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We study the performance of a quantum Otto cycle operating in trapping potentials of different shapes. We
show that, while both the mean work output and the efficiency of two Otto cycles in different trapping potentials
can be made equal, the work probability distribution will still be strongly affected by the difference in structure
of the energy levels. To exemplify our results, we study the family of potentials of the form Vt (x) ∼ x2q . This
family of potentials possesses a simple scaling property that allows for analytical insights into the efficiency
and work output of the cycle. We perform a comparison of quantum Otto cycles in various physically relevant
scenarios and find that in certain instances, the efficiency of the cycle is greater when using potentials with larger
values of q, while in other cases, the efficiency is greater with harmonic traps.
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I. INTRODUCTION

The study of thermodynamics at the nanoscale has been
a subject of intense interest in recent years (for some recent
reviews, see [1,2]). As with classical thermodynamics, one of
the main subjects of study is the performance of heat engines.
At small scales, heat engines are bound to produce not a
deterministic but rather a probabilistic work output because of
the relative importance of thermal and quantum fluctuations.
In recent years, nonequilibrium work fluctuations have been
related to the change of free energy at equilibrium by the
Jarzynski’s equality [3]. Another notable result, the Crooks
equation, relates the forward and backward probabilities of a
process [4].

Important recent developments in the study of heat engines
include the possibility, both in classical and quantum systems,
to externally drive a system such that a physical process is
adiabatic despite being executed in a finite time [5–17]. These
shortcuts to adiabaticity would allow for the possibility of
achieving highly efficient adiabatic-like engines with finite
power.

Thus far, quantum thermodynamic cycles and processes
have focused primarily on harmonic systems [18–30], with
study of anharmonic potentials limited to weak first-order
perturbations of a frequency-modulated harmonic oscillator
[31], verification of the Jarzynski equality by computation of
the nonequilibrium work distribution in a time-varying infinite
well [32], and the experimental verification of non-Gaussian
behavior [33].

Heat engine cycles using anharmonic traps present very
different energy level spacing from harmonic ones, thus
resulting in very different work probability distributions. This
has important consequences on the quality of the performance
of the heat engine, which could be made more or less efficient,
or powerful, depending on the shape of the trapping potential
used. Furthermore, efficiency and average work output are
not the only important figures of merit of a heat engine. The
standard deviation of the work is also relevant, as it indicates
whether the engine performs more or less consistently (when
the standard deviation is smaller or larger, respectively).
The comparison between heat engines in different trapping
potentials is only fair when the two systems are compared
within the same conditions. We will show that whether a

heat engine in a potential performs better than an engine in
a different potential depends strongly on the figure of merit
analyzed (for example, efficiency) and also on the conditions
in which the engines operate (for example, between the same
two heat reservoirs).

To exemplify these concepts, we are going to study a
particular family of trapping potentials, that of even power-law
potentials which are proportional to x2q , where q is a positive
integer number and x is the position coordinate of the system.
We will show later in the paper that our conclusions pertain
to a much wider class of potentials. This family of trapping
potentials has a useful scaling property that has been used
in [13,14] to engineer counteradiabatic driving protocols.
In this paper, we investigate further this class of trapping
potentials, which includes both harmonic and anharmonic
functions, focusing on utilizing the geometry of the trapping
potential to tame the work fluctuations in a quantum heat
engine. We examine cycles for which the average work output
and efficiency are the same, and also scenarios in which the
maximal and minimal temperatures of the quantum gas in
the cycle are fixed. We show that not only are the work
fluctuations different for different q, but that, depending on
the comparative scenarios analyzed, either the harmonic or
anharmonic potentials can provide greater efficiency and/or
work output.

