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Order-disorder transition in swirled granular disks
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We study the order-disorder transition of horizontally swirled dry and wet granular disks by means of computer
simulations. Our systematic investigation of the local order formation as a function of amplitude and period of
the external driving force shows that a large cluster of hexagonally ordered particles forms for both dry and wet
granular particles at intermediate driving energies. Disordered states are found at small and large driving energies.
Wet granular particles reach a higher degree of local hexagonal order with respect to the dry case. For both cases
we report a qualitative phase diagram showing the amount of local order at different state points. Furthermore, we
find that the transition from hexagonal order to a disordered state is characterized by the appearance of particles
with square local order.
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I. INTRODUCTION

The segregation of grains with different sizes is of impor-
tance in many industries. In the past 30 years the segregation
problem attracted much attention due to the complexity of the
Brazil nut effect [1], i.e., the rise of large intruder particles
in vertically oscillated granulates. Different phenomena con-
tribute to this effect [2–7] and their characterization is complex
due to the large number of parameters controlling the dynamics
of the system. Among these parameters, the gravitational
force and the height of the granular bed play an important
role.

On the other hand, already the gold miners of the 1899
Klondike River gold rush knew that by applying a swirling
motion to a pan of sand the desired gold nuggets were
slowly exposed [8]. The simple horizontal movement can
be used to obtain size segregation without the influence of
the gravitational force. The granular bed’s height is also not
important when a monolayer of particles is studied. The
occurrence of segregation of differently sized grains under
“swirling” was studied experimentally [9,10], and later the
dynamics of a single intruder was analyzed by Chung et al.
[11].

The complex segregation behavior lies on top of a rich
dynamical behavior of single sized particles that has been
little studied in this system. Work has been done on the
dynamical motion of the granular matter [12,13], as well as
the formation of solidlike clusters [14,15]. Recently, May et al.
[16] investigated in more detail the formation of solid clusters
and found that the melting of the solid clusters occurs first at
their surface.

The formation of compact ordered structures can have a
huge impact on the diffusion of the particles and the segre-
gation of particles of different sizes. In this paper we present
a systematic simulation study of the order-disorder transition
that is induced by the horizontal swirling of granular disks.
Within the correct envelope of amplitudes and oscillation
periods we find a transition from disordered fluidlike granular
clusters to hexagonally ordered clusters in both dry and wet
granular matter. At high driving energies the transition to
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disordered structure occurs due to the strong compression of
the granular clusters at the container wall. We find that this
transition is characterized by a predominance of particles with
local square order.

This paper is organized as follows. In Sec. II we briefly
introduce the simulation technique and the model used for the
description of the granular particles, while results for both dry
and wet granular matter are given in Sec. III. In Sec. IV we
draw our conclusions, while in the Appendix we describe the
application of the q6 order parameter to our two-dimensional
system.

II. MODEL AND METHOD

We study a system of N monodispersed disks with diameter
σ and equal mass m in a circular container of radius R/σ =
12.25. The numerical value of the container radius is based on
the experiments of May et al. [16].

The pair interaction between particles is modeled by
a Hertzian pair-contact collision model. For each contact
between two pairs of particles at positions r i and rj , with
velocities vi and vj and angular velocities ωi and ωj , we
define a contact plane. The two vectors that generate the
contact plane are the normal unit vector nij = r i−rj

|r i−rj | , and
the relative velocity vij = vi − vj . Figure 1 shows a sketch
of the collision model projected in the collision plane: the
total force is decomposed in the normal direction nij and the
tangential directions t ij = vtij

|vtij
| , where the relative velocities

in the normal and tangential directions are

vnij
= ((vi − vj ) · nij )nij , (1)

vtij = (vi − vj ) − vnij
− 1

2 (σiωi + σjωj ) × nij . (2)

The forces are modeled as [17,18]

Fnij
= √

(δij /d)
(
κnδnij

nij − γnmeffvnij

)
, (3)

