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Effect of disorder on condensation in the lattice gas model on a random graph
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The lattice gas model of condensation in a heterogeneous pore system, represented by a random graph of cells,
is studied using an exact analytical solution. A binary mixture of pore cells with different coordination numbers
is shown to exhibit two phase transitions as a function of chemical potential in a certain temperature range.
Heterogeneity in interaction strengths is demonstrated to reduce the critical temperature and, for large-enough
degreeS of disorder, divides the cells into ones which are either on average occupied or unoccupied. Despite
treating the pore space loops in a simplified manner, the random-graph model provides a good description of
condensation in porous structures containing loops. This is illustrated by considering capillary condensation in a
structural model of mesoporous silica SBA-15.
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I. INTRODUCTION

Condensation in porous media is an interesting physical
phenomenon which is affected by the geometry of the pore
space and chemical properties of the solid matrix and contained
fluid. In particular, the sorption curves for condensed liquid
versus external pressure exhibit hysteresis loops and jerky
avalanche-type behavior [1–3]. The shape of the hysteresis
loop varies significantly between different materials and is
strongly dependent on the structure of the pores [4]. It is
important to know the link between the structure of the
pores and the form of the hysteresis loops in order to, e.g.,
characterize the porous structure of materials from sorption
experiments.

There are several theoretical models, including classical
continuous theories, local mean-field approaches, and lattice-
gas based models which predict the shape of the sorption
curves based upon the underlying structure [3,5,6]. In this
paper, we use a lattice gas model [2], which can be mapped to
the random-field Ising model [7–9], so techniques developed
for the latter model can be applied to the study of condensation.
In the lattice gas model, the porous medium is coarse grained
into cells which can be in three different states: occupied by
matrix, liquid, or vapor. The configuration of matrix cells
is quenched, meaning that they do not change state during
sorption. Each of the rest of the cells are allowed to change
between the two other states, i.e., they can either be empty
(occupied by vapor) or occupied by liquid. The states of these
cells are characterized by a state variable τ which takes the
values τ = 0 or 1 corresponding to an empty or occupied cell,
respectively.

In thermal equilibrium, the cells can change state between
the occupied and the empty states, due to thermal fluctuations.
The relative number of empty and occupied cells depends
on the external parameters such as pressure (chemical
potential, μ) and temperature, T . When the cell is occupied
by liquid, the liquid interacts with the matrix. The strength of
this interaction, wmf, is a parameter of the lattice gas model.
Two neighboring cells, both occupied by liquid, can also

interact, and the strength of this interaction, wff , is another
parameter of the model.

Real porous materials are typically heterogeneous in struc-
ture and chemical composition [10–15]. In order to account
for this heterogeneity we allow the parameters of the lattice
gas model to vary between cells. In addition, the topology of
a porous network can be far from a regular lattice [16–18],
and below it is modelled by a random graph with a fixed
degree distribution [19,20]. The main aim of this paper is
to take into account the disorder in the interaction strengths
and topology and determine the effects of such disorder on
sorption. In order to do this, we analyze the exact equilibrium
solution to the model in the limit of infinite system size
and perform Metropolis dynamics simulations to confirm the
analytical findings. Our analytical technique is based on known
recursive techniques for the random-field Ising model on a
Bethe lattice [21–23], which we extend to introduce disorder in
all three parameters, wmf, wff , and node coordination number
(degree), q. At the same time, the exact results presented
here for condensation are relevant to the random-field Ising
model.

Our main findings are the following. We find an exact
analytical solution in equilibrium for the distribution of
fluid density, incorporating all three types of disorder, in
the form of an integral equation. This integral equation can
be solved numerically, and its solution has been supported
using Metropolis dynamics simulations. We first show that
the solution of the model reproduces the expected behavior
for chemically and topologically homogeneous porous media
with fixed value of wmf, wff , and q for all cells. As the chemical
potential is varied, the system undergoes an equilibrium
discontinuous phase transition between liquid and gas phases
provided temperature is smaller than a critical value, TC ,
which depends on the coordination number of the cells. Above
the critical temperature, there are strong thermal fluctuations
and the mean density is a continuous function of μ. We
then analyze separately the consequences of several types
of disorder on sorption: in coordination number, matrix-fluid
interaction, and fluid-fluid interaction. Within the equilibrium
approach, disorder in coordination number is shown to lead

1539-3755/2014/90(1)/012144(19) 012144-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevE.90.012144
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to the appearance of several first-order phase transitions in
a certain range of temperatures as the chemical potential
is varied, each transition being associated with a sudden
change in the occupation of cells of a certain coordination
number. Dynamically, the system follows a hysteresis curve
involving a sequence of metastable states. This hysteresis
loop can have an asymmetric shape, with, e.g., two steps
for desorption curve and a single step for the adsorption
curve. Disorder in the interaction parameters reduces the
critical temperature of the transitions. For large disorder, the
disorder-controlled distribution of the mean occupations of
cells is shown to be bimodal, corresponding to either empty or
occupied cells.

The existence of more than one phase transition in
Ising-like models has previously been observed as a result
of disorder in either coordination number [24] or bimodal
disorder in interaction strengths [25,26]. In addition, evidence
of multiple step transitions in sorption has been found in
molecular dynamics simulations [27]. However, only one
phase transition has been reported in a treelike system
with random cells blocked by matrix [23], equivalent to
a binomial distribution of coordination numbers. A more
general distribution of coordination numbers allows a second
phase transition to occur in a treelike system, as we show
below.

Finally, we have demonstrated that the random-graph
model can be successfully used for description of sorption
in models of realistic porous materials such as SBA-15 when
the temperature exceeds the critical one. This is due to the
fact that, in this temperature regime, the size of avalanches
in fluid density is smaller than the typical size of the loops
in the pore space and thus the loops are insignificant for
condensation.

The structure of the paper is the following. The model
is introduced in Sec. II and solved in Sec. III. The results
are presented in Sec. IV for the system without disorder
and in Sec. V for disorder only in coordination numbers.
Results for systems with homogeneous coordination number
but disordered interaction strengths are presented in Sec. VI.
In Sec. VII results for systems with all kinds of disorder
simultaneously are presented. The Metropolis algorithm used
to support the analytical findings is discussed in Sec. VIII.
The applicability of the random-graph model for description
of sorption in a structural model of real porous materials,
such as SBA-15, is analyzed in Sec. IX and conclusions are
presented in Sec. X.

II. MODEL

Condensation in a porous material with a fixed matrix
morphology can be modelled with the following lattice-gas
Hamiltonian [2]:

H = −
∑
〈ij〉

wff
ij τiτj −

∑
i

wmf
i τi − μ

∑
i

τi , (1)

where τi is the state variable of cell i, wff
ij stands for the

strength of the fluid-fluid interaction between neighboring
cells i and j , and wmf

i is the strength of fluid-matrix interaction
of liquid in a cell with surrounding matrix. The network of
cells representing the porous material is chosen to be a random

graph of N nodes i = 1, . . . ,N with a fixed degree distribution,
i.e., there is a fixed number, Nq , of nodes of coordination
number q [19]. The distribution of wmf

i is assumed to be
dependent on the coordination number of the cell i, i.e., it is
characterized by the probability distribution function (p.d.f.),
Wmf

qi
(wmf

i ). Conversely, the fluid-fluid interaction is assumed
to be independent of both qi and wmf

i and is distributed
according to the p.d.f. W ff(wff

ij ) for all pairs of neighboring
cells.

The relevant characteristics of the system are the mean
grand potential per cell (or mean free energy per cell using
the language of the random-field Ising model), F/N , and the
mean occupied volume, ρi = 〈τi〉, of each cell, where 〈· · · 〉
represents an average over the grand-canonical ensemble.
These quantities can be defined in terms of the (grand) partition
function (with β = T −1 being the inverse temperature),

Z =
∑
{τi }

exp ( − βH({τi})), (2)

according to

F = −β−1 ln(Z) (3)

and

ρi = ∂F

∂wmf
i

. (4)

As a result of the quenched disorder, the values of F and
ρi are random quantities, with the free energy taking a mean
value per cell F/N and the mean occupied volume of each cell
having a distribution R(ρi). Our aim is to calculate the p.d.f.
R(ρi) and F/N and thus determine how the mean density,

ρ =
∫ 1

ρi=0
ρiR(ρi)dρi, (5)

depends on μ.

III. SOLUTION

In this section, we present a method for the calculation
of the free energy per cell, F/N , and the distribution of
mean densities, R(ρi), on a random graph of fixed degree
distribution. Such a graph is locally treelike [28], meaning that
the analysis can be performed using the same techniques as
applied to a Bethe lattice.

In this analysis, we consider an arbitrary cell i and calculate
the distribution R(ρi) for that cell and the value of the mean
contribution of that cell to the free energy. The first step in
this analysis is to transform the system into a tree by removing
all the cells in the system which are too remote to have a
significant effect on the state of cell i [see the gray dashed
cells in Fig. 1(a)]. After this step, there will be many boundary
cells, {k}, which are at the edge of the tree and linked only to
a single other cell, l [see gray dashed cells labeled k1,k2, . . .

in Fig. 1(b)]. Following the standard procedure described in
Refs. [22,23,29,30], the sum over the states τk = 0,1 of a
boundary cell, k, in Eqs. (2) and (3) for the free energy can be
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explicitly performed,

βF = − ln

⎡
⎣ ∑

{τi :i �=k}

∑
τk=0,1

exp

⎛
⎝β

∑
〈ij〉

wff
ij τiτj + β

∑
i

wmf
i τi + βμ

∑
i

τi

⎞
⎠
⎤
⎦

= −F+(−βμ − βwmf
k

) − ln

⎡
⎣ ∑

{τi :i �=k}
exp

⎛
⎝β

∑
〈ij〉:i,j �=k

wff
ij τiτj + β

∑
i �=k

wmf
i τi + βμ

∑
i �=k

τi + βweff
lk τl

⎞
⎠
⎤
⎦ , (6)

where the effective field, weff
lk , at cell l, due to cell k, obeys the

following relation:

βweff
lk = F+(

F+(βμ + βwmf
k

) + F−(βwff
kl

))
, (7)

and the functions F±(x) are defined as

F±(x) = ± ln ( exp(∓x) ± 1). (8)

In Eq. (6), the sum over {τi : i �= k} is taken over all possible
states of the vector {τ1, . . . ,τk−1,τk+1, . . . ,τN } representing
the states of all cells except cell k, while 〈ij 〉 : i,j �= k means
the sum over all neighboring pairs i and j excluding pairs
which include cell k.

A similar summation to that performed in Eq. (6) to remove
cell k can be done over the states of all the other neighbors of
cell l except the cell m, which is closer to cell i than cell l.
After this, the sum over the state, τl , of cell l can be performed,
removing cell l and giving an effective field at cell m,

βweff
ml = F+(

F+(βw
part
lm

) + F−(βwff
ml

))
, (9)

where the partial local effective field w
part
lm at cell l, excluding

interactions with cell m, is given by

w
part
lm = μ + wmf

l +
∑

k/l,k �=m

weff
lk . (10)

In this expression, the summation k/l,k �= m is over all cells
k which are neighbors of l, not including cell m. The relation
given by Eqs. (9) and (10) can be used to determine an effective
field, weff

ml , acting on cell m and accounting for the effect of
some neighboring cell l, closer to the edge of the tree. Since

i l1

l2

l3
k1

k2

k3

k4

k5

k6

i l1

l2

l3
k1

k2

k3

k4

k5

k6

(a () b)

FIG. 1. Panel (a): Random graph of fixed degree distribution with
several loops. The cells drawn with dashed circles are assumed to be
a long enough distance from cell i that they do not significantly
affect it and can be removed. Panel (b): The same random graph with
distant cells removed to make it a tree. The gray dashed cells marked
k1,k2, . . . are on the edge of the tree and their effect on the cells
marked l1,l2,l3 neighboring cell i can be accounted for in terms of
effective fields, weff

l1k1
,weff

l1k2
, . . ., given by Eq. (7).

these relations give weff
ml in terms of similar effective fields,

weff
lk , at cells further out, they can be used to recursively replace

all cells except cell i with a single effective field for each
neighbor of cell i.