II. MODEL

The systems we study obey the Hamiltonian

Ĥ (q,ωq) = − �
2

2m

∂2

∂x2
+ 1

2
m(ωq x̂)2q, (1)

where q = 1,2,3, . . . and ωq represents the magnitude of the
generalized trapping potential [13,14]. Note that this gener-
alized trapping potential reverts to the harmonic oscillator
for q = 1 and to the “infinite” box potential for q = ∞.
The system undergoes a cycle consisting of four processes
[see Figs. 1(a) and 1(b) for a schematic representation]:
First an adiabatic compression from a state Aq (q is the
anharmonic parameter mentioned earlier), characterized by
ωq = ω′

q , to Bq , where the amplitude of the trapping is
ω′′

q > ω′
q (no coupling to any thermal bath during this process).
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FIG. 1. (Color online) (a),(b) Mean energy 〈E〉 vs trapping pa-
rameter ωq for a quantum Otto cycle. The continuous blue lines
represent the cycle in a harmonic trap (q = 1), while the dashed
red lines represent a cycle in an anharmonic trap with q = 2. (c),(d)
Standard deviation of the work distribution σWcycle vs the anharmonic
parameter q. In all the plots, the mean energy at each vertex of
the cycle is the same (“matched energies condition”). In (a) and
(c) the initial temperature 1/βAq

is the same for the two different
confining potentials, while in (b) and (d) the initial volume, VAq

, is
matched. The extremal temperatures for the cycle in a harmonic trap
are 1/βA1 = 1/2 (�ω′

1)−1 and 1/βC1 = 5/4 (�ω′
1)−1.

This is followed by a heat exchange at constant Hamiltonian
parameters (no work is done or received) from Bq to Cq

due to a weak coupling to a thermal reservoir. The third
process is an adiabatic expansion from Cq to Dq (no coupling
to any thermal bath in this process either). Lastly, a heat
exchange with the cold reservoir at constant Hamiltonian
parameter brings the system back to state Aq . The cycle is fully
determined by the choice of ω′

q , ω′′
q and by the temperatures

1/βAq
and 1/βCq

(we will refer to these last two parameters as
the “extremal” temperatures because they are the lowest and
highest temperatures achieved in the system).

During the thermodynamic cycle, energy is exchanged un-
der the form of work and heat transfer. When the Hamiltonian
parameter ωq varies from a value ω′

q to ω′′
q following a process

p, the (inclusive) work is described by the work probability dis-
tribution function P (Wp) = ∑

m,n δ(Wp − E′′
m + E′

n)Pm,nPn,
where E′′

m and E′
n are the eigenvalues of, respectively,

Ĥ (q,ω′
q) and Ĥ (q,ω′′

q), Pn is the initial thermal probability
of occupation of the energy eigenvalue n, and Pm,n is the
transition probability from the energy eigenstate n to the
eigenstate m relative to the process p (see, for example, [1]).
When the system instead undergoes solely a heat exchange,
for example between states Bq and Cq , the heat transferred
can be computed as the difference of the mean energies
〈QBq→Cq

〉 = 〈E〉Cq
− 〈E〉Bq

. And the efficiency of the cycle,
ηq , is defined, as per usual, by the ratio of the modulus of

net work done divided by the heat transferred into the system,
ηq = −(〈WAq→Bq

〉 + 〈WCq→Dq
〉)/〈QBq→Cq

〉 [34].
While the cycle we study is commonly known as the Otto

cycle, it should be noted that in the “classical” Otto cycle, a
process in which no work is done or received corresponds to
an isochoric process (no change in volume), but in the systems
and regimes analyzed here, a process with no work transfer
is obtained when the parameters of the Hamiltonian are kept
unchanged. In this process, the volume occupied by the gas
V =

√
〈x̂2〉 does change, as heat is introduced into the system

[35].

III. PROPERTIES OF POWER-LAW
TRAPPING POTENTIALS

To gain a deeper insight into the problem, we rescale
the Hamiltonian using the dimensionless coordinate X =
(m

�
)

1
1+q (ωq)

q

1+q x. The dimensionless Hamiltonian Ĥq is thus

Ĥq = Ĥ (q,ωq)

m
1−q

1+q (�ωq)
2q

1+q

= −1

2

∂2

∂X2
+ 1

2
X̂2q (2)

with eigenvalues en,q . From (2), we observe that the nth
energy eigenvalue of Ĥ , εn(ωq), can be written as εn =
m