Ftij = √
(δij /d)

( − κtδtij t ij − γtmeffvtij

)
, (4)

with the displacements δnij
= (σi + σj )/2 − (r i − rj ) and

δtij t ij = vtij dt in the normal and tangential directions,
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FIG. 1. Sketch of the pair contact model in the contact plane
defined by the vectors nij and vij .

respectively. The parameters κn and κt are the stiffness co-
efficients in the normal and tangential directions, respectively.
The energy dissipated during the duration of the contact is
regulated by the damping coefficients γn and γt and the
effective mass meff = m/2. In addition, we model the static
friction by keeping track of the elastic shear displacement
δtij over the contact lifetime and truncate it such that the
condition |Ftij | < |μFnij

| is satisfied, where μ is the static
friction coefficient.

The force Fiw controlling the collision between particle i

and the container’s wall are modeled by Eqs. (4) with the wall
being described by a particle with infinite mass leading to an
effective mass meff = m.

The damping force between the particles and the bottom of
the container is Fb = −γbm(vi − vbot), where γb is a damping
coefficient and vi and vbot are the velocities of particle i and
the bottom wall, respectively.

Once the forces on all particles are known the total force
Fi and torque τ i on a particle i are determined by

Fi =
∑

j

(
Fnij

+ Ftij

) − γbm(vi − vbot),

τ i = −1

2

∑
j

σj nij × Ftij . (5)

Wet granular particles interact via additional forces caused
by the formation and dissolution of capillary bridges. This
complex process is modeled in a simple way by the minimal
capillary model (MCM) [19] that describes the bonding due
to capillary bridges via a hysteretic cycle (Fig. 2). The bridge
between a pair of particles is only formed upon first contact;
i.e., the interaction is zero until contact occurs. Subsequently
the particles experience a constant attractive force |FCB | = C
until a critical distance, rcrit is reached. For separation distances
larger than the critical distance the force is zero. We do not
consider capillary bridge formation between the particles and
the wall of the container.

The fundamental units of our simulation model are the
particle mass m, the particle diameter σ , and the gravitational
acceleration g. Consequently, the derived units are the time
t0 = √

σ/g, velocity v0 = √
gσ , force f0 = mg, elastic con-

stant k0 = mg/σ , and damping coefficient γ0 = √
g/σ . The

numerical values of the simulation parameters are shown in
Table I.

(a) (b)

(c) (d)

FIG. 2. (Color online) Hysteretic formation and dissolution pro-
cess of a capillary bridge between two particles. Arrows indicate the
direction of particle motion. (a) The distance between the particles
is smaller than rcrit, but no capillary bridge is formed because
no previous contact between two particles occurred. (b) After the
collision a bridge is formed. (c) The bridge dissolves as the distance
between the particles becomes larger than rcrit. (d) Force diagram for
the capillary bridge interaction.

Simulation details

We carry out computer simulations using a standard
molecular dynamics technique, in which the equations of
motion are integrated via a velocity Verlet algorithm [20,21].
The time step of the simulation is δt ≈ tc/50 [18], where the
contact time tc is estimated by [22]

tc = π

(
kn

meff
− γ 2

n

4

)−0.5

. (6)

The circular container lies in the x-y plane and is driven in
a swirling motion according to

xc = A sin (2π/P t),

yc = A cos (2π/P t),

where xc and yc are the coordinates of the center of the
container, A is the amplitude of the oscillation, P is the period
of the oscillation, and t is the time.

TABLE I. Parameters used in the simulation.

