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Equilibrium time-correlation functions for one-dimensional hard-point systems
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As recently proposed, the long-time behavior of equilibrium time-correlation functions for one-dimensional
systems are expected to be captured by a nonlinear extension of fluctuating hydrodynamics. We outline the
predictions from the theory aimed at the comparison with molecular dynamics. We report on numerical simulations
of a fluid with a hard-shoulder potential and of a hard-point gas with alternating masses. These models have in
common that the collision time is zero and their dynamics amounts to iterating collision by collision. The theory
is well confirmed, with the twist that the nonuniversal coefficients are still changing at longest accessible times.
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I. INTRODUCTION

As very well understood, in thermal equilibrium one-
dimensional classical fluids show no phase transitions and have
rapidly decaying static correlations, provided the interaction
potential is sufficiently short ranged [1]. On the other hand,
as discovered in the early 1970ies, time correlations have
anomalous decay. In particular, total current-current correla-
tions decay nonintegrably and the Green-Kubo definition of
transport coefficients yields divergent expressions [2,3]. At
the time only fairly qualitative predictions were available. But
over the last 15 years there has been a considerable spectrum
of molecular dynamics (MD) simulations, which do provide
quantitative information [4,5]. Currently the conventional
system size is of the order of 104 particles and the maximal
simulation time is such that the right- and left-going sound
modes first collide in a ring geometry. Most efforts have
been directed towards the numerical value of the dynamical
exponents and the issue of universality. Very recently, in
addition to exponents, universal scaling functions have been
proposed on the basis of nonlinear fluctuating hydrodynamics
[6,7]. The main goal of our contribution is to compare these
theoretical predictions with MD simulations.

For such purpose we consider hard-point systems, mainly
because there is then no need to simulate differential equations.
The dynamics proceeds from collision to collision with free
motion in between. Such models have been studied extensively
before [8–15]. While there are important hints in the literature,
the available simulations are not specific enough to test the
theory. Therefore we decided to redo three of the most common
models.

(i) a hard-point gas of particles with equal mass and
interaction between neighbors through a shoulder potential,
(ii) a hard-point gas of particles with alternating masses, and
(iii) the same as (ii) but with the hard-point potential replaced
by an infinitely high square-well potential. In other words,
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when neighboring particles reach a maximal distance, say a,
then there is an inward collision.

These models have in common that they are particular
instances of anharmonic chains, as characterized by having an
interaction only between particles of adjacent label. For hard-
point systems, in addition, the spatial order coincides with the
label order. The equilibrium measure of a generic anharmonic
chain is of product form. Therefore no equilibration step is
required. The true equilibrium distribution is swiftly produced
by a random number generator. We believe that this is of
advantage as compared to the more conventional dynamical
equilibration, which has always the risk of systematic errors,
even though the necessarily limited numerical tests indicate an
equilibrated system.

Nonlinear fluctuating hydrodynamics makes the implicit
assumptions that there are no further local conservation laws
beyond the three standard ones and that upon fixing their
values the dynamics is sufficiently well mixing in time. These
assumptions cannot be checked easily. Counterexamples are
completely integrable chains, as the Toda chain. For the
shoulder potential the scattering induced through the potential
step seems to suffice. Models (ii) and (iii) from above become
integrable in case of equal masses. Presumably any other mass
ratio destroys their integrability. Based on the experience from
MD simulations a mass ratio around 3 is sufficiently well
mixing.

As an outline: In the following two sections we introduce
the hard-point systems under study and review the theory.
More details are recorded in Ref. [16]. In Sec. IV we report
our MD results and in Sec. V we arrive at conclusions and
compare with other MD data available.

II. HARD-POINT SYSTEMS

Monoatomic chains. The Hamiltonian of a one-dimensional
fluid is of the form

Hf =
N∑

j=1

1
2p2

j + 1
2

N∑
i �=j=1

V (qi − qj ). (1)
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Here qj is the position and pj the momentum of the j th
particle. Momentum equals velocity, since we use units for
which the mass equals 1. V is the interaction potential. We
now choose specifically the shoulder potential

Vsh(x) =
⎧⎨
⎩

∞ for |x| � 1
2 ,

1 for 1
2 < |x| < 1,

0 for 1 � |x|.
(2)

If one initially imposes qj + 1
2 � qj+1, then this order is pre-

served in time and the interaction is only between neighboring
particles. We introduce the j th stretch

rj = qj+1 − qj . (3)

Then

ṙj = pj+1 − pj , ṗj = V ′
sh(rj ) − V ′

sh(rj−1). (4)

Without loss of generality, the potential height is chosen to be
1 and the hard core size to be 1

2 . The width of the potential
step could be any value between 0 and 1

2 . We study here only
the maximal width.

It is of advantage to view (rj ,pj )j=1,...,N as a one-
dimensional field theory with two components. Periodic
boundary conditions, rj+N = rj , pj+N = pj , are imposed
throughout. For hard-point particles rj � 0 and pj ∈ R. The
somewhat singular force in (4) translates into the following
collision rules. Between collisions one has free motion with
ṗj = 0. There are two types of collisions, at rj = 1

2 and at
rj = 1.

(i) rj = 1
2 . If pj+1 − pj < 0, then there is a point collision

as

p′
j = pj+1, p′

j+1 = pj , (5)

where ′ denotes the momentum after the collision. If pj+1 −
pj > 0, particles separate under free motion.

(ii) rj = 1. There is scattering at the potential step depend-
ing on whether particles approach or recede from each other.
In the latter case, i.e., pj+1 − pj > 0, the collision rule reads

p′
j = 1

2

(
pj + pj+1 −

√
(pj+1 − pj )2 + 4

)
,

(6)
p′

j+1 = 1
2

(
pj + pj+1 +

√
(pj+1 − pj )2 + 4

)
.

For approaching particles with large momentum difference
pj − pj+1 > 2, the momentum transfer is sufficient to enter
the shoulder plateau and the collision rule reads

p′
j = 1

2

(
pj + pj+1 +

√
(pj+1 − pj )2 − 4

)
,

(7)
p′

j+1 = 1
2

(
pj + pj+1 −

√
(pj+1 − pj )2 − 4

)
.

