (7)

which is the frequency-dependent elastic modulus. Here α(ω)
and β(ω) represent the first- and second-order logarithmic time
derivatives of the MSD data. 〈δx2(1/ω)〉 gives the magnitude
of 〈δx2(τ )〉 evaluated at τ = 1/ω. Moreover, � denotes the
γ function, α′(ω) and β ′(ω) give the first- and second-order
logarithmic derivatives of G(ω), and ς is the radius of a
typical scattering particle. A second-order polynomial fit using
a sliding Gaussian window [32,33] is used to smooth the MSD
data and to obtain α(ω) and β(ω). The values used are 6.6
and 5 (nm) for the storage modulus values of 11 and 23 kPa,
respectively [34].

The plots of G′(ω) and G′′(ω) against ω are shown
in Figs. 4 and 5, respectively. For comparison G′(ω) and
G′′(ω) obtained using the standard DWS experiment done
on individual samples are also shown in Figs. 4 and 5. The
match in G′(ω) values obtained using the two methods are
seen to be quite good, whereas there is some discrepancy in
regard to the G′′(ω) plots. This lack of fidelity is owing to the
inherent uncertainty of the DWS scheme (with and without
the US beam) in measuring the viscous part of the modulus
spectrum.

IV. RESULTS AND DISCUSSION

In Figs. 6 and 7 are given the comparison of MSD with
the delay time, both computed using the procedure of Sec. II,
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FIG. 5. (Color online) Comparison of loss moduli spectra ob-
tained by localized ultrasound-assisted DWS from the measured M(τ )
decay (-+-+- when the US forcing is in the 11 kPa block and -◦-◦-
when the US forcing is in the 23 kPa block) with those obtained
from the usual DWS measurement of g2(τ ) decay with homogeneous
phantoms (* * for the 11 kPa block and ♦ ♦ for the 23 kPa block).

with those from experiments. The validity of our claim that
the decay in correlation in the scattered light introduced by the
(fractional) Brownian dynamics in the ROI is indeed contained
in the decay in M is verified by the match of the MSD obtained
from it with those from simulation and the usual DWS on
homogenous phantoms. Whereas the simulation results match
more closely with those from the homogenous phantoms, it
is not precisely so for the US-assisted results, particularly
for large time delays when the MSD reaches a plateau. The
input US energy to the ROI, especially when the acoustic
absorption cannot be neglected, upsets the thermal equilibrium
therein. Because of heat dissipation to the environment, the
ROI gradually attains a thermal equilibrium with an elevated
temperature. This rise in temperature is reflected in the larger
MSD plateau the US-assisted measurements attain in both
Figs. 6 and 7. A model to account for the US-induced
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FIG. 6. (Color online) The MSD vs τ graphs, simulated using
Eqs. (1b)–(1d) compared with those from experimentally measured
autocorrelation with US modulation (circles, drP2) and without (+
symbols, drP2dws), for region 2 in the composite phantom with shear
modulus of 23 kPa.
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FIG. 7. (Color online) Same as Fig. 6 done for region 1 of the
composite phantom with shear modulus of 11 kPa.

(i.e., externally introduced) loss of thermal balance, which
would probably need to augment the stiffness term ω2x(t)
with a multiplicative noise leading to a time-dependent
perturbation to the parabolic potential, which is discussed
in a similar context in [17,35], is beyond the scope of the
current work. However, as verified in the figures, the effect of
such perturbation does not affect, in any significant way, the
behavior of MSD in the early transients from which we extract
the viscoelastic parameters.

We have also arrived at an analytical expression for the
weak solution (i.e., the set of statistical moments) to the
GLE, taking into account the US forcing. Though an attempt
at direct numerical simulation to the GLE, including the
sinusoidal forcing, faces difficulties, it is clear from the
analytical expression that the MSD follows its counterpart
without forcing (and also the experimental values) in the early
time transients, and settles at a higher plateau for large t owing
to the influence of the US forcing amplitude. Since we extract
the viscoelastic spectrum from the slope of the MSD vs t

transients, it is clear that US mediated local extraction of the
spectrum is unaffected by the introduction of US perturbation,
as long as its amplitude is small enough.