1−q

1+q (�ωq)
2q

1+q en,q .
Now, considering a process in which the Hamiltonian

parameter of the trapping potential is changed from ω′
q to

ω′′
q , we can state, using the aforementioned scaling argument,

that the ratio between two energy levels of the same order
will only depend on the ratio of parameters of the trapping
potential, namely

μq ≡ εn(ω′
q)

εn(ω′′
q)

=
(

ω′
q

ω′′
q

) 2q

1+q

. (3)

In the following, we will refer to μq as the energy ratio
parameter. For a given pair of parameters such that ω′′

q > ω′
q

(compression), the energy ratio parameter is bounded: 0 <

μq < 1. Moreover, the scaling properties of the Hamiltonian
(1) imply that states are always thermal during adiabatic
processes. In fact, for any adiabatic process, where the
population of each energy level remains unchanged, an initial
thermal state remains thermal so long as βεn(ω′

q) = β ′ε′
n(ω′′

q)
(where β ′ has to be the same for every state n) [25]. Using
Eq. (3), we can then derive the inverse temperature of the final
state β ′ = βεn(ω′

q)/εn(ω′′
q) = μqβ, which is independent of n.

Using the energy ratio parameter μq , it is also possible to
express the average work of an adiabatic process in a simple
form. Considering, for example, the compression from Aq to
Bq , the average work is written as

〈
WAq→Bq

〉 =
∑
m,n

[εm(ω′′
q) − εn(ω′

q)]PmnP 0
n

=
(

1

μq

− 1

) ∑
n

εn(ω′
q)

e−βεn(ω′
q )∑

l e
−βAq εl (ω′

q )

= 1 − μq

μq

〈
EAq

〉
, (4)
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where 〈EAq
〉 is the average energy of the initial state Aq [36].

Furthermore, it is also possible to write the efficiency of the
cycle in terms of the energy ratio parameter,

ηq = 1 − μq, (5)

where, in reference to Eq. (4), we have used
〈WAq→Bq

〉 = (1/μq − 1)〈EAq
〉, 〈WCq→Dq

〉 = (μq − 1)〈ECq
〉,

and 〈QBq→Cq
〉 = 〈ECq

〉 − 〈EAq
〉/μq . In classical

thermodynamics, the efficiency of the Otto cycle can
be written as a function of only the compression ratio
κq = VAq

/VBq
(the ratio between the volume before and after

the compression) and of the adiabatic parameter γ = Cp/Cv

(the ratio between the heat capacity at constant pressure and
at constant volume). In this spirit, we write μq as a function
of the ratio of volumes of the quantum gas by making use of
the rescaling of X and the definition of volume V ,

κq = VAq

VBq

=
(

ω′′
q

ω′
q

) q

1+q

= 1√
μq

. (6)

This allows us to write the efficiency of the Otto cycle as

ηq = 1 − 1

κ
γ−1
q

= 1 − βBq

βAq

, (7)

which is the same expression as the efficiency of a classical
Otto cycle [22] since, for our family of potentials, γ = 3
[37].

IV. COMPARING ENGINE CYCLES IN DIFFERENT
TRAPPING POTENTIALS

Equation (7) shows that the efficiency of the cycle is
only a function of the ratio of temperature at the ends of
the compression process. However, whether the ratio of the
temperatures before and after the compression cycle for one
heat engine will be larger or smaller than another will depend
on the exact shapes of the potentials and on the operating
conditions of the engines. This said, it is thus possible to either
compare the efficiency of engine cycles with different values
of q or adjust their parameters such that the engine cycles
would have the same efficiency. It is also possible to adjust
the parameters of engine cycles with different q such that the
mean energies at each vertex of the cycle are identical (we
will refer to this as the “matched energies condition”). This
requirement will force both cycles not only to have the same
efficiency, but also the same average transfers of heat and
work in each process. While the “matched energies condition”
guarantees that mean values obtained for the engine cycles
are the same, the probability distributions of the work of the
cycle, P (Wcycle), are bound to be different, due to the different
energy level structure of traps with different q. This can be
characterized by studying the standard deviation of the work
fluctuations, σWcycle =