If the incoming momentum transfer is too small, then the
particles are specularly reflected, i.e., if 0 < pj − pj+1 < 2,
then

p′
j = pj+1, p′

j+1 = pj . (8)

An anharmonic chain, in general, still evolves according to
(4), but with Vsh replaced by some potential V and generically
without constraints on rj . V is assumed to be bounded from
below and to have at least a one-sided linearly increasing bound
at infinity. Thermal equilibrium is described by the canonical

Gibbs measure at zero average momentum. It is given by a
product measure, i.e., the (rj ,pj )j=1,...,N are independent. At
a single site, the momentum pj has a Maxwellian distribution
with mean zero and variance 1/2β, while the probability
density of the stretch rj is given by

Z−1e−β(V (y)+py), Z(p,β) =
∫
R

dy e−β(V (y)+py). (9)

p controls the stretch and β the energy. Averages with respect
to (9) are denoted by 〈·〉p,β . Note that

p = −〈V ′(y)〉p,β (10)

and, as average force on a specified particle, p is identified
with the thermodynamic pressure.

In our simulations the average is always with respect to
this canonical equilibrium measure. In the literature one finds
an effort to impose zero momentum strictly and not only on
average. But for the sizes and time spans under investigation,
this makes hardly any difference.

For the purpose of nonlinear fluctuating hydrodynamics we
also record the Euler equations of an anharmonic chain, see
Ref. [16] for more details. These are evolution equations of
the conserved fields on a macroscopic scale. From (4) we infer
that rj and pj are locally conserved. As for any mechanical
system also the local energy is conserved. The energy at site j

is

ej = 1
2p2

j + V (rj ). (11)

Then

ėj = pj+1V
′(rj ) − pjV

′(rj−1), (12)

hence the local energy current is −pjV
′(rj−1). We collect the

conserved fields as the three-vector �g = (g1,g2,g3),

�g(j,t) = (rj (t),pj (t),ej (t)), (13)

�g(j,0) = �g(j ). Then

d

dt
�g(j,t) + �J (j + 1,t) − �J (j,t) = 0, (14)

where the local current functions are given by

�J (j ) = ( − pj , − V ′(rj−1), − pjV
′(rj−1)). (15)

Once the conserved fields are identified, the Euler equations
follow from the assumption of local equilibrium. More
precisely, we introduce the microcanonical parameters �, e
through

� = 〈rj 〉p,β, e = 〈ej 〉p,β = 1

2β
+ 〈V (rj )〉p,β . (16)

(16) defines (p,β) 	→ (�(p,β),e(p,β)), thereby the inverse
map (�,e) 	→ (p(�,e), β(�,e)), and thus accomplishes the
switch between the microcanonical variables �,e and the
canonical variables p,β. Next let us choose an initial state, for
which p,β, and mean velocity are slowly varying on the scale
of the lattice. This induces a slow variation of stretch �, velocity
u, and total energy e = 1

2 u2 + e. Then by averaging the fields
in a local equilibrium state, the microscopic conservation
laws (14) turn into the Euler equations of an anharmonic
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chain as

∂t�(x,t) + ∂x j�(x,t) = 0,

∂tu(x,t) + ∂x ju(x,t) = 0, (17)

∂te(x,t) + ∂x je(x,t) = 0,

where the hydrodynamic currents are given by

〈 �J (j )〉�,u,e = ( − u,p(�,e − 1
2 u2),up(�,e − 1

2 u2)) =�j (18)

with p(�,e) defined implicitly through (16). By construction
the slow variation refers to the particle label j . Hence x in (17)
stands for its continuum approximation.

Returning to the hard-point system with shoulder potential,
one obtains

Z(p,β) = 1

pβ
e−pβ (1 + e−β (epβ/2 − 1)),

� = − 1

β
∂p log Z(p,β), (19)

e = 1

2β
+ 1

Z(p,β)

1

pβ
e−β−pβ (epβ/2 − 1).

Biatomic chains. We reintroduce the mass mj of the j th
particle and also a site-dependent interaction potential Vj .
Then the equations of motion for the chain become

ṙj = 1

mj+1
pj+1 − 1

mj

pj , ṗj = V ′
j (rj ) − V ′

j−1(rj−1).

(20)

For a biatomic chain mj and Vj have period 2 and hence the
unit cell consists of two adjacent particles. We normalize by
m0 and set κ = m1/m0. Then mj = 1 for even j and mj = κ

for odd j . We consider the particular case, in which particles
interact through the square-well potential

Vsw(x) = 0 for 0 < |x| < a, Vsw(x) = ∞ otherwise. (21)

Then between collisions there is free motion with ṗj = 0. For
rj = 0 the incoming momenta are defined by pj − pj+1 > 0
and for rj = a by pj − pj+1 < 0. In either case the collision
rule reads

p′
j = pj + 2

mjpj+1 − mj+1pj

mj + mj+1
,

(22)

p′
j+1 = pj+1 − 2

mjpj+1 − mj+1pj

mj + mj+1
.

Note that the transformation (22) depends only on the mass
ratio κ .

Since there is zero potential energy,

e = 1

2β
(23)

and the pressure factorizes as

aβp = h(�/a), (24)

where h is the inverse function to y 	→ y−1 − (ey − 1)−1.
Clearly, length can be normalized such that a = 1. This is
then our model of hard-point particles with alternating masses
and square-well potential.

For the hard-point gas with merely alternating masses, we
take the limit a → ∞ which amounts to delete the option
rj = a in the collision rules (22). The pressure simplifies to

βp = 1

�
. (25)

For the hydrodynamic equations one has to take into
account that momentum and energy transfer in a collision
depend on the masses. Hence the currents (18) are modified to(

− 1

m̄
u,p,

1

m̄
up

)
, p = p

(
�,e − 1

2m̄
u2

)
, (26)

where m̄ stands for the average mass, m̄ = (m0 + m1)/2.

III. NONLINEAR FLUCTUATING HYDRODYNAMICS

A standing issue of statistical mechanics is to understand
the long-time behavior of dynamical correlations for the chain
in thermal equilibrium. The modes with the longest life
time will come from the locally conserved fields �g(j,t) =
(rj (t),pj (t),ej (t)). Hence one studies their correlations defined
through

Sαα′ (j,t) = 〈gα(j,t)gα′(0,0)〉p,β − 〈gα(j,t)〉p,β〈gα′(0)〉p,β,

(27)

α,α′ = 1,2,3. Note that by space-time stationarity
〈gα(j,t)〉p,β = 〈gα(0)〉p,β and

Sαα′ (j,t) = Sα′α(−j, − t). (28)

Also at time t = 0,

S(j,0) = δj0C, (29)

which defines the static susceptibility matrix C. For the theory
it is convenient to study directly the infinite one-dimensional
lattice Z, on which the correlations can spread forever. But
MD is on a ring with N sites and the dynamics is run only up
to time tmax, the first time when the two sound modes collide,
i.e., 2c tmax = N with c the speed of sound.