We reiterate that the decay of M shown in Fig. 3, in the
time window where it can be delineated, is seen to be different
for the two cases of the ROI in the two regions of the phantom.
The storage and loss moduli obtained using the new method,
and shown in Figs. 4 and 5, seem to reasonably agree with
those obtained through the traditional DWS experiments. We
also note that the viscoelastic spectra obtained with the new
method are reliable only below 500 Hz, since 1 kHz is the
sampling frequency used.

V. CONCLUSIONS

An ultrasound-assisted localized recovery of G′(ω) and
G′′(ω), pertaining to the regions identified by the US focal
volume, is demonstrated from the measured decay in intensity
autocorrelation of diffuse photons. This decay which appears
as modulation decay in the detected speckle intensity is
measured from g2(τ ). Towards this, the evolutionary power
spectrum of g1(τ ) is measured at the US frequency. In model-
ing the temperature-induced viscoelastic dynamics within the

ROI, an appropriate form of the generalized Langevin equation
is made use of (without accounting for the US-induced forcing
term). Whereas the theoretically computed MSD from this
model is seen to match the one experimentally arrived at from a
homogeneous phantom through the usual DWS quite well, this
match is good only for early time delays when the experimental
measurement is from M(τ ), the modulation decay. The reason
for the mismatch for larger time delays may be that either
(1) the energy from the US upsets the thermal equilibrium
of the ROI, and makes the particles therein to either settle at
a higher plateau of MSD or even escape the cage force or
(2) there is a mixing of the effect of external periodic force
with that of the temperature-induced random force so that the
large-time behavior of the MSD is influenced by it. Among
these, the first can be done away with by making the external
force small enough. In the present work, on the basis of a
change of measures, an integrodifferential equation describing
the time evolution of the MSD is derived, while accounting
for the possible modeling or approximation errors. Through
this, it is shown that the overall MSD has a contribution from
the external forcing that assumes significance only for large
values of time. However, for arriving at the viscoelastic spectra,
it suffices to use only the early transients. Consequently, the
local G′(ω) and G′′(ω) measured agreed well with independent
measurements using the standard DWS on phantoms with
homogeneous properties.

APPENDIX

The aim here is to derive, based on a change of measures,
the evolution equations for the statistical moments, e.g., the
MSD, of the response variables [such as x(t),v(t) and uj (t)]
appearing in a state-space representation of the GLE that
includes the sinusoidal forcing term. Other than the novelty of
the approach in the context of solutions to GLEs, it offers the
added advantage of accounting for possible modeling errors in
the weak sense.

Under a complete probability space, with a measure P , the
GLE under a sinusoidal forcing may be written as

mẍ(t) +
∫ t

0
η(t − s)ẋ(s)ds + ω2x(t)

= ξ (t) + A sin(ωf t), (A1a)

where A is the amplitude of forcing and ωf is the forcing
frequency. A Markovian representation of the GLE may be
given as below:

dx(t) = v(t)dt, (A1b)

dv(t) = (−ω2/m)x(t)dt + (A/m) sin(ωf t)dt

+ (1/m)
N−1∑
i=0

uj (t)dt, (A1c)

duj (t) = [−ηjυj − υjuj (t)]dt +√
2υjηjkBT dWj (t).

(A1d)

Note that the P -Brownian motion W = {W0, . . . ,WN−1}∗ is
also taken into account for the modeling errors, e.g., those
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arising from such sources as the approximation of the memory
kernel η(t − s). Let FW

t denote the current filtration (i.e., the
statistical information in the form of collections of σ algebras
generated up to the current time t) by Ws ,s � t . As a first step
towards investigating the influence of forcing on the MSD,
Eqs. (A1b)–(A1d) are recast as

dx(t) = v(t)dt, (A2a)

dv(t) = (−ω2/m)x(t)dt + (1/m)
N−1∑
i=0

ũj (t)dt, (A2b)

dũj (t) = [−ηjυj − υj ũj (t)]dt +√
2υjηjkBT dWj (t)

+ Aωf

N
cos(ωf t)dt + υjA

N
sin(ωf t)dt, (A2c)

where

ũj (t) := uj (t) + A

N
sin(ωf t), j = 0,...,N − 1.