Particles kn 106(k0)
Particles kt

2
7 kn

Particles μ 0.9
Particles γn 60 (γ0)
Particles γt 0 (γ0)
Wall kn 106(k0)
Wall kt

2
7 kn

Wall μ 0.5
Wall γn 60 (γ0)
Wall γt 30 (γ0)
C 10 (f0)
rcrit 0.1 (σ )
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The particles in the container are initialized at random
and the simulation is carried out for n = 100 swirling cycles.
During the simulation we analyze the local structure of each
particle by means of the q6 local bond order parameter,
which allows us to distinguish between particles in a fluid or
crystalline environment. Furthermore, we distinguish between
hexagonal and square symmetries for the crystalline particles.
Details about the q6 implementation are given in the Appendix.

III. RESULTS

A. Order-disorder transition for dry granular disks

We begin the investigation of the dry granular disks by
evaluating the effect of the energy dissipation that occurs
due to the contact of the disks with the bottom wall. To this
end we fix the amplitude of oscillation, A/σ = 6, and the
number of particles, N = 250. The fraction of particles with
hexagonal order fhex = Nhex/Ntot is plotted against the periods
of oscillation, P/t0, for different values of the bottom damping
coefficient γb/γ0 in Fig. 3(a).

For γb/γ0 = 0.01 and 0.05 we find an almost constant value
of fhex � 0.3 for all periods of oscillation while at γb/γ0 = 0.1
we find a maximum fhex � 0.3 at P/t0 = 80. For increasing
γb (more dissipation) the location of the maximum fhex moves
toward decreasing values of the period P (more input energy).

In Fig. 3(b) we report the values of fhex at different container
filling fractions ff = Nπ (σ/2)/πR2 and at a fixed damping
coefficient γb/γ0 = 0.1. At N = 250 the filling fraction is
ff = 0.42 and the maximum of fhex at P/t0 = 80 is recovered.
At larger filling fractions we obtain maximum hexagonal order
at larger periods of oscillation (smaller driving energy), while
at smaller filling fractions, the maximum in fhex is obtained at
smaller values of P . These results can be simply summarized
by stating that order is more easily achieved at high filling
fractions.

We now proceed with the systematic investigation of the
order transition in dry granular disks at fixed N = 250 (filling
fraction ff = 0.42) and damping coefficient with the bottom
wall γb/γ0 = 0.1. For each state point (P/t0,A/σ ) a computer
simulation was run for 100 oscillations. We calculated the
fraction of particles with hexagonal and square order using the
q6 local bond order parameter and averaging its value over 80
oscillations. The results are summarized in Fig. 4. The fraction
of particles with either hexagonal or square order is given by
the color of the points. The dashed lines are guides to the eye
to distinguish regions with different predominant local order
and delimit regions with a fraction of ordered particles larger
than 0.25.

We find that at large periods of oscillation P and small
amplitudes A, corresponding to a low amount of driving
energy, most particles are in a disordered state; i.e., the fraction
of square-ordered and hexagonal-ordered particles is less than
0.25. In this region of the diagram, the particles in the center
of the container are not affected by the wall due to the small
oscillation amplitudes, while the particles initially close to the
wall are gently pushed toward the center.

We find a second region in the diagram that is rich in
disordered particles, namely at small amplitudes and small
periods of oscillation. Here the particles close to the wall are

FIG. 3. (Color online) Fraction of dry disks with hexagonal order
as a function of the oscillation period P/t0 (a) for a fixed filling
fraction ff = 0.42 and different values of the bottom wall damping
coefficient γb/γ0 and (b) for a fixed γb/γ0 = 0.1 and different filling
fractions ff .

squeezed strongly to the wall while the particles in the center
remain basically unaffected by the container’s motion because
of the small amplitudes.

At intermediate driving energies the phase diagram is
dominated by hexagonal order. Interestingly, an increase in
driving energy leads to a decrease of hexagonally ordered
particles and a dramatic increase in particles with local square
order.
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FIG. 4. (Color online) (a) Fraction of dry disks with hexagonal
local order. (b) Fraction of particles with square local order. The
dashed lines are guides to the eye to separate different phase states
and crystal states.