Using the effective fields calculated above, the one-cell and
two-cell free energies [29] can be defined as

βF
(1)
i = − ln

⎡
⎣ ∑

τi=0,1

exp
(−βH(1)

i (τi)
)⎤⎦ , (11)

βF
(2)
ij = − ln

⎡
⎣ ∑

τi ,τj =0,1

exp
(−βH(2)

ij (τi,τj )
)⎤⎦ , (12)

in terms of the effective Hamiltonians for one site,

H(1)
i (τi) = −

⎛
⎝wmf

i +
∑
j/i

weff
ij + μ

⎞
⎠ τi, (13)

and for two sites

H(2)
ij (τi,τj ) = −

⎛
⎝wmf

i +
∑

k/i,k �=j

weff
ik + μ

⎞
⎠ τi

−
⎛
⎝wmf

j +
∑

k/j,k �=i

weff
jk + μ

⎞
⎠ τj − wff

ij τiτj .

(14)

In Eq. (13), the sum over j/i represents the sum over all
neighbors j of cell i. Following known methods [22,29,30],
the total free energy is then given by equating two expressions
for the Hamiltonian,

∂

∂β

∑
i

(qi − 1)βF
(1)
i − ∂

∂β

∑
〈ij〉

βF
(2)
ij = 〈H〉

∂(βF )

∂β
= 〈H〉

implying that

F =
∑

i

(qi − 1)F (1)
i −

∑
〈ij〉

F
(2)
ij , (15)

and, similarly, the mean density at a cell i is given by

ρi = ∂F
(1)
i

∂wmf
i

. (16)

Equations (15) and (16) can be used to calculate F and ρi in
terms of the effective fields weff

ij defined above.
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The effective fields weff
ij for each pair of cells i and j , in

general, differ, due to the disorder in coordination number and
disorder in interaction strengths wff

ij and wmf
i . It is known for

disordered ferromagnetic systems [22] that the effective fields
weff

ij at any cell i deep inside the tree due to each neighbor j

closer to the edge of the tree are identically and independently
distributed according to the same p.d.f. W eff(weff

ij ). Using
Eq. (9), this p.d.f. is be found to obey the following equation:

W eff
(
weff

ij

)
=
∑
qj

p̃qj

∫
δ
(
βweff

ij − F+(
F+(βw

part
ji

) + F−(βwff
ij

)))

×[
W part

qj

(
w

part
ji

)
dw

part
ji

][
W ff

(
wff

ij

)
dwff

ij

]
, (17)

Here qj is the coordination number of the neighbor j of cell i,
which, for a random graph of fixed degree distribution, takes

a value qj = q with probability p̃q = qNq/
∑qmax

q=1 qNq [19].

The values of w
part
ji are distributed according to the p.d.f.,

W part
q

(
w

part
ji

) =
∫

δ

(
w

part
ji −

(
μ + wmf

j +
q−1∑
k=1

weff
jk

) )

× [
Wmf

q

(
wmf

j

)
dwmf

j

] q−1∏
k=1

[
W eff

(
weff

jk

)
dweff

jk

]
,

(18)

where the sum and product over k = 1, . . . ,q − 1 accounts for
all neighbors k of cell j except cell i. Equations (17) and (18)
are coupled and can be solved self-consistently.

The distribution of ρi for a given cell i can be written
in terms of the distributions of weff

jk and of wmf
j using

Eqs. (11), (13), and (16),

R(ρi) =
∑

q

∫
Nq

N
δ

⎧⎪⎨
⎪⎩ρi −

⎡
⎣1 + exp

⎛
⎝−βwmf

i − β

q∑
j=1

weff
ij − βμ

⎞
⎠
⎤
⎦

−1
⎫⎪⎬
⎪⎭
[
Wmf

q

(
wmf

i

)
dwmf

i

] q∏
j=1

[
W eff(weff

ij

)
dweff

ij

]
, (19)

where the sum j = 1, . . . ,q is over all neighbors of cell i. The mean of the free energy per cell can be calculated similarly using
Eqs. (11)–(15),

F/N =
qmax∑
q=1

Nq

N
(q − 1)

∫
F+

⎛
⎝−βwmf

i − βμ − β

q∑
j=1

weff
ij

⎞
⎠[

Wmf
q

(
wmf

i

)
dwmf

i

] q∏
j=1

[
W eff(weff

ij

)
dweff

ij

]

− q

2

qmax∑
q=1

qmax∑
q ′=1

p̃q p̃q ′

∫ [
βw

part
ij + βw

part
ji + F+(

F+(βw
part
ij

) + F+(βw
part
ji

) + F−(βwff
ij

)) + F−(βwff
ij

)]

× [
W ff

(
wff

ij

)
dwff

ij

][
W part

q

(
w

part
ij

)
dw

part
ij

][
W

part
q ′

(
w

part
ji

)
dw

part
ji

]
, (20)

where q = ∑qmax
q=1 qNq/N is the mean coordination number.

As required, Eqs. (19) and (20) give the distribution R(ρi) and
the values of F/N in terms of the p.d.f. W eff(weff

ij ), which is
defined by Eqs. (17) and (18).

In order to find the mean free energy per cell, F/N , and
the distribution of mean occupations, R(ρi), the distribution,
W eff(weff

ij ), of effective fields is determined numerically using
Eqs. (17) and (18) in the following way. First, some initial trial
function, W eff

0 (weff
ij ), is substituted into Eq. (18) to obtain the

distributions, W
part
q (wpart

ji ). These distributions are then used
in Eq. (17) to obtain a new function W eff

1 (weff
ij ). After this,

W eff
1 (weff

ij ) is recursively passed to Eqs. (17) and (18) in the
same way to obtain a function W eff

2 (weff
ij ). This process is

repeated until a function is found which is invariant to the
recursive equation within the desired numerical precision. The
final function, W eff(weff

ij ), then can be substituted into Eqs. (19)

and (20) to reveal the required results for F/N and R(ρi). The
technical details of the numerical solution of Eqs. (17) and (18)
are given in Appendix A.

In general, there can be one or more stable solutions to
the self-consistent Eqs. (17) and (18) which can be found
by starting the above iterative procedure with different trial

functions W eff
0 (weff

ij ). Each solution has a corresponding mean
free energy given by Eq. (20), and the solution with the lowest
free energy is assumed to represent the stable state of the
system, while the other solutions represent states which are
metastable [31,32]. It is expected that all of these states can
also be reached by dynamical simulations using, e.g., the
Metropolis algorithm (see Sec. VIII).

The analytical model permits an exact solution only for a
particular system topology, i.e., a random graph with fixed
degree distribution and heterogeneous interaction strength.
However, the pore space of real systems may exhibit a
different, Euclidean, topology containing many short loops.
Such loops are exponentially rare in a random graph. A natural
question is whether such loops alter the above picture of
sorption. Our analysis (see Sec. IX) suggests that the loops
in pore space for a structural model of important porous
materials such as SBA-15 may affect the sorption behavior
at low-enough temperatures but are insignificant in many
situations.

In the next four sections, we, first, analyze the exact solu-
tions for homogeneous systems (Sec. IV) and then investigate
the effect of disorder in coordination number (Sec. V), in
matrix-fluid, and in fluid-fluid interaction strengths (Sec. VI).
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Finally, we analyze the effect of combined disorder of all three
types in Sec. VII.

IV. RESULTS FOR ZERO DISORDER

In the absence of any kind of disorder, all the cells have
the same coordination number, q, and the interaction param-
eters wmf and wff have δ-functional distributions given by
Wmf

q (wmf) = δ[wmf − wmf
0 (q)] and W ff(wff) = δ(wff − wff

0 ),
respectively. In this case, the system can be described by the
known equations for a Bethe lattice [33], so the effective
fields [see Eq. (9)] and partial local fields [see Eq. (10)]
also have δ-functional distributions, W eff(weff

ij ) = δ(weff
ij −

weff
0 ) and W part(wpart

ij ) = δ(wpart
ij − w

part
0 ). For concreteness, the

energy scale of interactions is set by wff
0 = 1. Under these

hypotheses, the problem can be solved exactly [33] as shown in
Appendix B. The behavior is that expected for a classical fluid
system [31]. For temperature less than a critical temperature,

Tc = wff
0

2 ln[q/(q − 2)]
, (21)

the system exhibits a first-order phase transition where a
high-density phase (liquid) coexists with a low-density phase
(gas). Figure 2 shows the phase diagram for two values of the
coordination number, q. As can be seen from the figure, the
phase boundary follows a line of constant chemical potential
in the space of T and μ, where μ = −qwff/2 − wmf

0 . This
expression for μ can easily be derived from the mapping of
the zero-disorder system to the Ising model. As seen from
Fig. 2, the coordination number affects the value of the critical
temperature TC and the chemical potential at the first-order
transition (i.e., TC1 < TC2, where TC1 and TC2 are the critical
temperatures for q1- and q2-regular graphs, respectively, with
q2 > q1) but does not affect the shape of the phase boundary.
In contrast, we show below that both disorder in coordination
number and interaction strengths have a significant impact on
the phase diagrams.

V. DISORDER IN COORDINATION NUMBER

In this section, we study the effect of disorder in coordina-
tion number in the absence of any other kind of disorder,
i.e., the δ-functional distributions of interaction strengths,
Wmf

q (wmf) and W ff(wff), considered as in Sec. IV, are used
here. Let us consider a binary system of randomly connected
cells with two different coordination numbers, q = q1 � 3
and q = q2 > q1, with the number of each equal to N1 =
f N and N2 = (1 − f )N . A large difference in coordination
numbers q1 and q2 is expected to enhance the effect of disorder
in coordination number on sorption. For this reason, in what
follows, we used, for concreteness, q1 = 4 and q2 = 10.

A. Sorption and phase diagram for a representative value of f

Before analyzing the combined effect of T and f , it is
illustrative to analyze the behavior of the binary system for a
representative choice of parameters f = 0.77 and wmf

0 (q1) =
wmf

0 (q2) = 0. In order to investigate the phase diagram of this
system in the (μ,T ) plane, we explore the sorption curves
which give the dependence of the mean value of density,
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FIG. 2. (Color online) Equilibrium phase diagrams for homo-
geneous q-regular graphs with interaction parameters wff

0 = 1 and
wmf

0 = 0. (a) μ-T phase diagram for q-regular graphs with coordina-
tion numbers q1 = 4 (dashed line) and q2 = 10 (solid line). For both
values of q, first-order phase transitions occur when crossing the
vertical lines below the critical points, C1 for q1 = 4 at μ1 = −2 and
C2 for q2 = 10 at μ2 = −5. The two additional figures in panel (a)
show the dependence of the mean density, ρ̄, on chemical potential,
μ, for a 4-regular graph above (T = 1.0, upper figure) and below
(T = 0.6, lower figure) the critical point. (b) Liquid-gas coexistence
curves (binodals) in the (ρ̄,T ) plane for fluids in 4- (dashed line) and
10-regular graphs (continuous line). The dot-dashed lines and double
dot-dashed lines in both panels correspond to the temperatures for
which the density profiles are shown in the right-hand figures of
panel (a).