Interestingly the drift due to forcing may be removed under
a new measure, say Q. Hence, under Q, Eqs. (A2a)–(A2c)
may be modified as

dx(t) = v(t)dt, (A3a)

dv(t) = (−ω2/m)x(t)dt + (1/m)
N−1∑
i=0

ũj (t)dt, (A3b)

dũj (t) = [−ηjυj − υj ũj (t)]dt +√
2υjηjkBT dW̃j (t).

(A3c)

Here W̃(t) := {W̃0(t), . . . ,W̃N−1(t)}∗ is standard (zero-
mean) Brownian motion under Q. Superscript * is the
transposition operator. The state vector is denoted as X(t) :=

{x(t) v(t) u0(t) . . . uN−1(t)}∗. For notational convenience,
the unforced drift vector is denoted as

b(Xt ,t)

=
{

vt , (−ω2/m)xt + (1/m)
N−1∑
i=0

uj (t), (−η0υ0(t)

− υ0u0(t)), . . . ,[−ηN−1υN−1(t) − υN−1uN−1(t)]

}∗

.

The forcing drift vector (containing the sinusoidal
force as the only nonzero component) is denoted as
h(t) = {h0(t), . . . ,hN+1(t)}∗, where h1(t) = h2(t) = 0 and
hj+2(t) := (A/

√
N22υjηjkBT )[ωf cos(ωf t) + υj sin(ωf t)],

j = 0, . . . ,N − 1.
In matrix form Eqs. (A3a)–(A3c) may be written as

dXt = b(Xt ,t)dt + fdW̃t , (A4)

where f is a suitably zero-padded rectangular noise intensity
(diffusion) matrix of dimension (N + 2)N with its only
nonzero entries being given by the set

{fi+2,i : i = 1,...,N} = {
√

2υ0η0kBT ,...,
√

2υN−1ηN−1kBT }.
We are interested in arriving at a weak solution, un-

der original measure P , of φt (X) := φ(Xt ), φ being any
twice differentiable (scalar or vector-valued) function of Xt

[e.g., φt (X) = x2
t ]. Using the system of equations (A3a)–

(A3c) under Q, the required solution (under P ) may be
arrived at by applying the generalized Bayes’ formula
Ep(φt ) = EQ(φt�t |FW

t )/EQ(�t |FW
t ). Here �t denotes the

Q-valued Radon-Nikodym derivative dP/dQ associated with
the change of measures [36,37], which in this case is
given by

�t =
N−1∏
j=0

�j,t ,

where �j,t = exp[
∫ t

0 hj+2(t)dW̃j (t) − 1
2

∫ t

0 h2
j+2(t)dt].

In arriving at an explicit evolution equation for the expectation (e.g., the MSD), we start with the stochastic integration by
parts formula:

d[φt (X)�t ] = dφt (X)�t + φt (X)d�t + d〈φt (X),�t 〉. (A5)

〈·,·〉 is the notation for quadratic covariation [38]. We thus have

d[φt (X)�t ] = �tφ
′
t (X)T dXt + 1

2
�t 〈dXt ,φ

′′
t (X)dXt 〉 + φt (X)�t [ht (3 : N + 2)]∗dW̃t + d〈φt (X),�t 〉 ⇒ d[φt (X)�t ]

= �t

{
[φ′

t (X)]∗[b(Xt ,t)dt + fdW̃t ] + 1

2

N+2∑
j,k=1

N∑
l=1

(
∂2φ

∂Xj ∂Xk

)
t

fj lfkldt + φt (X) [ht (3 : N + 2)]∗ dW̃t

+
N+2∑
k=1

(
∂φ

∂Xk

)
t

fkht (3 : N + 2)dt

}
, (A6)
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where ht (3 : N + 2) is the N -dimensional vector obtained by removing the first two entries from the vector ht . For notational
convenience, we defined fk to be the kth row of the matrix f. Equation (A5) may be written in the integral form as

φt (X)�t = φ0(X)�0 +
∫ t

0
�s

{
[φ′

s(X)]∗[b(Xs ,s)ds + fdW̃s] + 1

2

N+2∑
j,k=1

N∑
l=1

(
∂2φ

∂Xj ∂Xk

)
s

fj lfklds + φs(X)[hs(3 : N + 2)]∗dW̃s

+
N+2∑
k=1

(
∂φ

∂Xk

)
s

fkhs(3 : N + 2)ds

}
. (A7)