In higher spatial dimensions the long-time properties of
the correlation functions (27) are well captured by (linear)
fluctuating hydrodynamics. This is a Gaussian fluctuation
theory for the hydrodynamic fields. The drift part of the
corresponding Langevin equations is obtained by linearizing
the Navier-Stokes equations around equilibrium and consists
of the Euler flow term, linear in ∂x , and the dissipative transport
terms, quadratic in ∂x . The noisy part is obtained by adding
random currents with space-time white noise statistics to the
systematic currents. These random currents model all the left
out degrees of freedom from the exact conservation laws.
The strength of the random currents is determined by the
fluctuation dissipation theorem. Fluctuating hydrodynamics
predicts diffusive broadening of the peaks. Such a behavior
holds in dimension d > 2 and is well known to break down
in one dimension. The minimal proposal in Refs. [6,7] is to
generalize to a nonlinear version, for which the Euler currents
are kept up to second order in the deviation from equilibrium,
while the dissipative part and the noise are taken from the
linear theory. We give here a brief review with more details
provided in Ref. [16]. We fix the equilibrium parameters p,β
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and denote the small deviations from equilibrium by �u(x,t) =
(u1(x,t),u2(x,t),u3(x,t)). When dissipation and noise are
added, �u(x,t) becomes a random field with zero average. By
construction, the fluctuation field is governed by the Langevin
equations

∂t �u(x,t) + ∂x

(
A�u(x,t) + 1

2 〈u(x,t), �Hu(x,t)〉
− ∂xD̃�u(x,t) + B̃�ξ (x,t)

) = 0. (30)

Here the Euler currents have been expanded relative to the
reference background �u0 = (�,0,e) up to second order as

jα(�u0 + �u) = jα(�u0) +
3∑

β=1

∂uβ
jα(�u0)uβ

+ 1

2

3∑
β,β ′=1

∂uβ
∂uβ′ jα(�u0)uβuβ ′ . (31)

This defines the 3 × 3 linearization matrix A and the three-
vector of the Hessian matrices �H of second derivatives,

Aαβ = ∂uβ
jα, Hα

ββ ′ = ∂uβ
∂uβ′ jα. (32)

�ξ is Gaussian white noise with mean 0 and covariance

〈ξα(x,t)ξα′(x ′,t ′)〉 = δαα′δ(x − x ′)δ(t − t ′), (33)

where B̃B̃T is the noise strength matrix with T denoting
transpose. The susceptibility matrix C and the diffusion matrix
D̃ satisfy the fluctuation-dissipation relation

D̃C + CD̃ = B̃B̃T. (34)

If one had set �H = 0 in (30), then this Langevin equation
would agree with fluctuating hydrodynamics specialized to
one dimension. In principle, one could include higher orders
in the expansion. By power counting they are subdominant.
Of course, if quadratic coefficients vanish, one should study
the effect of cubic terms. Most likely, logarithmic corrections
could result. But other features will be more important than
such fine details.

We consider the stationary, mean zero solution to (30), again
denoted by �u(x,t). Then the claim is that for long times and
large spatial scales

〈uα(x,t)uβ(0,0)〉 � Sαβ(j,t) (35)

with x the continuum approximation for j .
For a single component Eq. (30) is the stochastic Burgers

equation, equivalently in its space-integrated version, the
one-dimensional Kadar-Parisi-Zhang equation [17]. Multi-
component KPZ-type equations have been proposed before
[18,19], however with degenerate, i.e., vanishing velocities.
We refer to Ref. [20] for pointing out the importance of distinct
mode velocities.

The linearization A has the eigenvalues −c,0,c corre-
sponding to the left- and right-going sound peaks and the
heat peak. In Eq. (30), this linear term dominates all other
terms. To better understand its role one has to make a linear
transformation in component space, denoted by R, such that A

becomes diagonal. In addition, as a convenient normalization,
the transformed susceptibility matrix is required to be the unit

matrix. Both conditions lead to

RAR−1 = diag(−c,0,c), RCRT = 1, (36)

which determine R up to an overall sign. We set �φ = R�u
and call �φ = (φ−1,φ0,φ1) the normal modes. The transformed
Langevin equations read

∂tφα + ∂x(cαφα + 〈�φ,Gα �φ〉 − ∂x(Dφ)α + (Bξ )α) = 0, (37)

α = −1,0,1, where D = RD̃R−1 and B = RB̃ with noise
strength BBT = 2D. The velocity of the αth normal mode is
cα , cσ = σc, c0 = 0, σ = ±1. The inner product 〈·,·〉 is in
component space and the Gα matrix of coefficients stands for

Gα = 1
2

3∑
α′=1

Rαα′ (R−1)THα′
R−1. (38)

As before, we have to consider the stationary process �φ(x,t)
with mean zero, 〈 �φ(x,t)〉 = 0, satisfying Eq. (37). The �φ- �φ
correlations are defined by

S
�φ

αα′ (x,t) = 〈φα(x,t)φα′(0,0)〉, (39)

where the superscript � reminds us of normal mode and φ of
the underlying stochastic process. The central claim is that, as
3 × 3 matrices,

RS(j,t)RT = S�(j,t) � S�φ(x,t) (40)

on a mesoscopic scale.
Equation (37) is a stochastic nonlinear field theory and

its two-point correlation cannot be readily computed. We
summarize the main findings up to now.