ρ, on the chemical potential, μ. The mean value of density,
ρ, given by Eq. (5) in terms of the distribution R(ρ), can
be calculated using Eqs. (19) and (16), with the distribution
of densities found by solving Eqs. (17) and (18). A typical
solution for R(ρ) in the case of disorder in coordination
number is shown in Fig. 3. For the set of parameters used in
Fig. 3, there are two major peaks at ρ = 0 and 1, accompanied
by many satellite peaks at intermediate densities. The peaks
have a hierarchical structure with several groups associated
with different combinations of the coordination numbers
of neighboring cells. Each group is split into subgroups,
corresponding to the coordination numbers of the further
neighbors of the cell, and so on. For example, the peak at ρ = 0
corresponds to unoccupied 4-coordinated cells surrounded by
other 4-coordinated cells. The structure of R(ρ) appears to be
multifractal, similar to that found for the random-field Ising
model in one dimension with bimodal disorder in random
fields [34–36]. We have undertaken multifractal analysis using
the gliding box method [37] and have demonstrated that R(ρ)
is, in fact, a compact function. This finding is not surprising as

012144-5
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FIG. 3. Panel (a): Distribution, R(ρ), of cell fluid densities, ρ, for
binary system with a representative set of parameters, μ = −2.8, T =
0.1, wff

0 = 1, and wmf
0 = 0, for disorder in coordination number with

f = 0.77. The mean value of the density for this distribution is ρ �
0.441 [see the star in Fig. 6(b)]. Panel (b): Cumulative distribution
C(ρ) = ∫ ρ

0 R(ρ)dρ of the cell fluid densities. In both panels, the
lines are calculated by solving Eqs. (17) and (18) self-consistently
and using Eq. (19). The circles in panel (b) are calculated using
Metropolis dynamics simulations described in Sec. VIII. The system
size is N = 106 and the mean occupation, ρi , was measured over a
period of 105 Monte Carlo steps per spin (MCSS).

a continuous function R(ρ) has been revealed in all previous
analysis on treelike systems [21,23,38].

The μ-T phase diagram and the binodal graph correspond-
ing to a system with f = 0.77 are shown in Figs. 4(a) and 4(b).
Comparison of Figs. 2(a) and 2(b) with Figs. 4(a) and 4(b)
reveals significant differences between the phase diagram and
binodals for a homogeneous q-regular graph and that for
a system with binary disorder in coordination number. In
particular, the system with binary disorder can exhibit two
critical points (C1 and C2) and a triple point (t) instead of a

single critical point (C1 or C2) observed in the homogeneous
system. This leads to a Y-shaped phase diagram [Fig. 4(a)] and
a two-peaked binodal [Fig. 4(b)] indicative of sorption curves
with two steps between three phases. The binodal features a
kink at Tt , characteristic of a triple point where three phases
can coexist in equilibrium [31]. For the choice f = 0.77,
the sorption isotherms display qualitatively different behavior
in four temperature regimes: regime I (T > TC2), regime II
(TC1 < T < TC2), regime III (Tt < T < TC1), and regime IV
(T < Tt ). Examples of sorption isotherms for each of these
regimes are shown by different panels in Fig. 5.

In regime I, the equilibrium value of ρ varies smoothly
with μ, not showing any features [see solid and dashed lines
at progressively reduced temperatures in Fig. 5(a)]. In regime
II, the value of ρ(μ) [see solid line in Fig. 5(b)] exhibits a
first-order phase transition at some value of chemical potential,
μ = μ2, i.e., there is a vertical jump in the sorption curve
at μ2. As μ passes through μ2, most of the cells with a
higher coordination number suddenly change state, i.e., in
case of adsorption (desorption), most of the q2-coordinated
cells become occupied (empty). For temperatures close to
T � TC2, the size of the jump approaches zero continuously,
i.e., transition between regimes I and II is continuous. In
Fig. 5(b), the solid and dashed curves refer to solutions of
Eqs. (17) and (18), corresponding to stable and metastable
states of the system, respectively. For values of μ in the range
μ′

2 < μ < μ′′
2 [the region between the dashed spinodal lines

in Fig. 4(a)], there are two solutions, with mean densities
ρ1(μ) and ρ2(μ) > ρ1(μ), corresponding to two possible
phases of the system, of low and intermediate density. In
the first low-density phase, most cells are unoccupied. In the
second intermediate-density phase, the q2-coordinated cells
are mostly occupied while the q1-coordinated cells are mostly
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FIG. 4. (Color online) Phase diagram in the (μ,T ) plane (a) and binodal in the (ρ,T ) plane (b) of a random graph without disorder in
interaction strengths and with bimodal disorder in coordination number consisting of a fraction f = 0.77 of q1 = 4-coordinated cells and a
fraction 1 − f of q2 = 10-coordinated cells. The locations of critical points (C1 and C2) and triple point (t) are marked by circles. Solid lines
correspond to the coexistence curves of two phases where the chemical potential takes values μ1(T ) between C1 and t, μ2(T ) between C2 and
t, and μ3(T ) below t. The dashed lines correspond to the spinodals, i.e., the boundaries within which metastable states exist, and are marked by
μ′

1, μ′′
1, μ′

2 and μ′′
2 in panel (a). The horizontal dot-dashed, double-dot dashed, and double-dash dotted lines correspond to the values of T and

μ for which the sorption curves are shown in Figs. 5(b), 5(c), and 5(d), respectively. The temperature ranges corresponding to the four regimes
I, II, III, and IV are indicated by the numbers and arrows on the right.
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FIG. 5. (Color online) Mean fluid density (left panels) and free
energy per cell (right panels) as a function of chemical potential for
a range of temperatures, T . The system in all panels has no disorder
in interaction strengths and coordination number disorder with
q1 = 4 and q2 = 10 for f = 0.77 as in Fig. 4(a). Curves represent
the substitution of solutions of Eqs. (17) and (18) into Eqs. (19)
and (20). Panel (a) shows ρ and F/N for several temperatures
in regime I (i.e., for T > TC2): T = 1.2 (solid), 1.5 (dashed), 1.8
(dot-dashed), and 2 (dot double-dashed). Panels (b), (c), and (d) show
examples of regime II (T = 0.5), regime III (T = 0.2), and regime
IV (T = 0.1), respectively [see dot-dashed, double-dot dashed, and
double-dash dotted lines in Figs. 4(a) and 4(b)]. In panels (b)–(d),
the solid lines represent stable states while dashed lines represent
metastable states. The insets in the right-hand sides of panels (c)
and (d) show a magnification of the free energies of the low-,
intermediate-, and high-density states around the point where they
are equal with the stable state marked black and the metastable states
marked with dotted lines. Symbols represent the results of Metropolis
dynamics simulations (see Sec. VIII). The rates of change of μ

are μ̇ = ±10−3 MCSS−1 [panel (a)] and μ̇ = ±2 × 10−5 MCSS−1

[panels (b), (c), and (d)] with crosses and circles corresponding to
positive, μ̇ > 0, and negative, μ̇ < 0, rates of change, respectively.
Magnifications of the left-hand sides of panels (c) and (d) are shown
in Fig. 6.

unoccupied. The chemical potential at the first-order phase
transition in regime II takes the value μ2(T ) which can be
found from the condition, F1(μ2) = F2(μ2), for coexistence
of the intermediate- and low-density phases. The free energies
F1(μ) and F2(μ) can be calculated using Eq. (20) and are
presented in the right panel of Fig. 5(b).

In regime III, there are two phase boundaries [see Fig. 4(a)]
and a third phase can exist in addition to the low- and
intermediate-density phases observed in regime II. In the new
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FIG. 6. (Color online) Detail of sorption curves of ρ vs. μ for the
same system as in Fig. 5 and T = 0.2 [panel (a)] and T = 0.1 [panel
(b)]. Solid and dashed lines represent stable and metastable states as
in Figs. 5(c) and 5(d). The values of ρ for the intermediate-density
states averaged across only q1- and q2-coordinated cells are shown
by double-dot dashed and dot-dashed lines, respectively. Symbols
represent Metropolis dynamics simulations for rates of change of μ

given by μ̇ = 2 × 10−5 [panel (a)] and μ̇ = 10−6 [panel (b)] (same
symbol styles as in Fig. 5). Black arrows indicate the variation of
μ in numerical simulations of desorption from the stable state with
ρ ∼ 1 (density shown by circles). White arrows show the variation
of the system from a metastable state with ρ ∼ 1 (density shown by
crosses). The star refers to the mean density of the p.d.f. presented in
Fig. 3(a).

phase, most cells in the system are occupied and therefore
the density, ρ3(μ), is higher than in the other two phases
[see upper branch in Fig. 5(c)]. For values of the chemical
potential, μ, falling simultaneously between the spinodal
lines μ′

1(T ) < μ < μ′′
1(T ) and between the spinodal lines

μ′
2(T ) < μ < μ′′

2(T ) [see dashed spinodal lines in Fig. 4(a)],
all three phases can be observed. For such μ, one of the phases
is the stable state of the system, while the other two phases
are metastable states. The intermediate- and high-density
phases can coexist at μ = μ1 when their free energies are
the same, i.e.. F3(μ1) = F2(μ1) [see Fig. 5(c), right panel]. As
a consequence, two jumps can appear in the sorption curve [see
the solid curve in Fig. 5(c) and the magnification of the double
step in Fig. 6(a)], corresponding to the coexistence either of
the low- and intermediate-density phases (at μ2) or of the
intermediate- and high-density phases (at μ1). At each jump,
sorption occurs in cells of a particular coordination number,
with the jump at lower μ = μ2 corresponding to sorption in
the q2-coordinated cells and at μ = μ1 > μ2 corresponding to
sorption in the q1-coordinated cells.

The intermediate density phase in the two-step regime exists
for μ′

2 < μ < μ′′
1. However, it is stable only in a relatively

narrow interval, μ2 < μ < μ1 [see Fig. 6(a)], and metastable
outside this range [see the dashed line at intermediate values of
ρ in Fig. 6(a)]. The nature of the intermediate density phase can
be clarified by calculating the relative densities of q1 [see the
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FIG. 7. Phase diagrams for a system consisting of a mixture of q1 = 4 and q2 = 10 coordinated nodes and constant interaction strengths.
The fraction of q1-coordinated nodes is (a) f = 0.7, (b) f = 0.77, (c) f = 0.95, and (d) f = 0.957. Locations of lines of first-order phase
transitions (solid lines) and boundaries of the regions where metastable states exist (dashed lines) are shown in the space of chemical potential
and temperature. The locations of critical points (C1 and C2), critical end points (CEP), and triple points (t) are marked with circles for the
values of f where they exist. The critical end point is unique and is found at T � 0.586, μ � −2.1481, and f � 0.957. The first-order transition
lines are found by using Eqs. (17)–(20).

dashed curve in Figs. 6(a) and 6(b)] and q2 [see the dot-dashed
curve in Figs. 6(a) and 16(b)] coordinated cells. It follows
from Fig. 6(a) that in the intermediate state, practically all of
the q2-coordinated cells are occupied, while a much smaller
fraction of the q1-coordinated cells are occupied, given that
the mean density is in a range 0.4 � ρ � 0.8.