√
〈W 2

cycle〉 − 〈Wcycle〉2.
In Figs. 1(a) and 1(b), we represent the Otto cycle in

an average energy, 〈E〉, against the trapping parameter, ωq ,
diagram. The blue continuous line represents a cycle for q = 1,
while the red dashed line is used for q = 2. The parameters
ω′

q , ω′′
q , βAq

, and βCq
have been chosen to fulfill the “matched

energies condition.” Note, however, that the matched energies
condition does not uniquely define all the parameters. To do

so, we add another, physically relevant, condition: In Figs. 1(a)
and 1(c), we have chosen the parameters such that the initial
volume VAq

is the same for all q, while in Figs. 1(b) and 1(d) the
initial temperatures 1/βAq

are the same for all q. The standard
deviation of the work fluctuations, σWcycle , which characterizes
the consistency of the work output, is shown in Figs. 1(c) and
1(d) as a function of q. Here the work probability distribution
for a cycle is given by

P (Wcycle) =
∑

δ
(
Wcycle − WAq→Bq

− WCq→Dq

)
× P

(
WAq→Bq

)
P

(
WCq→Dq

)
, (8)

where the summation includes all possible values of WAq→Bq

and WCq→Dq
[34]. Figures 1(c) and 1(d) also clearly show that

whether the work fluctuation actually grows or decreases with
an increasing anharmonic parameter q depends strongly on
the additional matching condition (same initial temperature,
volume, or any other relevant physical quantity).

The different work fluctuations for various values of q are
rooted in the difference in work probability distributions of the
various anharmonic parameters q, which is evident in Fig. 2.
In particular, Figs. 2(a) and 2(c) show the work probability
distribution for the expansion process, between Cq and Dq . In
Fig. 2, we are using the “matched energies condition” and, to
uniquely define the parameters of the cycles, we also chose
the same temperature 1/βAq

for both cycles (for the exact
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FIG. 2. (Color online) (a),(b) Probability distribution of work,
P (Wp), for the adiabatic compression and expansion processes of the
cycle in the harmonic trap (q = 1). (c),(d) P (Wp) for the compression
and expansion processes in the anharmonic trap with q = 2. (e),(f)
Probability distribution of work for the full quantum Otto cycle for
the harmonic (e) and anharmonic, q = 2, trap (f). Cycle parameters
(corresponding to “matched energies condition” and also matching
of the initial temperature 1/βAq

) are ω′′
1/ω

′
1 = 2, ω′

2/ω
′
1 = 1.392,

ω′′
2/ω

′
1 = 2.341, βA1 = �ω′

1, and βC1 = 1/4 �ω′
1.
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parameters, see the caption). Obviously, the histograms are
not equidistant in Fig. 2(b) because, unlike in Fig. 2(a), the
energy levels are not equidistant. It is also noticeable that
the standard deviation in Fig. 2(c) is different from that in
Fig. 2(a). These two aspects (the nonequidistance of energy
levels and the different variance) are also well represented
in Figs. 2(b) and 2(d), where the net work probability
distributions of the compression process for q = 1 and 2 are
depicted, respectively. In Figs. 2(e) and 2(f), we show instead
the work probability distribution for the full cycle. We notice
clearly that the average work output is negative and that the
standard deviation is different in the two cases. We also note
the presence of small histograms between much larger ones
in Fig. 2(f) but not in Fig. 2(e). This is due to the presence of
non-equally-spaced energy levels for q > 1.

It is also important to investigate physically relevant
scenarios that veer away from the stringent “matched energies
condition.” For instance, the extremal temperatures 1/βAq

and
1/βCq

could be the same for two engine cycles (because the
engines operate between the same two thermal baths). To
uniquely define all the parameters of the cycle, two more
independent conditions are needed. In Fig. 3, two physically
relevant examples are considered: (a) and (c) the case in which
the extremal energies (〈EAq

〉 and 〈ECq
〉) are also matched,

and (b) and (d) the case in which the extremal volumes (VAq

and VCq
) are identical. As shown in Figs. 3(a) and 3(b), the

efficiency of the engine cycles is an increasing function of q
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FIG. 3. (Color online) (a),(b) Efficiency of Otto cycles for differ-
ent values of q vs ω′′