It is worthwhile to stress that in dry granular disks no at-
tractive interaction between the disks is present. The formation
of hexagonal order might be related to the entropically driven
order transition of purely repulsive colloidal systems. On the
other hand, the square-rich region does not have a counterpart
in equilibrium colloidal systems.

More insights in the order-disorder transition can be gained
by looking at simulation snapshots. The snapshots in Fig. 5 are
taken during a simulation with amplitude A/σ = 7 and period
P/t0 = 120. In all snapshots the green disks have hexagonal
order, the red disk have square order, and the blue particles
are disordered. After one oscillation [Fig. 5(a)] the particles
are mainly disordered and a few clusters of hexagonal order
are visible. After five oscillations [Fig. 5(b)] we find a large
cluster with circular shape. Particles with hexagonal local order
are in the center of the container. Around it we find square
ordered and disordered particles. The overall structure remains
qualitatively unchanged at later times [Figs. 5(c) and 5(d)].

By increasing the external driving energy we see how the
structure changes dramatically (Fig. 6 at amplitude A/σ = 10
and period P/t0 = 90). We note that the granular cluster is
slightly deformed and the particles show a large amount of
square local order.

B. Order-disorder transition for wet granular disks

For wet granular particles, Fig. 7 shows the fraction
of particles with hexagonal order fhex = Nhex/Ntot plotted
against the period P/t0 for different values of the damping
coefficient γb (dissipation at the bottom wall).

FIG. 5. (Color online) Simulation snapshots of dry disks at am-
plitude A/σ = 7 and period P/t0 = 120. The green (light grey) disks
have hexagonal order, the red (dark grey) disks have square order,
and the black particles are disordered: (a) t/P = 1, (b) t/P = 5, (c)
t/P = 25, and (d) t/P = 100.

FIG. 6. (Color online) Simulation snapshots of dry disks at am-
plitude A/σ = 10 and period P/t0 = 90. The green (light grey) disks
have hexagonal order, the red (dark grey) disks have square order,
and the black particles are disordered: (a) t/P = 1, (b) t/P = 5, (c)
t/P = 25, and (d) t/P = 100.
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FIG. 7. (Color online) Fraction of wet disks with hexagonal order
as a function of the oscillation period P/t0, for a fixed filling fraction
ff = 0.42 and different values of the bottom wall damping coefficient
γb/γ0.

In contrast with the case of dry disks that showed a
maximum fraction of hexagonally order particles of about 0.6,
wet disks reach a fraction of hexagonally ordered particles of
1. The dashed lines are guides to the eye to distinguish regions
with a fraction of ordered particles larger than 0.6.

For γb/γ0 � 0.1 there is almost no dependence on the
bottom damping coefficient. The attractive interaction allows
the formation of hexagonal ordered clusters even when there
is little dissipation with the bottom wall. For coefficients
γb/γ0 � 0.2 the maximum order occurs at always smaller
periods of oscillation, similar to the behavior described for
dry disks.
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FIG. 8. (Color online) Fraction of particles with hexagonal local
order for a system with N = 250 wet granular disks. The dashed lines
are guides to the eye.

FIG. 9. (Color online) Simulation snapshots of wet disks at am-
plitude A/σ = 9.5 after 100 oscillations and different values of the
oscillation period P/t0. The green (light grey) disks have hexagonal
order, the red (dark grey) disks have square order, and the black
particles are disordered: (a) P/t0 = 95, (b) P/t0 = 55, and (c)
P/t0 = 15.

We repeated the systematic study of the order-disorder
transition for the wet particles. The results are summarized
in Fig. 8. The region with predominant hexagonal order
[Fig. 9(b)] is shifted, with respect the case of dry disks,
toward smaller periods of oscillations and larger amplitudes,
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i.e., larger driving energy. At larger energies the almost perfect
order is destroyed and the particles are squeezed to the wall
[Fig. 9(c)]. At smaller energies, the particles form small
clusters of hexagonally ordered clusters connected to each
other via grain boundaries [Fig. 9(a)].