As the temperature approaches the triple point from above
T � Tt , the values of μ1 and μ2 corresponding to the two
jumps in the sorption curve become closer together, i.e., μ2 �
μ1, and they merge with each other at T = Tt . The triple point
thus corresponds to the coexistence of all three phases when
they all have the same free energy, F1(μt ) = F2(μt ) = F3(μt ).

Regime IV corresponds to T < Tt where there is a single
jump in which cells of both coordination numbers become
occupied simultaneously. This jump occurs at μ = μ3 [see
Fig. 5(d)] and corresponds to coexistence of the low- and high-
density phases, with F1(μt ) = F3(μt ). At such temperatures,
the intermediate-density phase is not observed in equilibrium
since either F2(μ) > F1(μ) or F2(μ) > F3(μ) for all values
of μ [see Fig. 6(b) and the inset of Fig. 5(d)]. However, the
second phase does exist as a metastable state [see the middle
dashed curve in Fig. 5(d) and its magnification in Fig. 6(b)] of
the system and can be observed in a nonequilibrium situation
(see Sec. VIII for more detail).

The metastable states within each of the four temperature
regimes can also be analyzed in the ρ-T plane [see Fig. 4(b)].
Indeed, the two peaked dashed lines in Fig. 4(b) represent the
spinodals corresponding to the first-order phase transitions
between low- and intermediate-density phases (left peak)
and between the intermediate- and high-density phases (right
peak). Any points below the binodal but not below either of the
spinodals represents a metastable state, while points within the
two spinodals represent states which are unstable to spinodal
decomposition.

B. Dependence on f

The μ-T phase diagram is highly influenced by the
relative fraction of cells with different coordination number.
Figure 2(a) together with the sequence of Figs. 7(a)–7(d)
show the evolution of the phase diagram as the fraction f of
low-coordinated (q1) cells is increased from 0 to 1. As shown

below, there are three characteristic values, f1, ft , and f2, at
which the phase diagram experiences qualitative changes.

When f = 0, the system is a q2-regular graph and the phase
diagram shown in Fig. 2(a) (continuous line) is recovered.
Similarly, the phase diagram for a pure q1-regular graph is
obtained for the extreme case with f = 1 [see dashed line in
Fig. 2(a)]. In general, the value of μ2(T ,f ) depends on both
T and f unless f = 0 or f = 1 in which case it becomes
independent of temperature (see Fig. 2). The value of TC2

decreases with growing f (see dot-dashed line in Fig. 8).
When f < f1, the phase transition at μ2(T ,f ) is dominated
by the transformation of cells with high coordination, q2.
Accordingly, sorption isotherms can either be continuous
if T > TC2 (regime I) or exhibit a single discontinuity if
T < TC2 (regime II). When f > f1, a second phase boundary,
describing a first-order transition for q1-coordinated cells,
can be found at μ = μ1(T ,f ) and temperatures T < TC1(f )
[see Fig. 7(a)]. The critical point, TC1(f ), is located at zero
temperature for f = f1, i.e., TC1(f1) = 0, and it increases with
increasing f (see solid line in Fig. 8).
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FIG. 8. (Color online) Values of tricritical temperature Tt (dashed
line) and critical temperatures TC1 (solid line) and TC2 (dot-dashed
line) as a function of fraction f of q1 = 4-coordinated nodes. The
value of f2 corresponds to the location of the critical end point
(marked CEP).
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As the fraction f increases further in the region f1 <

f < ft , the separation between the two phase boundaries
μ1(T ,f ) and μ2(T ,f ) at zero temperature reduces until they
merge when f = ft , and for ft < f < f2 there is a triple
point, marked by t in Figs. 7(b) and 7(c). The temperature,
Tt, at which the triple point occurs increases with increasing
values of f (see the dashed line in Fig. 8). Sorption isotherms
of systems with f in the interval ft < f < f2 have a rich
behavior that can be in any of the four regimes described
in detail in Sec. V A. For large-enough values of f , the
value of TC2 becomes smaller than TC1 and there is a new
regime, TC2 < T < TC1, in which only the first-order phase
transition in the q1-coordinated nodes occurs [see Fig. 7(c)].
In this regime of concentrations, ft < f < f2, and at zero
temperature, it has been found numerically that in the ground
state all cells are in the same state as each other [either occupied
or unoccupied corresponding to the low- and high-density
phases mentioned in the discussion of regime IV illustrated
in Fig. 5(c)]. The value of μ3(T = 0,f ) at the phase boundary
between the two ground states can then be calculated by
equating to each other the values of the internal energies,
U ({τi = 1}) and U ({τi = 0}) of the fully occupied and fully
unoccupied phases, respectively, given by

U ({τi = 1}) =
qmax∑
q=1

Nq

(
qwff

0

2
+ μ

)
and

U ({τi = 0}) = 0. (22)

This gives the value of the critical chemical potential at zero
temperature as

μ3(T = 0,f ) = qwff
0

2
. (23)

In other regimes for f , Eq. (23) does not necessarily hold,
because the system in the ground state can contain both
occupied and unoccupied cells, and thus the estimate for
μ3(T = 0,f ) becomes harder to find [21,39,40].

When the fraction f = f2 � 0.957, the critical point C2
merges with the triple point, t, and a critical end point [marked
by CEP in Figs. 7(e) and 8] is observed. Notice that the critical
temperature TC1 is slightly higher than the values of TC2 and Tt

at the critical end point [the solid line passes above the merge
point of the dashed and dot-dashed lines in Fig. 8 and the point
marked C1 on Fig. 7(d) is above the point marked CEP]. For
f > f2, there is only a single first-order phase transition, with
a phase boundary μ1(f,T ) and a critical point T = TC1.

C. Role of matrix-fluid interaction

Above, we analyzed the case when wmf
0 (q1) = wmf

0 (q2) = 0
and the value of wff is constant. However, in a real system, the
matrix-fluid interaction strength can depend on coordination
number. The simplest form of such a dependence could be
represented by the linear relation wmf

0 (q) = (qmax − q)wmf
1 +

w̃mf
0 , where wmf

1 and w̃mf
0 do not depend on q and qmax is

the largest coordination number present in the lattice. The
linear term in this equation could represent the increased
interaction between fluid in cells of low coordination number
and the matrix. Indeed, the coordination number in our model
describes the number of fluid neighbors of a cell. The surface
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FIG. 9. (Color online) Sorption curves for systems with different
interaction strengths for cells of different coordination number. Panel
(a): q1 = 3, q2 = 4, f = 0.666, wmf

1 = 5 w̃mf
0 = 0 and T = 0.05. The

inset magnifies the region of the low-μ first-order phase transition at
μ � −6.08. Panel (b): Binomial distribution of coordination numbers
with qmax = 20, p = 0.9, wmf

1 = 20, w̃mf
0 = 0, and T = 0.05. The

inset shows the detail of the region where one of the first-order phase
transitions occurs at μ � −33.6. The crosses (adsorption) and circles
(desorption) refer to the results of Metropolis dynamics with μ̇ =
10−5 MCSS−1 [panel (a)] and μ̇ = 10−4 MCSS−1 [panel (b)].

area of a cell can be split into fluid-fluid contact area and
matrix-fluid contact area. Assuming that the surface areas of
all cells are equal, the greater the fluid-fluid contact area (i.e.,
the coordination number), the smaller the matrix-fluid contact
area, i.e., the strength of matrix-fluid interaction.

In the analysis above, wmf
1 = w̃mf

0 = 0. The picture does
not change qualitatively when w̃mf

0 �= 0 and wmf
1 = 0. Indeed,

the value of wmf
0 (q) is independent of q and the phase

diagram in Fig. 7 only exhibits a parallel shift along the μ

axis. In contrast, if wmf
0 (q1) �= wmf

0 (q2), wmf
1 �= 0, a different

form of phase diagram can be observed. For example, if
wmf

0 (q1) + q1w
ff
0 /2 = wmf

0 (q2) + q2w
ff
0 /2 = −μ0, the Hamil-

tonian is invariant under the transformation τi → 1 − τi ,
μ − μ0 → −(μ − μ0) and thus shows the same symmetry as
the Ising model. This is because for that choice of parameters,
the Hamiltonian can be written as an Ising Hamiltonian,
H = −(wff/4)

∑
〈ij〉 sisj − (μ − μ0)

∑
i si/2 + const, where

si = 2τi − 1. The phase diagram for this case is known and
the critical temperature can be calculated exactly [20,41–44].
Another choice for the matrix-fluid interaction strength is
wmf

0 (q1) + q1w
ff = wmf

0 (q2) + q2w
ff = −2μ0. The phase di-

agrams for this case is the same as those shown in Fig. 7,
reflected about the line μ = μ0.

In the general case with nonzero values of the parameters
wmf

1 and w̃mf
0 , the picture can be very rich. Consider, for

example, a binary system consisting of a fraction f = 0.666 of
cells with coordination number q1 = 3 and the rest with coordi-
nation number q2 = 4. For interaction parameters wmf

1 = 5 and
w̃mf

0 = 0 and temperature T = 0.05, the system exhibits two
phase transitions located at μ � −6.08 and μ � −2.91, where
vertical jumps in ρ occur [see Fig. 9(a) with a magnification
of the lower jump in the inset]. These jumps correspond to
a macroscopic change in the fraction of occupied q2- and
q1-coordinated cells, respectively. The jumps are accompanied
by the presence of metastable states, shown for one of the
jumps by the dashed lines in the inset in Fig. 9(a).
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The use of the linear form for wmf
0 (q) described above

and of a binomial distribution of coordination numbers Nq =
N (qmax

q
)pq(1 − p)qmax−q produces a system which is equivalent

to that studied in Ref. [23]. If the values of the parameters
are chosen to be wmf

1 = 20, qmax = 20, and p = 0.9 (in the
notation of Ref. [23] this corresponds to I = 1, K = 20
and p1 = 0.9), then the system exhibits two first-order phase
transitions in a certain range of temperatures [see solid line
in Fig. 9(b)]. These transitions occur at μ � −33.6 and
μ � −18.42 and correspond to the two highest steps in the
“staircase” in Fig. 9(b). A magnification of the second-highest
step is shown in the inset of Fig. 9(b). Similarly to the case
shown in Fig. 9(a), there are metastable states near the phase
transition. Each step in Fig. 9(b) corresponds to sorption in
cells of a given coordination number. The phase transition
is observed only when the cells of that coordination number
percolate and when the system has low-enough disorder, i.e.,
at high values of μ, the only unoccupied cells are those
of coordination number q = 20, meaning that the system is
effectively less disordered than at lower values of μ. In other
words, possible phase transitions for low q � 18-coordinated
cells are destroyed by disorder.

VI. DISORDER IN INTERACTION STRENGTHS

In this section, we discuss the effect of disorder in the
strengths for both matrix-fluid and fluid-fluid interactions.
The matrix surrounding a given cell is inherently hetero-
geneous. This heterogeneity can be of a chemical nature,
due to roughness or due to the shape of the pore, e.g., its
diameter. The matrix-fluid interaction strength depends on
this heterogeneity and can result in two types of disorder,
symmetric disorder, which can be described by a normal
distribution with p.d.f., Wmf(wmf) = N (wmf

0 ,�mf), and asym-
metric disorder, represented below by an exponential distri-
bution, Wmf(wmf) = exp −[wmf − wmf

0 )/�mf − 1] for wmf >

wmf
0 − �mf and Wmf(wmf) = 0 otherwise. Symmetric disorder

originates from small scale disorder due to chemical hetero-
geneity and roughness. Asymmetry in the p.d.f. might occur
when there is disorder in the shape of the pores [45]. An
expected symmetric peak-shaped distribution of the fluid-fluid
interaction is approximately modelled below by a modified
normal distribution which is cut so wff cannot be negative,
i.e., W ff (wff) ∝ exp[−(wff − wff

0 )2/2(�mf)2] for wff > 0 and
W ff(wff) = 0 when wff � 0.