Now, it is noted that taking the conditional expectation under Q with respect to FW
t is equivalent to “projecting” on the error

information generated by Ws ,s � t , and thus enabling a correction to the required expectation, such as the MSD, for such
errors. The statistical error information contained in FW

t may importantly include any modeling errors in converting the original
GLE (1a) to its Markovian representation [e.g., those in the finite sum representations of ξ (t) and η(t − s)]. Upon taking this
conditional expectation, Eq. (A7) reduces to

EQ

[
φt (X)�t

∣∣FW
t

] = EQ

[
φ0(X)�0

∣∣FW
t

]+
∫ t

0
EQ

{
�s[φ

′
s(X)]∗b(Xs ,s)

∣∣FW
s

}
ds

+ 1

2

∫ t

0
EQ

⎡
⎣�s

N+2∑
j,k=1

N∑
l=1

(
∂2φ

∂Xj ∂Xk

)
s

fj lfkl
∣∣FW

s

⎤
⎦ ds

+
∫ t

0
EQ

[
�s

N+2∑
k=1

(
∂φ

∂Xk

)
s

fkhs (3 : N + 2)
∣∣FW

s

]
ds +

∫ t

0
EQ

{
�sφs(X) [hs (3 : N + 2)]∗

∣∣FW
s

}
dW̃s

+
∫ t

0
EQ

{
�s[φ

′
s(X)]∗f

∣∣FW
s

}
dW̃s . (A8)

Note that the conditional expectation above is measurable with respect to FW
t and hence is itself a stochastic process. Defining

σt (·) := EQ[·�t |FW
t ], we rewrite the above equation in a more convenient form:

σt (φ) = σ0 (φ) +
∫ t

0
σs{[φ′

s(X)]∗b(Xs ,s)}ds

+ 1

2

∫ t

0
σs

⎡
⎣ N+2∑

j,k=1

N∑
l=1

(
∂2φ

∂Xj ∂Xk

)
s

fj lfkl

⎤
⎦ ds +

∫ t

0
σs

[
N+2∑
k=1

(
∂φ

∂Xk

)
s

fkhs (3 : N + 2)

]
ds

+
∫ t

0
σs{φs(X) [hs (3 : N + 2)]∗}dW̃s +

∫ t

0
σs{[φ′

s(X)]∗f}dW̃s . (A9)

Since our original system evolution is under P , define πt (φ) = EP (φ) so that we have πt (φ) = σt (φ)/σt (1), where σt (1) =
EQ[�t |FW

t ] may be looked upon as a normalization factor and can be expanded as

σt (1) = σti−1 (1) +
∫ t

0
σs{[hs(3 : N + 2)]∗}dW̃s . (A10)

Note that σt (1) is an exponential martingale [38] with respect to FW
t . In estimating the normalized conditional expectation

πt (φ) = σt (φ)/σt (1), we use Ito’s formula:

dπt (φ) = d

(
σt (φ)

σt (1)

)
= dσt (φ)

1

σt (1)
+ σt (φ)d

(
1

σt (1)

)
+ d

〈
σt (φ),

1

σt (1)

〉
t

, (A11)

where

dσt (φ) = σt {[φ′
t (X)]∗b(Xt ,t)}dt + 1

2
σt

⎡
⎣ N+2∑

j,k=1

N∑
l=1

(
∂2φ

∂Xj ∂Xk

)
t

fj lfkl

⎤
⎦ dt + σt

[
N+2∑
k=1

(
∂φ

∂Xk

)
s

fkht (3 : N + 2)

]
dt

+ σt {φt (X)[ht (3 : N + 2)]∗}dW̃t + σt {[φ′
t (X)]∗f}dW̃t
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and

d

(
1

σt (1)

)
= − 1

σt (1)2
σt {[ht (3 : N + 2)]∗}dW̃t + 1

σt (1)3
σt {[ht (3 : N + 2)]∗}σt {[ht (3 : N + 2)]} dt

= − 1

σt (1)
πt {[ht (3 : N + 2)]∗}dW̃t + 1

σt (1)
πt {[ht (3 : N + 2)]∗}πt {[ht (3 : N + 2)]} dt.