By comparing the diagram of Fig. 8 for wet particles and the
diagram of Fig. 4 for dry disks we note that dry particles show
a maximum order of 0.6 in a region where wet particles also
have a hexagonal order of about 0.5–0.6. On the other hand,
the structure of the overall granular cluster is very different
in the two cases. Whereas for dry particles we find a large
uniform cluster of hexagonally ordered particles (Fig. 6), for
wet particles the structure consists of small hexagonal clusters
sparsely connected to each other [Fig. 9(a)].

IV. CONCLUSIONS

In conclusion, we investigated the order-disorder transition
of dry and wet granular disks in a cylindrical container which
is driven by a horizontal swirling motion. We find that even
for dry particles there is a well-defined region of the parameter
space, defined by the oscillation amplitude and period, where
a large fraction of the particles shows local hexagonal order.
At larger driving energies the hexagonal order is destroyed
and the particles are squeezed to the wall, leading to a large
amount of particles with square local order.

For the case of wet particles the attractive interaction
of the capillary bridges enhances dramatically the amount
of hexagonal order. Due to the strong attractive interaction
between the disks mediated by the capillary bridges, the
driving energy required for the formation of circular clusters
with high hexagonal order is higher for wet particles than for
dry disks.

From the results of both dry and wet granular disks we can
conclude that clusters of hexagonally ordered particles occur
when a balance between the energy dissipation at the bottom
wall (higher dissipation for higher γb) and the external driving
energy (higher energy for smaller P ) is reached.

The dynamics of the disordered structures was not inves-
tigated, but it would be interesting to see if if the dynamical
behavior is related to the dynamics of the glass transition.
Furthermore, we point out that in our simulations of two-
dimensional disks we do not find the type of surface melting
found in the experiments of May et al. [16]. This result could
be an indirect confirmation that the surface melting is due to the
rolling friction of granular spheres with the bottom container as
proposed in Ref. [16]. We plan to carry out three-dimensional
simulations of our model system to confirm this hypothesis
and further investigate the origin and properties of the surface
melting phenomenon.

The formation of compact ordered structures can influence
particle diffusion and consequently the segregation dynamics
of differently sized particles. The understanding of the melting
and order formation phenomena can therefore lead to a better
understanding of segregation phenomena. Further work is in

TABLE II. Two-dimensional structures that can be distinguished
with the q6 bond order parameter.

Structure Coordination q6

Chain 2 1
Square 4 0.5863
Hexagonal 6 0.7408

progress to analyze the dynamical properties of the phases
reported in this article as well as the jamming transition and
to relate them to the occurrence of segregation.
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APPENDIX: BOND ORDER PARAMETER

The local bond order parameter ql provides a measure of
the local symmetry of a particle by looking at the distance and
orientation of neighboring particles. In general the bond order
parameter is calculated according to [23]

ql(i) =
√√√√ 4π

2l + 1

l∑
m=−l

|qlm(i)|2, (A1)

where qlm(i) is defined as

qlm(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(ϕij ,ϑij ),

where Nb(i) is the number of next-nearest neighbors of the
particle i, l is an integer, m is an integer which runs from −l

to l, and Ylm are the spherical harmonics with the azimuthal
angle between particle i and j , ϕij , and the polar angle, ϑij .
For a two-dimensional system we fix the angle ϑij = 0 for all
pairs i,j .

Therefore, for the case l = 6 the order parameter reads

q6(i) =
√√√√4π

13

6∑
m=−6

|q6m(i)|2, (A2)

with

q6m(i) = 1

Nb(i)

Nb(i)∑
j=1

Ylm(ϕij ,0).

The angle ϕij is

ϕij = arctan

(
r ij · ŷ
r ij · x̂

)
.

In two dimensions one can distinguish three different types
of order: chains, square, and hexagonal. Table II gives the
corresponding values of q6.
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