First, we analyze the effect of the disorder on the critical be-
havior of the system. Introducing disorder reduces the critical
temperatures, TC(�mf) and TC(�ff), of the second-order phase
transition gradually from its value, TC(� = 0), found at zero
disorder. As disorder increases, the critical temperatures go to
zero at different critical values of the disorder, �mf

C and �ff
C , in

matrix-fluid and fluid-fluid interaction strengths, respectively
(see Fig. 10). This behavior of the critical temperature is similar
to that found for the random-field Ising model with a normal
distribution of random fields [46]. This is expected because the
lattice gas model with disorder in matrix-fluid and fluid-fluid
interactions can be mapped to the random-field Ising model
and to the Ising model with correlated disorder in fields and
bonds, respectively [2].

0 0.5 1 1.5 2
Δ

0

0.2

0.4

0.6

0.8
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c

FIG. 10. (Color online) Critical temperatures as a function of
degree of disorder for a 4-regular graph with normal (solid curve) and
exponential (dot-dashed) disorder in wmf (i.e., �mf = �, �ff = 0) and
cut-normal distribution in wff (�ff = �, �mf = 0; dashed curve).

A prominent characteristic of sorption in a disordered
system is that the mean fluid densities ρi take different
values depending on the neighborhood of cell i and are
distributed with the p.d.f. R(ρi). Let us consider the case of
normally distributed disorder in wmf, when the temperature
is greater than the critical temperature, T > TC(� = 0),
for the zero-disorder case. For such temperatures, at any
value of �mf the sorption curve for the mean density, ρ,
is a continuous and monotonically growing function of μ,
i.e., it does not exhibit any discontinuities characteristic of
phase transitions. However, the distribution of ρi exhibits an
interesting evolution with degree of disorder. When the degree
of disorder is small, the distribution R(ρi) is approximately
normal (see Appendix B), with the mean ρ corresponding
approximately to the mean for zero disorder [see solid and
dashed lines in Fig. 11(a)]. When �mf takes intermediate
values, the distribution is approximately uniform (double-dot
dashed line). For larger disorder, the distribution becomes
bimodal-like, with two peaks at ρi � 0 and ρi � 1 [dot
double-dashed line in Fig. 11(a)]. In this disorder-controlled
regime [45], most cells in the system have become either
occupied or unoccupied and do fluctuate from these states.
For very large disorder and μ = −qwff/2 (corresponding to
ρ = 1/2), fluid in approximately half of the cells has a large
repulsive interaction with its surroundings and thus the cells
are unoccupied, while fluid in the rest of the cells has an
strong attractive interaction with the matrix, and these cells
are occupied. This disorder controlled regime is also observed
(not shown) for exponential disorder in matrix-fluid interaction
and disorder in fluid-fluid interactions.

We have also analyzed the distribution R(ρi) for the system
with normally distributed disorder in matrix-fluid interactions
below the critical temperature for zero disorder, T < TC(� =
0). For such values of disorder, at a particular value of chemical
potential μ, both low- and high-density stable phases can
coexist. The distribution of R(ρi) in both of these two phases
can feature one prominent peak and one smaller secondary
peak near ρ � 0 and 1 [see the solid and dashed lines in
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FIG. 11. (Color online) Distributions of the mean occupancies,
ρi , of the cells in a q = 4-regular graph with μ = −2, constant wff for
all cells and normal disorder in wmf. Panel (a): Temperature, T = 1.0,
and width of disorder �mf = 0.3 (solid curve), 0.6 (dashed), 1.2 (dot-
dashed), 1.8 (double-dot dashed), and 2.4 (dot double-dashed). The
circles represent a normal distribution of width given by Eq. (B11)
and the crosses were found by Metropolis dynamics simulations in
which the values of ρi for each of N = 106 cells were averaged
over a duration of 103 MCSS. Panel (b): T = 0.4 with �mf = 0.75
(solid and dashed curves representing low- and high-density states,
respectively) and 0.8 (dot-dashed curve).

Fig. 11(b)]. As �mf approaches the critical value from below,
each of these curves transforms so the peaks are more equal
in size, and exactly at the value of disorder, �mf = �mf

C (T ),
at which TC(�mf) = T , they merge continuously into the
same curve [shown by the dot-dashed line in Fig. 11(b)]. For
�mf > �mf

C (T ), there is a single stable phase characterized by
a single distribution of R(ρi) with two peaks [see dashed line
in Fig. 11(b)], which depends on �mf in a similar way to the
curves presented in Fig. 11(a) for higher temperature.

Such an evolution of the distribution of densities for
T < Tc(� = 0) can be understood in a qualitative way as
follows. Similarly to the high-temperature case, there are
some cells in the system where fluid has a large attractive
or repulsive interaction with its surrounding matrix. The state
of these cells is determined by the quenched disorder and is
not influenced by thermal fluctuations. In addition, some cells
have an intermediate interaction with the matrix, meaning that
their states are set by the states of the surrounding cells. If the
concentration of these cells is great enough they can form a
percolating cluster and the system can have two global states
depending on whether cells within this cluster are occupied
or unoccupied (see also Ref. [26]). With increasing disorder,
the relative number of disorder-controlled cells increases,
meaning that the intermediate cells cease to be able to percolate
at �mf

C (T ) and the system moves to the disorder-controlled
regime for �mf > �mf

C (T = 0).

VII. DISORDER IN COORDINATION NUMBER AND
INTERACTION STRENGTHS

The solution for the mean density and free energy presented
in Sec. III can be applied to a system with disorder in
coordination number, q, and both interaction strengths wmf

and wff . In the case when disorder in interaction strength is
not significant, i.e., �mf � wff and �ff � wff , the dependence
of the locations of the phase boundaries on the fraction, f , of
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FIG. 12. Phase diagram for binary system of q1 = 4 and q2 =
10-coordinated cells with a fraction f = 0.77 of q1-coordinated
cells. The matrix-fluid interactions are normally distributed with
coordination number–dependent standard deviations, �mf(q = 4) =
0.24 and �mf(q = 10) = 0, while disorder in fluid-fluid interactions
is a cut-normal distribution with �ff = 0.04.

q1-coordinated cells is qualitatively the same as that shown in
Fig. 4(a). An example of the phase diagram in this regime is
shown in Fig. 12. It is found that the critical temperatures TC1,
TC2 and the temperature of the triple point Tt are all shifted to
lower values relative to those for zero disorder in interaction
strengths [cf. Figs. 12 and 4(a)]. In the opposite case of large
disorder in either wmf or wff , no phase transitions are observed
at any temperature, i.e., all long-range order is lost and the
picture is identical to that discussed in Sec. VI.

VIII. METROPOLIS DYNAMICS SIMULATIONS

In order to test the results of the analytical model, we
have used Metropolis dynamics simulations [32,47] for the
evolution of the system at a given temperature and both fixed
and variable values of the chemical potential. Such simulations
involve changing the states of a set of N cells according to the
following rules. Consider the system of cells in a certain state
{τi} = {τ ′

i } with energy H({τ ′
i }), where H is given by Eq. (1).

In a Monte Carlo step of Metropolis dynamics simulation,
a cell is selected at random and its state is changed (either
occupied to unoccupied or vice versa), so the new state of the
system is {τi} = {τ ′′

i } and has energy H({τ ′′
i }). If the energy

change, �H = H({τ ′′
i }) − H({τ ′

i }), is negative, the cell is left
in its new state, otherwise it is changed back to its original state
with probability p = 1 − exp(−β�H). Time scales within the
Metropolis dynamics are measured in terms of Monte Carlo
steps per spin (MCSS), with spin being equivalent to cell. The
efficiency of the standard Metropolis scheme is limited at low
temperatures since most transition proposals are rejected (i.e.,
are null) and nothing changes in the system for long periods
of time. To improve the computational performance of our
simulations, we use a level 1 Monte Carlo adsorbing Markov
chain (MCAMC) method [32,48,49], which effectively skips
the null transitions (see Appendix C for details).

An important step in the above procedure is the calculation
of the internal energy of the system. The value ofH depends on
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the connectivity between pores and between the pores and the
matrix. The strength of interactions between fluid in the cells
and the matrix is a site characteristic and has a random value
wmf

i chosen from the distribution Wq(wmf
i ) which depends on

the coordination number. The strength of interactions between
fluid in neighboring occupied cells is a bond characteristic and
has a distribution W ff(wff). The connections between the cells
are defined by the topology of the network. In our analysis, the
topology of a random graph with fixed degree distribution was
used [19]. Such a random graph can be generated by creating
Nq nodes, each with q “stub” bonds, for every value of q in
the range 1 � q � qmax. Two stub bonds are then randomly
selected and connected together to form a link. The process is
then repeated until all stubs are connected.

Following the rules of Metropolis dynamics, we can obtain
estimates of the distribution, R(ρi), of fluid densities at
particular values of the chemical potential and temperature [see
crosses in Fig. 11(a) and circles in Fig. 3(b)] and the mean den-
sity ρ of the fluid per cell as a function of changing chemical
potential at fixed temperature (see symbols in Figs. 5, 6, and 9).
For disorder in interaction strengths away from the critical
point, the agreement between the distribution R(ρi) found by
numerical simulation and by analytical calculation is almost
perfect. Near the critical point, the occupied cell-occupied cell
correlation length is too high to get good agreement for a
finite-sized system. For disorder in coordination number, the
Metropolis simulations cannot reveal the details of all of the
peaks seen in Fig. 3(a). It can, however, reproduce the cumu-
lative distribution well [cf. the line and circles in Fig. 3(b)].

Similarly, the free energy can be calculated using Metropo-
lis dynamics and compared with analytical results. In order to
do this, the free energy, F±∞, is found for μ = ±μ∞, where
μ∞  wff , meaning that 〈τi〉 � 0 or 1 for all N cells. The
free energy is then given by F = 〈H〉 − T S � H({τi}) with S

being the entropy which is equal to zero for a fully occupied
or fully empty system. The value of F at other values of μ

then can be found by monitoring ρ as μ is slowly increased or
reduced and using the formula F = − ∫ μ

±μ∞
ρdμ + F±∞ [32],

valid in the range of μ where ρ(μ) is a continuous function.
In the right panels of Fig. 5, the free energy calculated in
this way is compared with the analytical calculation given by
Eq. (15), giving excellent agreement. It should be noted that,
at the location of the spinodals, i.e., at the value of μ = μ′

2 or
μ′′

2, where the density changes in a stepwise manner, the above
formula for the free energy is not applicable.