Diagonality. By construction

S
�φ

αα′ (x,0) = δαα′δ(x). (41)

Using space-time stationarity and the conservation laws, one
deduces the sum rule∫

dx S
�φ

αα′ (x,t) =
∫

dx S
�φ

αα′ (x,0) = δαα′ , (42)

but there is no reason for S�φ(x,t) to remain pointwise
diagonal at later times. But the distinct velocities of the modes
enforce such a behavior and, in the one-loop mode-coupling
approximation to Eq. (37), the off-diagonal matrix elements
are very small after some transient time. This is also seen in
MD simulations and leads to

S
�φ

αα′ (x,t) � δαα′fα(x,t). (43)

By (41), (42), the diagonal terms satisfy

fα(x,0) = δ(x),
∫
R

dx fα(x,t) = 1. (44)

For the physical fields

Sαα(j,t) �
3∑

α′=1

|(R−1)αα′ |2fα′ (x,t). (45)

Hence the Landau-Placzek ratios can be read off from the R

matrix. Generically, Sαα(j,t) has three peaks located at 0 (heat
peak) and at ±ct (sound peaks). But for special parameter
values some of the Landau-Plazcek ratios may vanish and less
peaks are visible.
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KPZ scaling, sound peaks. Since the three modes have dis-
tinct propagation velocities, one expects Eq. (37) to decouple
into three independent equations, each of which then has the
structure of the noisy Burgers equation. Thus, if Gσ

σσ �= 0, one
will have the KPZ scaling,

fσ (x,t) ∼= (λst)
−2/3fKPZ((λst)

−2/3(x − σct)). (46)

fKPZ is the exact scaling function for the two-point correlation
of the noisy Burgers equation, see Appendix C. According to
KPZ scaling theory, the nonuniversal coefficient reads

λs = ∣∣Gσ
σσ

∣∣ as, as = 2
√

2, (47)

where we divided into the material parameter Gσ
σσ and the

universal pure number as. Of course, as depends on the
convention for fKPZ.

Lévy scaling, heat mode. For anharmonic chains G0
00 = 0,

always. Thus the leading KPZ scaling (46) degenerates and
one has to study the interaction between the modes. So far,
this goal has been accomplished only on the level of mode
coupling, which leads to the prediction

f0(x,t) = (λht)
−3/5fL,5/3((λht)

−3/5x) (48)

with fL,α the symmetric α-stable distribution, also known as
α-Lévy distribution, see Appendix C. As a result of previous
numerical simulations [10,11,13], and also confirmed here,
fL,5/3 seems to be the exact scaling function. If so, one can use
the scaling properties of nonlinear fluctuating hydrodynamics
to deduce that

λh = c−1/3λ−2/3
s

(
G0

σσ

)2
ah. (49)

As before, ah is a pure number, not depending on the particular
model. To determine ah one would have to rely on the
exact solution of some model in the same universality class.
According to mode-coupling theory,

ah = 4
∫ ∞

0
ds s−2/3 cos s

∫
R

dx fKPZ(x)2

= 2
√

3 

(

1
3

) ∫
R

dx fKPZ(x)2 � 3.617. (50)

Physically one expects that there are no correlations prop-
agating beyond the sound cone, which is confirmed in our
simulations. Thus the Levy peak is cut off at the location of
the sound modes.

Even potential, zero pressure. In principle, also Gσ
σσ could

vanish implying that the prediction based on the noisy Burgers
equation becomes invalid. One generic case for this to happen
is p = 0 and a potential symmetric relative to some reference
point. An example is Vsw with reference point a/2, implying
the non-KPZ value � = a/2. Mode-coupling theory predicts
the sound peaks to be diffusive,

fσ (x,t) = (λst)
−1/2fG[(λst)

−1/2(x − σct)] (51)

and the heat peak to be 3
2 -Lévy,

f0(x,t) = (λht)
−2/3 fL,3/2[(λht)

−2/3x]. (52)

Based on a recent exact solution for models in the same uni-
versality class [21,22], and also confirmed by our simulations,
the scalings (51), (52) are expected to be the true asymptotic

behavior. From the self-similarity of nonlinear fluctuating
hydrodynamics one then deduces

λh = c−1/2λ−1/2
s

(
G0

11

)2
ah. (53)

The exact solution implies

ah = 4
∫ ∞

0
ds s−1/2 cos s

∫
R

dx fG(x)2 =
√

2, (54)

which happens to agree with the mode-coupling computation.
Remark. Equation (4.11) of Ref. [16] should read

exp[−|2πk|5/3λht] and consequently λh of Eq. (4.12) has to
be multiplied by (2π )−5/3. On the same footing, in Eq. (4.18)
it should read exp[−|2πk|3/2λht] and consequently λh of
Eq. (4.19) has to be multiplied by (2π )−3/2.

For the hard-point systems under study, the free energy and
the Euler currents have been provided already and this allows
for the computation of the nonuniversal constants, at least in
principle. However, for equal masses with square shoulder
potential, while (19) looks still simple, to compute, say, G as
a function of p,β turns out to be cumbersome. Therefore we
rely on a MATHEMATICA code, which computes all coefficients
numerically. For alternating masses with square-well potential,
since the pressure factorizes, all coefficients are expressed in
terms of h and its derivatives. To have at least one explicit
example, we provide the details in Appendix A.

Note that nonlinear fluctuating hydrodynamics makes
predictions in essence independent of the specific value
of the mass ratio κ . So we could set κ = 1. But for the
mechanical system this amounts to a mere relabeling. Thus in
our derivations implicitly we have assumed that the dynamics
is sufficiently chaotic and that the system has no other
conservation laws than the three listed already.

IV. MOLECULAR DYNAMICS SIMULATIONS

Nonlinear fluctuating hydrodynamics is based on several
assumptions. To find out about the accuracy of the theory
one has to rely on MD simulations, which have been carried
out for all three models, in each case for a single choice
of parameters. The lattice size is always N = 4096. For
given initial conditions the dynamics is obtained by iterating
collision after collision. As an example, for the shoulder
potential at our choice of parameters there are approximately
1200 collisions per particle up to the maximal time tmax =
1024. In our implementation we use an event table consisting
of 8192 (= 213) time slots, each of which covers the interval
1/8192. At the beginning of the simulation, pairwise collision
events are determined from the positions and momenta of
neighboring particles. Each anticipated collision event is stored
in the time slot covering the event timing modulo 1. A time
slot can store more than one event, but the time interval of a
slot is chosen such that there is typically only one event per
slot. Conceptually, the event table resembles a hash table, with
the event time serving as index. During the actual simulation,
the time slots are cyclically traversed one after another: we
pick the (closest in time) event from the current time slot
and update the positions and momenta of the particle pair
associated with the event to the time point immediately after
the collision. Since momenta have changed, the predictions
for the neighboring particles have to be revised, and associated
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FIG. 1. (Color online) MD simulation of an equal mass chain with shoulder potential as defined in Eq. (2) and parameters N = 4096,
p = 1.2, β = 2, at t = 1024. (a) Diagonal matrix entries, S�

αα(j,t), of the two-point correlations. The gray vertical lines show the sound speed
predicted from theory. The tails of the sound peaks reappear on the opposite side due to periodic boundary conditions. (b) Rescaled heat, and
(c) right sound peak. The theoretical scaling exponents are used and λ is fitted numerically to minimize the L1 distance between simulation
and prediction. The dashed orange curve is the predicted 5