1 . (c),(d) Comparison of average work done in a
cycle 〈Wcycle〉 vs ω′′

1 . In all the plots, the continuous blue line is used
for q = 1, the dashed pink line for q = 2, and the dot-dashed red line
for q = 3. The compared cycles have the same extremal temperatures
(βAi

= βAj
= 10 �ω′

1 and βCi
= βCj

= �ω′
1 with i,j = 1,2,3) and,

for (a) and (c), matched extremal volumes (VAi
= VAj

and VCi
= VCj

with i,j = 1,2,3), while in (b) and (d) matched extremal energies
(〈EAi

〉 = 〈EAj
〉 and 〈ECi

〉 = 〈ECj
〉 with i,j = 1,2,3).

when the extremal energies are the same, while it decreases
with increasing q when the extremal volumes are made the
same. Furthermore, Figs. 3(c) and 3(d) shows the net work
output of the respective matching conditions, which may in
fact be either larger in the harmonic (continuous line) or in the
matched anharmonic cases (lines with symbols) depending on
the specific matching condition (extremal volumes or extremal
mean energies, etc.), and on the value of the matched ω′′

1 .
As a last case study, we choose the parameters ω′

q and ω′′
q

such that the average net work output and the mean initial
energy 〈EAq

〉 are matched to their corresponding values in
the harmonic engine while keeping the extremal temperatures
matched for engine cycles with different q. In this case, we
expect the efficiency to be dependent on the choice of q,
which is clearly seen in Fig. 4(a), where each curve shows
the efficiency for different values of q. We note that the figure
consists of two separate curves for any given q because the
work output, when the two extremal temperatures are fixed, is
not a monotonous function of ω′′

q , as can be seen in Fig. 4(b).
This figure also shows that by fixing the extremal temperatures,
there are values of work output that are attainable by the
harmonic potential that cannot be generated by anharmonic
potentials (to do so would require, for instance, a much larger
temperature at Cq or a much lower temperature at Aq). It is
for this exact reason that in Fig. 4(a) there exists a central
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FIG. 4. (Color online) (a) Efficiency of the cycle vs ω′′
1 for

different anharmonic parameters q. The cycles compared have the
same extremal temperatures (βAi

= βAj
= 10 �ω′

1 and βCi
= βCj

=
�ω′

1 with i,j = 1,2,3,4) and perform the same average work 〈Wcycle〉.
Moreover, the initial mean energy 〈EAq

〉 is the same. (b) Average
work produced 〈Wcycle〉 vs ω′′

q for the same initial temperature
βAq

and mean energy 〈EAq
〉. In (a) and (b) the continuous blue

and black lines are used for q = 1, the dashed pink line for
q = 2, the dot-dashed red line for q = 3, and the dotted green line
for q = 4. ω′

2/ω
′
1 = 0.9567, ω′

3/ω
′
1 = 0.9137, ω′

4/ω
′
1 = 0.8802. The

pink arrow indicates the maximum work attainable for q > 1 (for this
matching condition), while the gray, dashed double arrows highlight
the boundaries of the region for which engine cycles within a trap
with q > 1 cannot match the work of the harmonic case.
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region of the plot along the ω′′
1/ω

′
1 axis for which there are

no lines representing the efficiency of engine cycles within an
anharmonic trap. In addition, Fig. 4(a) also shows that given a
particular ω′′

q , the efficiency of all the anharmonic engine cycles
(with the same average work and extremal temperatures) can
either be always better (for low compressions) or worse (for
large compressions) than that of the harmonic cycle. Note that
the thin black continuous line in Fig. 4 shows the efficiency
of an engine cycle in a harmonic trap which still has the same
〈EAq

〉 and 〈Wcycle〉 as the original solid harmonic curve, but is
now achieved with a different ω′′

1 . This analysis of Figs. 4(a)
and 4(b) also teaches us that, while a desired amount of net
work can be obtained with multiple ω′′

q , one particular choice
of this value may give the best efficiency.