Another interesting point to comment on is about how to
access metastable states using Metropolis dynamics. Indeed,
our analytical approach presented in Sec. III provides a
description of both the stable equilibrium state and several
metastable states which can be destroyed only by nucleation
due to thermal fluctuations. Metropolis dynamics simulations
allow all of these states to be attained. In Fig. 5(c) the stable
states are represented by the solid line, while the metastable
states are shown by dashed lines. There are three types of
metastable states, corresponding to three possible phases.
Simulations in which μ is varied slowly enough will always
follow the equilibrium state for any given value of μ. However,
in practice this regime is not achievable for a random graph (a
mean-field-like system) due to the prohibitively large number
of Monte Carlo steps required for nucleation to occur in

certain regions. Instead, it is expected that the relaxation time
from the metastable to the stable state diverges exponentially
with system size [50], so for increasing or decreasing μ the
simulated system follows first the equilibrium state (solid line)
until the first-order transition and then explores the metastable
states (dashed curve). As the value of μ approaches μ′

1,2 or
μ′′

1,2 the energy barrier preventing the system from leaving the
metastable state reduces in size and the system is eventually
able to move to another phase. A similar behavior can be seen
for all other temperatures shown in Fig. 5 and for both systems
shown in Fig. 9.

Four examples of the exploration of the metastable states
for the intermediate- and high-density phases at two different
temperatures (two for each temperature) are shown by the
black and white arrows in Figs. 6(a) and 6(b). In the first
two examples (circles and black arrows in both panels), all
cells are initially occupied at a high value of μ. The value
of μ is gradually reduced at a rate μ̇ = dμ/dt = −2 ×
10−5 MCSS−1 [panel (a)] and −2 × 10−5 MCSS−1 [panel
(b)], and the system follows first the stable state (solid curve)
and then the metastable state (dashed curve) with highest
density. In fact, even after the high-density analytical solution
ceases to exist μ = μ′

1 (see the finite range of the dashed
line at high density in both panels), the Metropolis dynamics
simulation at the rate used does not immediately step to the
intermediate-density state. For lower values of μ̇, the system
makes a quicker transition to the intermediate-density state. As
μ continues to decrease, the system follows the intermediate-
density metastable state (dashed line at intermediate values
of ρ) until that solution also ceases to exist at μ = μ′

2, after
which a transition occurs to the low-density state. In the final
two examples of a Metropolis dynamics simulation (crosses
and white arrows in both panels), all cells are initially occupied
at μ = −2.8 [Fig. 6(a)] and μ = −2.9 [Fig. 6(b)]. At T = 0.2
[panel (a)], the system was first allowed to relax for a time
103 MCSS at a constant value of μ (see vertical line at
μ = −2.8) so it enters the intermediate-density metastable
state. Next, the value of μ was gradually increased at a rate
μ̇ = 2 × 10−5 MCSS−1. At T = 0.1 [panel (b)], the system
was prepared into the intermediate-density metastable state
by increasing μ from −2.9 to −2.8 in a period of 1000
MCSS (see the downward-pointing white arrow). The value of
μ was then slowly increased at a rate μ̇ = 10−6 MCSS−1.
The state of the system achieved in Metropolis dynamics
simulations follows the intermediate-density metastable state
(dashed line), passing through the range of μ corresponding to
the stable state (solid line) and remaining in the intermediate-
density phase until it no longer exists (see the right-hand limit
of the dashed line at intermediate values of ρ at μ = μ′′

1).
After μ passes μ′′

1, the density continuously increases until the
system is in the high-density stable state. A more rapid upward
jump in ρ can be seen by reducing μ̇.

IX. RANDOM-GRAPH MODEL FOR SBA-15

The analytical model developed in the previous sections is
valid for a random graph topology with local treelike structure
(i.e., with an exponentially small number of short loops). Real
porous media such as mesoporous silicas, aerogels, Vycor
glass, and others exhibit pore network space which can be
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FIG. 13. (Color online) The pore cell network for the Euclidean
model of SBA-15. The light gray (blue) hexagons represent the pore
cells vertically connected to each other by thin solid lines (vertical
fluid-fluid interactions, wff

vert). The thick horizontal lines account
for horizontal fluid-fluid interactions, wff

horiz, between pore cells in
different vertical mesopores through the micropores. The cylindrical
walls of the mesopores are split into matrix cells shown by dark gray
hexagon sides. The dashed horizontal lines represent matrix-fluid
interactions, wmf.

strongly interconnected and short loops might be present in
these materials [51,52]. In order to investigate the role of the
pore network topology and, in particular, the role of loops on
the shape of sorption isotherms, we use a minimal structural
model for a typical mesoporous material, such as mesoporous
silica SBA-15 [53], and compare the sorption in such a model
embedded in Euclidean space with that in the corresponding
random-graph model.

An ordered mesoporous silica SBA-15 consists of hexag-
onally arranged cylindrical pores. The rough cylinder walls
contain micropores which interconnect neighboring cylindri-
cal mesopores [52]. We model the structure of SBA-15 by a
three-dimensional lattice of pore cells (see Fig. 13). The lattice
consists of horizontal layers of pore cells (two layer fragments
are shown in Fig. 13). The pore cells are vertically linked to
each other, thus forming cylindrical mesopores. The axes of the
cylinders form a triangular lattice while the matrix boundaries
(represented by dark gray area between the columns) exhibit
hexagonal structure. Each pore cell in the interior region (not
on the surface) of the column is surrounded by one pore cell
from above and one from below. Horizontally, each pore cell in
the column is surrounded by matrix cells (the sides of hexagons
shown in dark gray). Due to the presence of micropores a
pore cell, i, can have a random number of neighboring matrix
(silica) cells, nmatr(i), varying from six (no micropores) to zero
when the pore cell does not have any matrix neighbors. If a
matrix cell is absent in the neighborhood of the pore cell, this
means that there is a micropore at this place and pore cell is
linked to the pore cell in the neighboring column. Therefore,
the coordination number, qi , of the interior pore cell i (number
of neighboring pore cells) is qi = 8 − nmatr(i) and thus qi = 2
if the pore cell is not communicating to other cylindrical pores
through the micropores. The location of the micropores on
cylindrical walls is assumed to be random and uncorrelated,

so any matrix cell in any vertical cylindrical pore is removed
and replaced by a micropore with probability pt which is a
parameter of the model. The value of pt can be estimated from
the experimentally measured ratio of micropore and mesopore
volume found to be of �10−1 [54] which gives pt � 10−1.
Below we analyze two representative cases with pt = 0.05
and pt = 0.2.

The number nmatr is given by a binomial distribution,
Pr(nmatr) = ( 6

nmatr

)
p

6−nmatr
t (1 − pt )nmatr , parameterized by pt .

The probability distribution of the pore cell degree can also
be expressed in terms of pt as Pr(q) = ( 6

q−2

)
p

q−2
t (1 − pt )8−q

so the mean cell degree is q = 2 + 6pt . The pore space of
the structural model embedded in Euclidean space (Euclidean
model, see Fig. 13) contains loops due to the random transverse
micropore links connecting vertical columns. The counterpart
random-graph model is built from a set of randomly connected
nodes with exactly the same realization of degree distribution
as for the Euclidean model. More precisely, in a realization
of the Euclidean model all the links are cut, resulting in a
set of nodes with q stubs. The vertical and horizontal stubs
corresponding to vertical and horizontal links in the Euclidean
model, respectively, are distinguished in order to account for
possible differences between fluid-fluid interactions in the
mesopores (vertical) and micropores (horizontal). The stubs
of the same type are then randomly connected to each other,
thus making the random-graph model of the original Euclidean
model.

If the pore cells are filled with fluid, then they can
interact with both the neighboring matrix and fluid cells.
The interactions are described by the lattice-gas Hamiltonian
given by Eq. (1). All the cells in the columns are vertically
connected by links representing fluid-fluid interactions (solid
vertical lines in Fig. 13). The horizontal (transverse) dashed
lines represent the matrix-fluid interactions between pore
cells and its neighboring matrix cells, shown as dark gray
sides of the hexagons. The transverse bold solid (red) lines
account for the fluid-fluid interactions between pore cells in
different vertical columns occurring through the micropores,
i.e., micropore fluid-fluid interactions. The strengths of these
interactions (parameters of the model) are proportional to
the contact surface area between the cells. As known from
experiment [54–56], the vertical pore diameter is of �5–10 nm
and the micropore size �3 nm, which is of the same order as
the thickness of the pore walls. In our model, the horizontal
size of the cell coincides with the vertical pore diameter
and the vertical size is chosen to be of the same order as
the micropore size. In this case, the mean strength of the
fluid-fluid interactions through the micropores, wff

horiz, is much
smaller than that between the cells in the same cylindrical pore,
wff

vert, i.e., wff
horiz/w

ff
vert ∼ 0.1. Both the vertical and horizontal

fluid-fluid interactions are assumed to be the same for all the
cells, i.e., the variations in contact surface area are ignored for
simplicity. The matrix-fluid interaction strength per unit area
is of the same order of magnitude as the fluid-fluid interaction
per unit area, i.e., wmf/wff

horiz � 1. The inequality sign in the
last relation accounts for typically greater attraction between
fluid and matrix than between fluid and fluid.

In order to take into account the roughness of the cylinder
walls, the strength of the matrix-fluid interaction, wmf

ij , between
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FIG. 14. (Color online) Sorption isotherms for structural models
of SBA-15 with wff

horiz/w
ff
vert = 0.1, wmf

0 = 0.2, and �mf = 0.04. The
lines correspond to the results for the random-graph model. The
symbols represent the results of Metropolis dynamics simulations
for 50 × 50 × 50 pore cells arranged on a lattice (see Fig. 13) with
periodic horizontal and open vertical boundary conditions. (a) pt =
0.05, T −1 = 2 (dashed line and squares), and T −1 = 15 (solid line
and circles); (b) pt = 0.2, T −1 = 2 (double dot-dashed line and stars),
T −1 = 5 (dashed line and squares), and T −1 = 20 (solid line, solid
and open circles for adsorption and desorption, respectively, with
μ̇ = 10−8 MCSS−1). The inset shows the binodal (phase coexistence
curve) for the random-graph model with critical temperature Tc �
0.118 ± 0.002.

the pore cell i and neighboring matrix cell j is assumed to be
an identically, independently, and normally distributed random
variable with p.d.f., N (wmf

0 ,�mf). The total strength, wmf
i =∑nmatr(i)

j wmf
ij , of the matrix-fluid interaction for cell i depends

on the number of surrounding matrix cells, nmatr, and thus is
normally distributed according to N (nmatr(i)wmf

0 ,n
1/2
matr(i)�

mf).
The equilibrium sorption isotherms in Euclidean network

model of SBA-15 can be studied using Metropolis dynamics
simulations (as described in Sec. VIII) while for the random-
graph model the analytical approach (see Sec. III) can be em-
ployed. The comparison of sorption isotherms for Euclidean
and random-graph models for a typical set of parameters and
for a particular realisation of node degrees taken from Pr(q)
(configuration averaging does not change the picture discussed
below) is shown in Figs. 14(a) and 14(b) for two values of
pt = 0.05 (q = 2.3) and pt = 0.2 (q = 3.2), respectively. As
mentioned in Sec. IV, the energy scale is set up by fixing
wff

vert = 1 and the distributions of the strength of matrix-fluid
interactions are chosen to be the same in both models. It follows
from Fig. 14 that there is a good agreement between the two
models for all the temperatures for which the equilibrium
in Metropolis dynamics simulations has been achieved, i.e.,
when there is no macroscopic coexistence between liquid and
gas [cf. lines and symbols in Figs. 14(a) and 14(b)]. The
agreement between the curves for the two models demonstrates
that the loops in the pore space are insignificant for sorption
processes provided liquid-gas coexistence is not involved. For
sufficiently high values of pt � p∗

t (with p∗
t � 0.155 ± 0.005

for the set of parameters used in Fig. 14), the random-
graph model predicts a coexistence curve below a critical

temperature Tc [Tc � 0.118 ± 0.002 as seen from the inset in
Fig. 14(b)]. As the temperature approaches Tc, the agreement
between sorption isotherms obtained in the random-graph and
Euclidean models becomes worse [cf. the dashed line and
squares in Fig. 14(b)]. This can be ascribed to (i) the lack
of equilibration of numerical simulations and (ii) the effect
of pore space loops. Indeed, below the critical temperature,
the random-graph model exhibits a first-order phase transition
[see the vertical jump for the solid curve in Fig. 14(b)]. In
the same temperature range, the Metropolis dynamics used for
the Euclidean model shows significant slowing down and the
system ceases to equilibrate within the available simulation
time. This results in different adsorption (solid circles) and
desorption (open circles) isotherms which can be only tenta-
tively compared with the equilibrium random-graph isotherm.