3 -Lévy distribution fL,5/3 and the dashed red curve shows fKPZ.

collision events are moved to the time slot covering the newly
predicted collision time. The phase space functions defining
S(j,t) are averaged over all lattice sites and recorded for
all j and at times t = 256, 512, 1024. We use fast Fourier
transformation to accelerate this step. A simulation for the
shoulder potential at our parameters takes approximately 1.5 s
on a commodity laptop computer. The scheme is repeated
107 times with initial conditions sampled by means of a
random number generator from the independent and identical
distribution defined at and above Eq. (9). In the last step
we perform the linear transformation RS(j,t)RT = S�(j,t).
In fact, as striking qualitative prediction, this matrix should
be diagonal in good approximation. Indeed, the off-diagonal
matrix elements have size less than 4% of the diagonal entries,
and in the figures below we only show the diagonal entries
S�

αα(j,t), α = ±1,0. By symmetry S�
αα(j,t) = S

�
−α−α(−j,t)

and only one sound peak needs to be plotted.
Having obtained the numerical peak, f num

α , one has to com-
pare with the theoretical prediction f th

α . Since by construction
the area under each peak equals 1 and since the peaks turn out to
be positive, it is natural to use the L1 norm as a numerical value
for the distance between f num

α and f th
α . As only free parameter

we adopt the linear scale and minimize the expression

N∑
j=1

∣∣f num
α (j,t) − (λt)−γαf th

α [(λt)−γα (j − cαt)]
∣∣ (55)

with respect to λ > 0 for fixed t . Here cα is the velocity of mode
α and γα is the theoretical scaling exponent. We record the
minimal L1 distance and the respective value of λ. Obviously,
there is some level of arbitrariness in our choice.

We discuss the MD results for each model separately. The
transformation matrix R and the nonlinear couplings G are
listed in Appendix B. Our conventions for the scaling functions
can be found in Appendix C.

Shoulder potential. This is an equal mass chain with
potential (2). The parameters are p = 1.2 and β = 2, yielding
the sound speed c = 1.743 and the average stretch 〈rj 〉 =
1.246. In Fig. 1(a) the three peaks are superimposed. For the
correlations of the physical fields each peak comes with a
weight, see Eq. (45). For the stretch correlations the weights are

0.082 : 0.065 : 0.082, for the momentum correlations 0.25 :
0 : 0.25, and for the energy correlations 0.119 : 0.07 : 0.119.
In Figs. 1(b) and 1(c) the scaled heat and sound peaks
are compared with the theoretical predictions. We note that
the deviation from the theoretical shape is fairly small, but
the nonuniversal λ coefficients are still dropping in time. The
prediction for as is based on decoupling, which is expected
to be exact. The theoretical value is as = 2

√
2 � 2.828, to

be compared with the t = 1024 molecular dynamics value of
3.936, indicating that the simulation has not yet reached the
asymptotic regime. The theoretical 5

3 -Lévy distribution of the
heat peak is based on mode coupling. From this perspective,
it is not even sure that the true scaling function is given by
5
3 -Lévy. But our simulations, and also earlier results [10,13],
support a symmetric stable distribution with exponent 5

3 .
We record the still drifting nonuniversal coefficients in

Table I, together with the L1 distance defined in Eq. (55).
For ease of comparison we provide the universal coefficients
as, ah. The theory value for as is exact, whereas ah employs
mode-coupling theory. In Table I the theory value for λh is
based on the exact value of λs. One could argue that instead the
measured value of λs at the same time should be used. This will
make the comparison slightly less favorable. It is remarkable
that the empirical and theoretical values are in reasonable
agreement, despite the system not yet having reached the
asymptotic regime. To have a quantitative test, one would have

TABLE I. Numerically fitted nonuniversal coefficients from the
shoulder potential simulation of Fig. 1, and the corresponding L1

distance to the theoretically predicted stable distribution fL,5/3 for the
heat peak and fKPZ for the sound peak.

shoulder potential t = 256 t = 512 t = 1024 theory

heat: λh 1.807 1.713 1.624 1.711 mc
L1 distance 0.051 0.047 0.042

ah 3.433 3.617 mc
sound: λs 1.735 1.575 1.442 1.036

L1 distance 0.043 0.037 0.032
as 3.936 2.828
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FIG. 2. (Color online) Difference between, respectively, the heat and right sound peaks obtained from the MD simulation with shoulder
potential and the theoretical prediction at optimal λ, as listed in Table I. The notches around |x| � 12 in (a) are due to feedback from the sound
modes.

to simulate for longer times and, consequently, with larger
lattices.

Given the good fit in Fig. 1, more details are provided by
plotting the difference between the simulation data and the
theoretical fit at optimal λ, see Fig. 2 with a logarithmic plot
provided in Fig. 5. Even for this difference, the change from
the earliest time, t = 256, to the latest one, t = 1024, is not
particularly pronounced.

We also simulated the dynamics with an attractive po-
tential, for which (2) is modified such that V −

sh (x) = −1
for 1

2 < |x| < 1. The parameters are fixed as β = 2
5 and

p = 3
2 , with a corresponding sound velocity c = 1.745. The

coupling matrix G0 hardly changes, while G1 is roughly
doubled. This leads to broader sound peaks and thus a
stronger interaction between the peaks. The heat peak has
the same error bars as in case of the repulsive potential. At
the longest time the sound peaks still have a slight asymmetry,
increasing the L1 distance by a factor of 3. The attractive
potential, at the given parameters, seems to have a consid-
erably slower convergence. Indicative are ah = 32.447, as =
12.413, both at t = 1024 and corresponding to λh = 7.209,
λs = 9.449, which deviate even further from the theoretical
values.

Hard-point gas with alternating masses. For biatomic
chains, the unit cell consists of two adjacent parti-
cles. To allow for direct comparison with monoatomic
chains, we average the two-point correlations according
to

S̃αα′ (j,t) = 1
4 (2 Sαα′ (j,t) + Sαα′ (j − 1,t) + Sαα′ (j + 1,t)).

(56)

Omitting such average, the two-point correlations would have
a pronounced period of 2. The parameters of the hard-point gas
are alternating masses m0 = 1, m1 = 3 and p = 2, β = 1/2,
yielding a sound speed of cm̄ = √

3. The peak structure is
comparable to Fig. 1. For the stretch correlations the weights
are 1

6 : 2
3 : 1

6 , for the momentum correlations 2 : 0 : 2, and for
the energy correlations 2

3 : 2
3 : 2

3 . The difference between the
rescaled sound and heat peaks and the theoretical prediction
is displayed in Fig. 3. We record the still drifting nonuniversal
coefficients in Table II together with the prediction for the
universal coefficients. Note that, despite different material
parameters, the accuracy is comparable to the chain with
shoulder potential.