We can thus write

dπt (φ) = d

(
σt (φ)

σt (1)

)
= πt {[φ′

t (X)]∗b(Xt ,t)}dt + 1

2
πt

⎡
⎣ N+2∑

j,k=1

N∑
l=1

(
∂2φ

∂Xj ∂Xk

)
t

fj lfkl

⎤
⎦ dt + πt {[φ′

t (X)]∗f}dW̃t

+ πt {φt (X) [ht (3 : N + 2)]∗}dW̃t − πt (φ) πt {[ht (3 : N + 2)]∗}dW̃t

− (πt {φt (X) [ht (3 : N + 2)]∗}dW̃t )πt {[ht (3 : N + 2)]}

+ πt

[
N+2∑
k=1

(
∂φ

∂Xk

)
s

fkht (3 : N + 2)

]
dt + πt (φ) πt {[ht (3 : N + 2)]∗}πt {[ht (3 : N + 2)]} dt

− {πt [(φ′
t (X))∗f]}πt {[ht (3 : N + 2)]} dt. (A12)

As noted before, πt (φ) is a stochastic process. However, since ht is a deterministic function, EP [πt (ht )] = ht using which
Eq. (A12) may be simplified as

EP [dπt (φ)] = EP

[
d

(
σt (φ)

σt (1)

)]
= EP (πt {[φ′

t (X)]∗b(Xt ,t)})dt + 1

2
EP

⎧⎨
⎩πt

⎡
⎣ N+2∑

j,k=1

N∑
l=1

(
∂2φ

∂Xj ∂Xk

)
t

fj lfkl

⎤
⎦
⎫⎬
⎭ dt

+ EP (πt {[φ′
t (X)]∗f}dW̃t ) − EP ({πt (φ)[ht (3 : N + 2)]∗dW̃t })[ht (3 : N + 2)]

+ EP [πt (φ)] [ht (3 : N + 2)]∗ [ht (3 : N + 2)] dt.

In the integral form, one obtains

EP [πt (φ)] = EP [π0(φ)] + EP

(∫ t

0
πs{[φ′

s(X)]∗b(Xs ,s)}ds

)
+ EP

⎧⎨
⎩
∫ t

0

1

2
πs

⎡
⎣ N+2∑

j,k=1

N∑
l=1

(
∂2φ

∂Xj ∂Xk

)
s

fj lfkl

⎤
⎦ dt

⎫⎬
⎭

+ EP

(∫ t

0
πs{[φ′

s(X)]∗f}dW̃s

)
− EP

(∫ t

0
{πs (φ) [hs (3 : N + 2)]∗ dW̃s} [hs (3 : N + 2)]

)

+ EP

{∫ t

0
πs (φ) [hs (3 : N + 2)]∗ [hs (3 : N + 2)] ds

}
. (A13)

Ito integrals in Eq. (A13) are zero-mean Brownian motions. Hence by taking expectation on both sides of Eq. (A13)
it may be further modified as

EP [πt (φ)] = EP [π0(φ)] +
∫ t

0
EP (πs{[φ′

s(X)]∗b(Xs ,s)})ds +
∫ t

0

1

2
EP

⎧⎨
⎩πs

⎡
⎣ N+2∑

j,k=1

N∑
l=1

(
∂2φ

∂Xj ∂Xk

)
s

fj lfkl

⎤
⎦
⎫⎬
⎭ dt

+
∫ t

0
EP [πs (φ)] [hs (3 : N + 2)]∗ [hs (3 : N + 2)] ds. (A14)
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In particular, when φ(Xt ) = x2
t , Eq. (A14) may be used to obtain the following equation for the MSD:

EP [πt (x
2)] = EP [π0(x2)] +

∫ t

0
EP {πs[(2x)∗b(Xs ,s)]}ds +

∫ t

0

1

2
EP

⎧⎨
⎩πs

⎡
⎣ N+2∑

j,k=1

N∑
l=1

(
∂2(x2)

∂Xj ∂Xk

)
s

fj lfkl

⎤
⎦
⎫⎬
⎭ ds

+
∫ t

0
EP [πs(x

2)] [hs (3 : N + 2)]∗ [hs (3 : N + 2)] ds. (A15)

From Eq. (A15) we see that the forcing contribution through
∫ t

0 EP [πs(x2)][hs(3 : N + 2)]∗[hs(3 : N + 2)]ds is strictly
positive.
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