The contribution of the pore space loops to the discrepancy
between sorption isotherms for random-graph and Euclidean
models found near and below the critical temperature can
be understood in a qualitative way. The density of fluid in
porous media varies with μ in a series of abrupt changes
which represent avalanches in absorbed fluid [57]. Above the
critical temperature, most of these avalanches are small in
comparison with the typical size of pore space loops. The
loops are therefore not important for sorption processes. In
contrast, around and below Tc, avalanches of all sizes including
a macroscopic avalanche responsible for the vertical step in
density occur in the system [see the solid line in Figs. 14(b)
and 15(b)]. Therefore, the loops in the pore space can influence
the dynamics of condensation and affect the shape of the
sorption curves.

In order to explore the effect of the parameters of the
model, we have undertaken a similar analysis for different
sets of parameters. In particular, Fig. 15 shows the results
for systems with the same interaction strength for vertical
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FIG. 15. (Color online) Sorption isotherms for structural models
of SBA-15 with wff

horiz = wff
vert = 1, wmf

0 = 1, and �mf = 0.2. The
lines and symbols are for the random-graph and Euclidean models,
respectively. (a) pt = 0.05, T −1 = 2 (dashed line and circles), and
T −1 = 10 (solid line and squares); (b) pt = 0.2, T −1 = 1 (double
dot-dashed line and stars), T −1 = 2 (dot-dashed line and squares),
and T −1 = 10 (solid line, solid and open circles for adsorption and
desorption, respectively, with μ̇ = 10−7 MCSS−1). The inset shows
the binodal (phase coexistence curve) for the random-graph model
with critical temperature Tc � 0.358 ± 0.001.
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and horizontal fluid-fluid interactions (i.e., wff
horiz = wff

vert). All
the main qualitative features are the same as in Figs. 14(a)
and 14(b). As expected, the quantitative characteristics differ,
e.g., Tc � 0.358 ± 0.001 and p∗

t � 0.138 ± 0.005.
Overall, we found that the random-graph model serves as

a good representation of the Euclidean network model for
pore space in mesoporous silica SBA-15 and mimic well
the equilibrium sorption isotherms for temperatures above
the critical point appearing at sufficiently high concentration
of micropores. For temperatures below the critical point,
the random-graph model becomes less reliable. However, it
predicts a discontinuity of the mean density in the same range
of chemical potential where the hysteresis loop exists for the
nonequilibrium Metropolis dynamics simulations in Euclidean
network. It should be noted that the minimal structural model
of SBA-15 used above does not take into account the gradual
layer adsorption on internal surface of the cylindrical pores
which is responsible for the initial increasing part of the
isotherms found experimentally. However, the random-graph
model reveals the significance of the network features of the
pore space in SBA-15 and predicts the existence of a critical
concentration of micropores above which the coexistence of
two phases is possible in SBA-15.

X. CONCLUSIONS

To conclude, we have presented an exact solution for the
equilibrium distribution of densities and mean free energy
of a heterogeneous lattice gas condensation model on a
random graph of fixed degree distribution. This solution is
given in the form of two coupled integral equations which
can be solved numerically using discrete Fourier transforms.
The solution is based on and follows from known solutions
obtained by recursive techniques for the random-field Ising
model on a Bethe lattice [21]. Our approach allows disorder
in both coordination number and interaction strengths to
be considered. The solution of these integral equations for
all types of disorder has been supported by independent
numerical simulations of sorption using Metropolis dynamics.
An advantage of the analytical solution is that we are able
to identify and analyze both stable and metastable states,
even in regions which are challenging to access by numerical
approaches.

Disorder in coordination number can lead to interesting
physical phenomena. Namely, in a random graph with a
mixture of cells of two greatly different coordination numbers,
multiple phase transitions exist. At a given temperature and
an increasing chemical potential, first the subsystem of cells
with high coordination number becomes occupied due to the
large number of interacting neighbors at each such cell, while
the rest of the system remains unoccupied. A further increase
in chemical potential leads to a second phase transition in
which adsorption occurs in the rest of the cells. Such a
multiple phase transition might be related to wetting and
filling transitions seen in numerical simulations [27,58–60].
Disorder in interaction strengths is found to reduce the
critical temperature of the phase transition, with the critical
temperature reaching zero at a certain value of disorder
which corresponds to a zero-temperature critical disorder. For
large-enough disorder in interaction strengths, the cells with

repulsive (attractive) interactions with matrix are unoccupied
(occupied), thus producing a distribution of densities with two
peaks.

We have also demonstrated that the random-graph model
mimics the sorption well in realistic Euclidean models of
porous media, such as SBA-15, at temperatures above the
critical one. This gives an opportunity to use exactly solvable
random-graph models to study quantitatively capillary conden-
sation at high-enough temperature (or in porous media with
few topological loops) and provide qualitative insight at low
temperatures (or media with relatively high densities of loops).

ACKNOWLEDGMENT

T.P.H. acknowledges the financial support of UK EPSRC.

APPENDIX A: NUMERICAL SOLUTION
OF SELF-CONSISTENT EQUATIONS

The solution, W eff(weff
ij ), of the coupled integral Eqs. (17)

and (18) has previously been found both by discretizing this
function [23] and by means of an approach using population
dynamics [22,26]. We use the former method, which can be
performed in the following way.

In order to discretize the functions W eff
s (weff

ij ), we note
that they can be nonzero only in a certain region 0 � weff <

weff
max = wff

max, where wff
max is the largest possible strength of

the fluid-fluid interaction. Therefore, they can be represented
numerically by storing their values at a series of M = 217

points, Ws,m = W eff
s (m�) (0 � m < M), where � = xmax/M

with some value xmax > weff
max. In order to interpolate the value

of this function between stored values, we calculate the first
M/2 components of its Fourier series expansion, with the
highest frequency (2�)−1, so the numerical representation of
W eff

s (weff
ij ) is given by

W eff
s,num(weff) =

M/2∑
n=−M/2+1

W̃s,n exp

(
2πin

weff

xmax

)
, (A1)

where W̃s,n are defined by a discrete Fourier transform,

W̃s,n = M−1
M−1∑
m=0

Ws,m exp

(
−2πinm

M

)
. (A2)

In order to iteratively solve Eqs. (17) and (18), we find
a series of successively improved approximations W eff

s (weff
ij )

to the function W eff(weff). We begin the iterative method by
substituting the distribution W eff

s,num(weff) into Eq. (18). This

gives the function W
part
q (wpart

ji ), which is the convolution of
W eff

s,num(weff) with itself q − 1 times and with Wmf
q (wmf

i ) once.
Such a convolution can be performed in Fourier space, giving
the first M/2 terms in the Fourier series of W

part
q (wpart

ji ) as

W̃ part
q,n = xq−1

max W̃ q−1
s,n W̃mf

n , (A3)

where W̃mf
n =x−1

max

∫ wmf
max

wmf
min

Wmf
q (wmf

j ) exp (−2πin(wmf
j − wmf

min)/

xmax)dwmf
j is the Fourier series of Wmf

q (wmf
i ), with wmf

max

and wmf
max being the maximum and minimum nonzero values

of the matrix-fluid interaction, respectively. The numerical
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representation of the function W
part
q (wpart

ji ) is then given by

W part
q

(
w

part
ji

) =
M/2∑

n=−M/2+1

W̃ part
q,n exp

(
2πin

w
part
ji − μ − wmf

min

xmax

)
,

(A4)

which gives the same result as substituting W eff
s,num(weff) into

Eq. (18) if xmax > weff(q − 1) + wmf
max − wmf

min.
Having found an expression for the distribution W

part
q (wpart

ji )
in terms of the distribution W eff

s,num(weff) using Eqs. (A3)
and (A4), we next find a new estimate, W eff

s+1,num(weff), for
the distribution of weff , thus completing a step of the iterative
solution process. To find W eff

s+1,num(weff) we use Eq. (17) which
we apply in several steps. In the first step, we calculate the dis-
tributions of bji = F+(βw

part
ji ) and cij = F−(βwff

ij ), and then,
second, we calculate the distribution of dij = bji + cij , and, fi-
nally, we calculate the distribution of weff

ij = β−1F+(dij ). The
second step of this calculation is relatively straightforward,
since the first M/2 terms of the Fourier series of the distri-
butions of bji and cij lead directly to the first M/2 terms for
the distribution of dij by the convolution theorem. Additional
techniques are required, however, for the first and last steps.
For instance, the distribution, B(bji), of bji , is written as,

B(bji) =
{

β−1W
part
q (β−1F−(bji))

∣∣∣ dF−(bji )
dbji

∣∣∣ , bji > 0

0, otherwise.

= −
(

dF−(bji)

dbji

) M/2∑
n=−M/2+1

[
W̃ part

q,n

× exp

(
2πin

β−1F−(bji) − μ − wmf
min

xmax

)]
, (A5)

where we have used the property F−(F+(x)) = x. Since
bji depends on w

part
ji in a nonlinear way, the Fourier series

of the distribution B(bji) given by Eq. (A5) contains an
infinite number of terms and cannot be expressed exactly
using our numerical approach. We notice that, in Fourier
space, the distribution B(bji) can be recast in the form
B̃(ω′)
[iω′] = (2π )−1

∫
W̃

part
q (βω)
[−iω]
[i(ω + ω′)]dω,

where 
[z] = ∫∞
0 t z−1e−t dt is the 
 function and the Fourier

transform W̃
part
q (ν) = ∫

W
part
q (wpart

ji ) exp(−iνw
part
ji )dw

part
ji

[B̃(ω) is defined similarly in terms of B(bji)]. However, this
expression does not lead directly to a numerically accurate
method to calculate B(bji), due to the unwanted periodicity
of the function represented by Fourier series. Instead, we
have partitioned the function B(bji) found from Eq. (A5) into

M bins, Bm = ∫ �′(m+1/2)
�′(m−1/2) B(bji)dbji , where �′ = β� and

0 � m < M . The formula for Bm in terms of W̃
part
q,n is

Bm =
M/2∑

n=−M/2+1

W̃ part
q,n

×
∫ F−(�(m−1/2))

F−(�(m+1/2))
exp

(
2πin

w
part
ji − μ− wmf

min

xmax

)
dw

part
ji ,

(A6)

which can be evaluated for all m simultaneously using a
nonuniform fast-Fourier transform [61]. The values Bm are
assumed to represent the function Bm according to B(m�′) =
Bm. Having found such an expression for B(bji), we can find
the distribution of dij by convolution. A similar expression to
Eq. (A6) exists to link W eff

s+1,num(weff) to the distribution of dij .
Thus, having started with a given distribution, W eff

s,num(weff), in
Eq. (A1), we have found a new distribution W eff

s+1,num(weff). Re-
peatedly applying this process eventually leads to a fixed dis-
tribution, which is the numerical solution to Eqs. (17) and (18).