Square-well potential with alternating masses at zero
pressure. The universality classes of nonlinear fluctuating
hydrodynamics depend on the vanishing of some of the leading
couplings Gα

α′α′ . For anharmonic chains, G0
00 = 0 always. The

TABLE II. Numerically fitted nonuniversal coefficients for the
hard-point gas with alternating masses m0 = 1, m1 = 3, and the
corresponding L1 distance to the 5

3 -Lévy distribution fL,5/3 for the
heat peak and KPZ scaling function fKPZ for the sound peak.

hard-point gas t = 256 t = 512 t = 1024 theory

heat: λh 0.982 1.021 1.039 0.949 mc
L1 distance 0.046 0.027 0.015
ah 3.961 3.617 mc

sound: λs 2.540 2.482 2.421 2
L1 distance 0.063 0.057 0.053

as 3.424 2.828
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FIG. 3. (Color online) Difference between, respectively, the heat and right sound peaks obtained from the MD simulation with alternating
masses m0 = 1, m1 = 3, and the theoretical prediction at optimal λ. Each λ is fitted numerically to minimize the L1 distance, see Table II. Note
the notches at |x| � 16 in (a) resulting from feedback of the sound modes.

make some other leading coefficient vanish is not so easily
achieved, except for a symmetric potential at zero pressure. A
specific example is the square-well potential at zero pressure.
While the overall appearance looks similar, one can test a
universality class different from the previous two examples.
The square-well potential is defined in Eq. (21). We use the
maximal distance a = 1, alternating masses m0 = 1, m1 = 3,
and p = 0, β = 2, yielding a sound speed of cm̄ = √

3.
The peak structure is comparable to Fig. 1. For the stretch
correlations the weights are 1

24 : 0 : 1
24 , for the momentum

correlations 1
2 : 0 : 1

2 , and for the energy correlations 0 : 1
8 :

0. We record the still drifting non-universal coefficients in
Table III. For the theoretical prediction, as input for (53) we
use the measured value of λs at t = 1024. λs is a regular
transport coefficient not covered by our version of fluctuating
hydrodynamics.

TABLE III. Numerically fitted nonuniversal coefficients for the
simulation with alternating masses m0 = 1, m1 = 3 and square-
well potential, and the corresponding L1 distance to the 3

2 -Lévy
distribution fL,3/2 for the heat peak and Gaussian fG for the sound
peak. The theory value uses the current numerical value of λs.

square well, a = 1 t = 256 t = 512 t = 1024 theory

heat: λh 1.502 1.410 1.324
L1 distance 0.054 0.048 0.042
ah 2.423 1.414

sound: λs 3.902 4.146 4.348
L1 distance 0.058 0.056 0.051

The difference between the rescaled sound and heat peaks
and the theoretical prediction is displayed in Fig. 4. It is also
instructive to have a logarithmic plot of the simulation data. In
Fig. 5, for each of the three models, we only show the longest
time. The fit is for optimal λ. The asymmetry of the sound
peak is still visible with a slightly slower decay towards the
heat peak.

V. CONCLUSIONS

For a few anharmonic chains with hard collisions, our MD
simulations support the predictions from nonlinear fluctuat-
ing hydrodynamics. Two of the models have sound peaks
satisfying KPZ scaling and a heat peak, which scales as
the symmetric 5

3 -Lévy distribution. The square-well potential
chain is anomalous at the fine-tuned parameters p = 0, � =
a/2, in having two diffusive sound peaks and a symmetric
3
2 -Lévy heat peak. Of course, it would be of interest to
expand the evidence by investigating FPU chains and possibly
one-dimensional classical fluids.

The most surprising discovery, to us, is the precision
at which the peaks fit the predicted scaling functions. In
particular, we add to the evidence that the stable law with
exponent 5

3 is indeed the exact scaling function. The peaks
attain their theoretical shape already for fairly short times. On
the other side, the nonuniversal coefficients λs and λh are still
slowly drifting on the appropriate self-similar scale. On the
sizes and times accessible by the simulation, the λ coefficients
have not reached a limiting value. The deviation of λs, λh from
their theoretical value is significant, but one could believe
that eventually the predicted asymptotics will be reached. Our
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FIG. 4. (Color online) Difference between the, respectively, rescaled heat and right sound peaks obtained from the MD simulation with
maximal distance a = 1 and alternating masses, and the theoretical prediction at optimal λ. Note that the exponents and asymptotic functions
are different from the previous cases. The fitted λ values are provided in Table III. In the top row, the feedback from the sound modes to the
heat mode is clearly visible.

observation, if true in more generality, would shed some light
on earlier discrepancies in determining scaling exponents. It is
like averaging over systems with the same scaling exponent but
distinct nonuniversal parameters. In the same spirit we point
out that in Figs. 2–5 the sound peaks show a slight asymmetry
and the heat peak has bumps resulting from the interaction with
the sound mode. We conjecture that these are transient effects.
which will disappear for longer times and correspondingly
larger system size.

In the literature there are contributions that point to similar
conclusions. We mention the early measurement of the total
energy-energy current correlations with a decay as t−2/3

[8]. Also, on a purely phenomenological basis, the 5
3 -Lévy

distribution has been reported before [10,11,13], although at a
closer look not exactly the same quantity as here is monitored.
Here we focus on quantities predicted by our theory and, in
addition, implement several numerical innovations.

(i) We average over 107 initial conditions, which are
drawn from the exact equilibrium distribution. There is no
equilibration time step.

(ii) We employ the field-theory version of anharmonic
chains and measure the locally conserved fields in this
representation. We use normal mode coordinates, so to unam-
biguously separate the three peaks, and restrict our simulation
time up to the first collision between the sound peaks.

(iii) It is easier to fit theoretical predictions than to measure
accurately scaling exponents. In our context, one has six
correlation functions depending on space time. Nonlinear
fluctuating hydrodynamics suggests to use the finest resolution

for either spatial lattice or Fourier modes and only a few
time points. In other MD simulations the converse is pursued,
namely fine time, respectively, frequency, resolution, and only
a few smallest wave numbers. With such data the peak structure
is well resolved in frequency space, but the translation back to
(x,t) space cannot be readily achieved.