To understand the generality and applicability of the above
results derived for cycles driven by single q parameters, we
also investigate the properties of cycles with driving potentials
that are composites of multiple x2q terms. These can be seen as
a Taylor expansion of cosine potentials typical, for example,
of optical lattices. In particular, we consider systems obeying
the harmonic-plus-anharmonic Hamiltonian

Ĥha(λ,φ,q)

�ω′
1

= −1

2

∂2

∂X2
+ λ

[
cos(φ)

X̂2

2
+ sin(φ)

X̂2q

2q

]
,

(9)

where λ ∈ (0,∞) regulates the strength of the trapping
potential, q �= 1, and where φ ∈ [0,π/2] allows to tune the
degree of anharmonicity of the trapping potential (while
keeping the trapping potential always convex). Note that in
the limits φ = 0 and φ = π/2, this composite anharmonic
potential reverts to the pure harmonic and anharmonic cases,
respectively. Using this potential, we calculate the efficiency
and work of Otto cycles for a range of anharmonic strengths

0 1/4 1/2
0.45

0.5

0.55

η

φ/π

0 1/4 1/2
−0.16

−0.12

−0.08

φ/π

W h̄
ω

1

(a)

(b)

FIG. 5. (Color online) (a) Efficiency and (b) average work of
cycles with Hamiltonian (9) (q = 2) vs φ. The parameters of the
anharmonic cycle are computed by matching to a harmonic cycle
with ω′′

1 = 2ω′
1. Moreover, the temperatures βAi

= βAj
= 10�ω′

1,
βCi

= βCj
= �ω′

1, and either the extremal volumes (continuous blue
line) or extremal average energies (dashed red line) are matched to
the harmonic case (φ = 0).

(0 � φ � π/2) under identical matching conditions used in
Fig. 3 (i.e., matching of either the extremal average energy or
extremal volume in addition to operating the engines between
the same extremal temperatures 1/βA and 1/βC).

As we can see in Fig. 5, for q = 2, both the efficiency and the
work are strongly dependent on the matching conditions (blue
continuous line for matched extremal energies and red dashed
line for matched extremal volumes) and also that work and
efficiency are, for the cycles studied, monotonous functions
of φ. Note also that, while the Otto cycles driven by this
composite anharmonic potentials are entirely analogous to
those driven by a single q value, the states at points B and D of
the composite cycle reached by either adiabatic compression
or expansion are, unlike before, nonthermal. This is due to the
loss of the unique scale-invariant property of the Hamiltonian,
which is only present in the pure x2q potentials. As such,
the results derived for the composite potential can only be
computed entirely numerically.

V. CONCLUSIONS

We have studied a quantum Otto cycle driven by a particular
class of trapping potentials. This family of potentials allows
for the investigation of the relative performance of heat
engines between harmonic and anharmonic configurations,
which paves the way toward optimizing the work fluctuations
by detailed design of the trapping geometry. In our analytical
treatment, which is made possible by the scaling properties
of these potentials, we have found that, regardless of the
values of the anharmonic parameter q, all engine cycles share
the same expression for the efficiency, which corresponds
to the classical expression. However, despite this apparent
similarity in the expression for the efficiency, we have shown
that the work probability distribution is still strongly affected
even when both the average work output and the efficiency
of the cycles for different potentials are made identical.
Subsequently, we have also analyzed cases in which engine
cycles with different potentials are made to operate between the
same extremal temperatures, and we studied various physically
relevant scenarios for detailed and quantitative comparisons
of the different engine cycles; we have found that, if the
extremal energies of the cycle are matched, the engines within
power-law potentials with q > 1 have greater efficiencies than
those within a harmonic potential. On the contrary, if the
extremal volumes are equal, then engines within the harmonic
potential are more efficient. Lastly, we have also shown that,
for the case in which the extremal temperatures are the same
for the two engines and the parameters are chosen such that the
average work output is the same, then, for small compressions,
engine cycles within an anharmonic potential are more efficient
than cycles within harmonic trapping potentials, while for
larger compressions the converse is true. In addition, we have
also shown that these results can qualitatively be extended
to a more general and wider set of anharmonic trapping
potentials that include multiple terms with different values
of the anharmonic parameter q.

Given the degree of control and tunability, both in time
and in space, of the trapping potentials generated [38,39],
these heat engine cycles could be experimentally realized using
segmented linear Paul traps.
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