While writing, there are further MD simulations on the
way. H. van Beijeren and H. Posch proposed the shoulder
potential for which they run extensive MD simulations.
Accurate scaling plots are reported, but the nonuniversal
coefficients still deviate from their theoretical value [15]. A.
Dhar et al. [25] simulate FPU chains with 8192 particles
and up to t = 1600. The interaction potential is of the
form V (x) = 1

2x2 + 1
3 ax3 + 1

4x4. The simulated parameter
sets include the asymmetric case a = 2, p = 1, β = 2 and
the case of even potential at zero pressure, a = 0, β = 1,
p = 0. Such simulations are challenging, since one has to
solve the differential equations of motion. The results indicate
that the heat peak scales as the 5

3 -Lévy distribution with
wavelike small perturbations receding outwards. On the other
hand the sound peaks are still slightly asymmetric. The decay
outside the sound cone is well approximated by fKPZ, while
the opposite shoulder still exhibits slow tails resulting from the
interaction with the heat peak. S. Lepri [26] simulates the FPU
chain with a = 2, � = 1, and e = 0.1, corresponding to the
pressure p = −0.0077, alternatively e = 0.5, corresponding
to the pressure p = −0.026. Lepri works in frequency and
wave number space. The sound peak is highly resolved. For
the lowest wave numbers, the scaling plot fits well with
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FIG. 5. (Color online) Logarithmic plot of the heat and right sound peaks for all three models, at t = 1024. The dashed orange curve in (a)
and (b) is the fL,5/3 and the dashed brown curve in (c) the fL,3/2. The dashed red curve in (d) and (e) shows fKPZ, and the magenta dashed curve
in (f) is the Gaussian fG.

the Fourier transformed KPZ scaling function. However, the
measured nonuniversal λs is off by a factor of roughly 3 in
each of the two cases. More detailed results are reported in
Ref. [27]. Motivated by quantum fluids, M. Kulkarni and A.
Lamacraft simulate the nonlinear Schrödinger equation on a
lattice. Only the two sound peaks are observed and an effective
hydrodynamic model works with number and momentum
as only conserved fields. They report on the sound peak in
frequency space for a few lowest wave numbers [28], in spirit
similar to Ref. [26]. A fit to the corresponding KPZ scaling
function turns out to be fairly precise [29].

An interesting variant is studied by G. Stoltz based on
Ref. [30]. His random field is specified by {yj ,j ∈ Z} with
yj ∈ R. The deterministic part of the evolution is governed by

d

dt
yj = V ′(yj+1) − V ′(yj−1). (57)

In addition there are random exchanges yj ,yj+1 to yj+1,yj

independently at each bond with rate 1. The conserved fields
are yj and V (yj ). The dynamics is nonreversible. The invariant
measures are identical to the {rj } part of the anharmonic chain.
The canonical parameters are p,β, as before, conjugate to the
stretch � and internal potential energy e,

� = 〈yj 〉p,β, e = 〈V (yj )〉p,β . (58)

There are no momenta. The Euler equations have only two
components and read

∂t� + 2∂xp = 0, ∂te − ∂xp
2 = 0 (59)

with p = p(�,e). Following the standard route one obtains
the mode velocities c1 = 0, c2 = 2(−p∂ep + ∂�p) and the
G couplings G1

11 = 0, G1
12 = 0, G1

22 �= 0, while G2
αα′ is

generically different from 0. Thus the peak with label 2
is expected to have KPZ scaling, in analogy to our sound
peaks. The peak with label 1 will be 5

3 -Lévy. However,
since there is no symmetrically located third peak, it will
be the asymmetric 5

3 -Lévy distribution at maximally allowed
asymmetry, see Appendix D in Ref. [16]. MD simulations
using the exponential potential Vexp(x) = e−x + x confirm
such predictions [31].

If Vexp is replaced by the harmonic potential Vha(x) = x2,
then one switches to a different universality class, which is the
two mode version of our square-well potential at zero pressure
and � = a/2. Nonlinear fluctuating hydrodynamics predicts
a diffusive peak and a 3

2 -Lévy peak at maximal asymmetry.
Mathematically rigorous proofs have been posted recently
[21,22].

Nonlinear fluctuating hydrodynamics is fairly insensitive to
the underlying dynamics and only relies on having uniform,
current-carrying steady states. Thus it applies to quantum
fluids, but also to nonreversible stochastic particle systems, as
lattice gases with several locally conserved components. The
latter systems are accessible through Monte Carlo simulations.
In Ref. [32] the AHR model [33] is studied. The steady state is
computed via matrix product ansatz. Hence all coefficients are
known analytically. For the normal modes one finds c1 �= c2

and also G1
11 �= 0, G2

22 �= 0. However the subleading coef-
ficients vanish, G1

22 = 0 = G2
11. In Monte Carlo simulations

one observes a rapid relaxation to fKPZ for each mode. The
nonuniversal λ coefficient is relaxed and attains precisely the
value as deduced from the theory. A coupled two-lane TASEP
is studied in Ref. [34], which besides two KPZ peaks allows
one to also realize the cases of a KPZ peak with a 5

3 -Lévy peak
and, more exotically, of a KPZ peak with a diffusive peak.
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APPENDIX A: SQUARE-WELL POTENTIAL

The square-well potential serves as an example, for which
the transformation to normal modes and the second-order
expansion are still reasonably explicit.

We choose the spatial unit such that a = 1. Then the
thermodynamic potentials are given by

p(�,e) = 2eh(�), 2eβ = 1,

∂�p = 2eh′, ∂ep = 2h, (A1)

∂2
� p = 2eh′′, ∂�∂ep = 2h′, ∂2

ep = 0.

For the function h we use only that h′ < 0. The concrete h is
given below (24). For the hard-point gas, h = 1/�. The sound
speed is

cm̄ = c/
√

m̄, c2 = 2e(−h′ + 2h2). (A2)

The susceptibility is

C =
⎛
⎝(−h′)−1 0 0

0 2em̄ 0
0 0 2e2

⎞
⎠, (A3)

and the linearized Euler equations are governed by

A =
⎛
⎝ 0 −m̄−1 0

2eh′ 0 2h

0 2ehm̄−1 0

⎞
⎠. (A4)

From the eigenvectors of A one obtains the transformation
matrix R as

R = 1

2c
√

e

⎛
⎝ 2eh′ −cm̄ 2h

4eh
√−h′ 0 2

√−h′
2eh′ cm̄ 2h

⎞
⎠, (A5)

R−1 =
√

e
c

⎛
⎝ −1 2h/

√−h′ −1
−cm̄m̄ 0 cm̄m̄

2eh 2e
√−h′ 2eh

⎞
⎠. (A6)

Next we compute the G matrices for the nonlinear coupling
constants. First, by direct differentiation of p,

H� = 0, H u = 2

⎛
⎝eh′′ 0 h′

0 −hm̄−1 0
h′ 0 0

⎞
⎠,

(A7)

H e = 2

m̄

⎛
⎝ 0 eh′ 0

eh′ 0 h

0 h 0

⎞
⎠

and transformed as

(R−1)TH uR−1 = 2e2

c2

⎛
⎝a3 a1 a4

a1 a2 a1

a4 a1 a3

⎞
⎠,

(A8)

(R−1)TH eR−1 = 2 e c m̄−1/2

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠,

where

a1 = 2(−h′)−1/2(−hh′′ + h′2 + 2h2h′),

a2 = 4(−h′)−1(h2h′′ − 2hh′2),
(A9)

a3 = h′′ − 2hh′ − 4h3,

a4 = h′′ − 6hh′ + 4h3.

One still has to apply R to (R−1)T �HR−1. The final result reads

G0 =
√

−h′ e/m̄

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠, Gσ = 1

2

√
e/m̄

×
⎡
⎣σ

1

2(−h′ + 2h2)

⎛
⎝a3 a1 a4

a1 a2 a1

a4 a1 a3

⎞
⎠

+ 2h

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠

⎤
⎦ . (A10)

At 2� = a, p = 0 the sound speed simplifies to cm̄ =
2
√

6 e/m̄ and the coupling matrices to

G0 = 2
√

3 e/m̄

⎛
⎝−1 0 0

0 0 0
0 0 1

⎞
⎠,

(A11)

Gσ = σ
√

3 e/m̄

⎛
⎝0 1 0

1 0 1
0 1 0

⎞
⎠.

For the hard-point gas, a = ∞, hence p(�) = 1/�, and one
finds a1 = −6�−3, a2 = 0, a3 = 0, a4 = 12�−3.

APPENDIX B: SPEED OF SOUND, R MATRIX, AND
G COUPLINGS

For each model, at our parameters, we record c, R, and
G. One has the relation G−1 = −(G1)T , where T stands for
transpose relative to the antidiagonal. Thus only G1 is listed.
The entries are rounded to four digits for visual clarity.

Shoulder potential. Our parameters p = 1.2, β = 2 imply
c � 1.743 and

R =
⎛
⎝−0.8067 −1 0.7800

2.1031 0 1.7526
−0.8067 1 0.7800

⎞
⎠,

(B1)

R−1 =
⎛
⎝−0.2869 0.2554 −0.2869

−0.5 0 0.5
0.3443 0.2641 0.3443

⎞
⎠,

012147-11
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as well as

G1 =
⎛
⎝−0.3131 −0.0123 0.3664

−0.0123 0.2014 −0.0123
0.3664 −0.0123 0.3664

⎞
⎠,

(B2)

G0 =
⎛
⎝−0.7635 0 0

0 0 0
0 0 0.7635

⎞
⎠.

Hard-point gas with alternating masses. The general
expression for R reads

R = 1√
6

⎛
⎝−βp −√

3β/m̄ 2β

2βp 0 2β

−βp
√

3β/m̄ 2β

⎞
⎠. (B3)

The G matrices only depend on the sound speed, and the
general formula is

G1 = cm̄

2
√

6

⎛
⎝−2 −1 2

−1 0 −1
2 −1 2

⎞
⎠, G0 = cm̄√

6

⎛
⎝−1 0 0

0 0 0
0 0 1

,

⎞
⎠

(B4)

with sound speed cm̄ = c/
√

m̄ and c = √
3β p. Specifically

for m0 = 1, m1 = 3, p = 2, β = 1/2, one obtains cm̄ = √
3 �

1.732 and

R =
⎛
⎝−0.4082 −0.3536 0.4082

0.8165 0 0.4082
−0.4082 0.3536 0.4082

⎞
⎠,

(B5)

R−1 =
⎛
⎝−0.4082 0.8165 −0.4082

−1 0 1
0.8165 0.8165 0.8165

⎞
⎠,

G1 =
⎛
⎝−0.7071 −0.3536 0.7071

−0.3536 0 −0.3536
0.7071 −0.3536 0.7071

⎞
⎠,

(B6)

G0 =
⎛
⎝−0.7071 0 0

0 0 0
0 0 0.7071

⎞
⎠.

Square-well potential, a = 1 and p = 0. The general
formula for R is provided in Eq. (A5) and for G in Eq. (A11).

Inserting β = 2 and alternating masses m0 = 1, m1 = 3 results
in cm̄ = √

3 and

R =
⎛
⎝−2.4495 −0.7071 0

0 0 2.8284
−2.4495 0.7071 0

⎞
⎠,

(B7)

R−1 =
⎛
⎝−0.2041 0 −0.2041

−0.7071 0 0.7071
0 0.3536 0

⎞
⎠,

G1 =
⎛
⎝ 0 0.6124 0

0.6124 0 0.6124
0 0.6124 0

⎞
⎠,

(B8)

G0 =
⎛
⎝−1.2247 0 0

0 0 0
0 0 1.2247

⎞
⎠.

APPENDIX C: SCALING FUNCTIONS

The nonuniversal λ coefficients are defined relative to a
conventional choice of the scaling functions, which we list for
convenience.

The Gaussian of unit variance is defined as

fG(x) = (2π )−1/2 e−x2/2. (C1)

The symmetric Lévy distribution with index α, 0 < α < 2, is
given by

fL,α(x) = 1

2π

∫
R

dk eikxe−|k|α . (C2)

fL,α(x) � |x|−α−1 for large |x|.
The KPZ scaling function fKPZ is tabulated in Ref. [23],

denoted there by f . It holds

fKPZ � 0,

∫
R

dx fKPZ(x) = 1, fKPZ(x) = fKPZ(−x),

×
∫
R

dx fKPZ(x) x2 = 0.510523 . . . . (C3)

fKPZ looks like a Gaussian with suppressed tails, more
precisely a large |x| decay as exp[−0.295|x|3] [24]. The
natural definition of fKPZ involves the Fredholm determinant
of the Airy kernel, which then implies our particular value of
the variance.
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