APPENDIX B: ZERO- AND SMALL-DISORDER CASE

In this appendix, we present an analytical solution for R(ρ)
and the form of the phase diagram for a system with zero
or small disorder. The analysis is exact for the case of zero
disorder and approximate for small disorder. The distribution
is obtained as an approximate solution of the two coupled
integral equations, Eqs. (17) and (18), and is based on a linear
expansion of the integrands in random interaction strengths
and effective fields about their mean values.

We start our analysis with the zero-disorder case considered
in Sec. IV. In this case, the values of weff

0 and w
part
0 introduced

in Sec. IV can be found by solving the following two coupled
equations:

βweff
0 = F+[F+(βw

part
0

) + F−(βwff
0

)]
, (B1)

w
part
0 = μ + wmf

0 + (q − 1)weff
0 , (B2)

which are obtained by setting all random values to be equal to
their mean values in Eqs. (9) and (10). For temperatures below
the critical value, TC, there is a region in the parameter space
of μ and T within which Eqs. (B1) and (B2) have multiple
solutions, corresponding to metastable states. The boundaries
of this region are at the points where Eqs. (B1) and (B2)
have a double root, i.e., where the derivatives of the left- and
right-hand sides of Eq. (B1) with respect to weff

0 are equal, i.e.,

d

dweff
0

βweff
0 = d

dweff
0

{
F+[F+(βw

part
0

) + F−(βwff
0

)]}
.

(B3)

The simultaneous solution of Eqs. (B1), (B2), and (B3) is given
by

μ±(T ) = −1

2
qwff

0 − wmf
0

±
{

β−1 ln

[
sinh

(
1
4βwff

0 − 1
2βwspin

)
sinh

(
1
4βwff

0 + 1
2βwspin

)
]

+(q − 1)wspin

}
, (B4)

where

wspin = β−1 ln

{
q

q − 2
+ q − 2

2(q − 1)

[
v +

√
v
(
eβwff

0 − 1
)]}

− 1

2
wff

0 , (B5)
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FIG. 16. Phase diagram for fluid condensation on a q = 4-regular
graph with homogeneous interaction strengths, wff

0 = 1, wmf
0 = 0.

The solid line represents the phase boundary and dashed lines
represent the limits of metastability (spinodal lines).

and v = exp(βwff
0 ) − [q/(q − 2)]2. In Eq. (B4), the two

solutions μ±(T ) represent the upper and lower boundaries of
the spinodal region at a given value of T (see the dashed lines
in Fig. 16). When the temperature is such that exp(βwff

0 ) =
[q/(q − 2)]2, the value of wspin given by Eq. (B5) is zero,
and the upper and lower boundaries of the spinodal coincide,
μ+(T ) = μ−(T ), meaning that this temperature corresponds
to criticality. This condition leads to the expression for the
critical temperature, TC, given by Eq. (B4). For T > TC,
Eq. (B4) does not have any real solutions, and there are no
phase transitions or coexistence for this range of temperatures.

In order to obtain an approximation of R(ρ) for small
normally distributed values of wmf

i and wff
ij , we expand Eqs. (9)

and (10) to first order in all of the field parameters, i.e.,

β
(
weff

ij − weff
0

) = a
[
bβ
(
wff

ij − wff
0

) + cβ
(
w

part
ji − w

part
0

)]
,

(B6)

w
part
ji − w

part
0 = wmf

j − wmf
0 +

∑
k/j,k �=i

(
weff

jk − weff
0

)
, (B7)

where

a = ∂F+(x)

∂x

∣∣∣∣
x=F−(wff

0 )+F+(βw
part
0 )

= − exp
{ − [

βwff
0 + F−(βwff

0

)]}
,

(B8)

b = ∂F−(βwff
0

)
∂wff

0

= [
e−βwff

0 − 1
]−1

,

c = ∂F+(βw
part
0

)
∂w

part
0

= −[
e−βw

part
0 + 1

]−1
.

Assuming that the effective fields weff
ij are identically normally

distributed, weff
ij ∼ N (weff

0 ,�2
eff), with mean weff

ij and variance
�2

eff , Eqs. (B6) and (B7) can be solved and both the mean
and variance of weff

ij found. The mean value does not change

from the zero-disorder case, weff
ij = weff

0 , meaning that the
solution with small disorder has the same phase diagram as the

zero-disorder solution. The variance is given by

�2
eff = a2[(b�ff)2 + (c�mf)2]

1 − (q − 1)(ac�eff)2
. (B9)

Similarly to the analysis for the distribution of effective
fields, the distribution R(ρi) of mean cell densities can be
found for small disorder by linearly expanding the argument of
the δ function in Eq. (19) with respect to the random variables,
i.e.,

ρi − ρ0 = βρ0(1 − ρ0)
[
wmf

i − wmf
0 + q

(
weff

ij − weff
0

)]
,

(B10)

where ρ0 = {1 − exp[−β(μ + wmf
0 + qweff

0 )]}−1 is the den-
sity in the absence of disorder. The values of ρi are therefore
normally distributed with a mean ρ0 and a standard deviation,

�ρ = βρ0(1 − ρ0)

√
qa2[(b�ff)2 + (c�mf)2]

[1 − (ac)2(q − 1)]
+ �mf

2.

(B11)

We have demonstrated that for the low-disorder case, the
distribution of densities can be approximated by a normal
distribution. The quality of this approximation is good even
for �mf/w

ff
0 = 0.6, as can be seen by comparing the data

points according to the approximate normal solution [circles
in Fig. 11(a)] with the results of the exact numerical solution
(lines) and of Metropolis dynamics simulations (crosses).

APPENDIX C: METHOD OF MONTE CARLO
SIMULATIONS

The dynamical simulations of the evolution of a system
of cells is performed using Metropolis dynamics [47]. As
explained in Sec. VIII, in this dynamics, a random cell,
i, is selected from N cells with probability Ps = 1/N and
its state is changed with the probability given by Pi =
min[1, exp(−β�H)]. If the cell does not change state, the
transition is referred to as a null transition. At low tempera-
tures, starting from any initial state, the system rapidly moves
into a metastable state. After this, most transitions are null
transitions and nothing changes in the system for long periods
of time within the standard Metropolis scheme. To improve
the computational performance of our simulations, we use a
level 1 MCAMC method [32,48,49], which effectively skips
the null transitions.

In our implementation of the MCAMC, we calculate the
probability, Pi , that a spin i will change state if it is chosen. By
calculating the value of

∑N
i=1 PsPi we can find the probability

that the next transition is a null transition,

Pnull = 1 −
N∑

i=1

PsPi. (C1)

If the next transition is a null transition and no parameters of the
system change between different transitions, then the transition
following the next one will also be a null transition with
probability Pnull, and so on. Thus, we can find the probability,
Pn, that the sequence of n − 1 null transitions is followed by
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a non-null transition, i.e.,

Pn = P n−1
null (1 − Pnull). (C2)

In the Metropolis simulation, we first choose to skip a random
number of transitions, n, drawn from the distribution Eq. (C2)
and then change the state of a cell i, randomly chosen according
to the probability distribution,

P (i|non-null) = Pi∑N
j=1 Pj

. (C3)

Finally, the probabilities Pi for the cell which changed state
and all of its neighbors are updated to reflect their new
environment. Numbers can be selected from such a distribution
in O(log n) computational steps by using a binary tree (see,
e.g., Ref. [62]).

Within such an implementation of the MCAMC method,
and for the case of Metropolis dynamics, a changing chemical
potential can be modelled without having to recalculate every
value of Pi . To do this, we do not store the values of Pi

explicitly but instead store the values,

P
(0)
i =

{
exp

( − β(2τi − 1)f (0)
i

)
if (2τi − 1)fi � 0

1 if (2τi − 1)fi < 0.
(C4)

with the local field, fi , and reference field, f
(0)
i , given by

fi = μ +
∑
j/i

τjw
ff
ij + wmf

i , f
(0)
i = fi − (μ − μ0). (C5)

The values of Pi are calculated according to the following
equation:

Pi = P
(0)
i Ui, (C6)

where the values of Ui are given by

Ui =

⎧⎪⎨
⎪⎩

a if τi = 0,fi � 0 (a)

a−1 if τi = 1,fi � 0 (b)

1 otherwise, (c)

(C7)

and the scaling factor a = exp[β(μ − μ0)]. The value of μ0 is
arbitrary, but it is chosen to be such that a is within the range
of the floating point representation. According to Eq. (C7),
the different cells can be separated into three distinct classes,
depending on their state τi and the local field fi . These classes
correspond to cells which are stable and unoccupied [Csu, see
Eq. (C7)(a)], stable and occupied [Cso, see Eq. (C7)(b)], and
unstable [Cu, see Eq. (C7)(c)].

Separate binary trees are used to generate random variates,
i, from the distributions, P

(0)
i , corresponding to cells in each

of the three classes. The sums, P so = ∑
i∈Cso

P
(0)
i , P su =∑

i∈Csu
P

(0)
i , and P u = ∑

i∈Cu
P

(0)
i are also stored separately,

being the roots of these trees. The algorithm for simulating
Metropolis dynamics is then as follows. First, the probability
of the next transition being a null transition is calculated using

Pnull = aP su + a−1P so + P u. The next n transitions are then
skipped, where n is distributed according to Pn in Eq. (C2).
Second, the class of cell which changes state on the next
transition is chosen according to the probabilities

P (so|non-null) = a−1P so

aP su + a−1P so + P u

P (su|non-null) = aP so

aP su + a−1P so + P u
(C8)

P (u|non-null) = P u

aP su + a−1P so + P u
.

The particular cell from the chosen class which changes state
is selected by using the binary tree method. The final step is
to update the value of P

(0)
i and the class for the cell which

changed state and for all of its neighbors.
An additional tree should be introduced in order to

account for any cells which change class as μ changes. For
concreteness, consider the case when μ increases. In this case,
some cells with a negative local field may begin to experience
a positive local field and thus their class should be changed
[see Eq. (C7)]. In order to determine whether any cell changes
between the classes, we maintain a list of f

(0)
i for all of the

cells which have negative local fields fi . After increasing μ,
we find the largest value of f

(0)
i in the list and check whether

the corresponding local field, fi = f
(0)
i + (μ − μ0), is positive

or negative. If it is positive, the value of f
(0)
i for that cell is

removed from the list of negative fields and the class together
with the values of P

(0)
i are corrected for the cell. Such a

procedure is repeated until the highest local field in the list
of negative local fields is negative. The list of negative local
fields is also stored in a binary search tree, meaning that this
operation takes O(log N ) computational steps.

Within this more complex version of the MCAMC method,
a change in μ can be performed by changing the value of a

and checking the list of negative local fields. The technique
described above allows the value of μ to be smoothly varied
with time and performs better than the simple Metropolis
method for low temperatures T � 0.5, when more than
approximately 9 of 10 transitions are null transitions. The
main memory requirement for this method is for the four
binary trees used. Each binary tree has two nodes for each
site, so the memory requirement scales linearly with system
size. Note that this method of accelerating the simulations can
only be achieved for Metropolis dynamics and not Glauber
dynamics because Eqs. (C6) and (C7) hold only for Metropolis
dynamics. Indeed, for Metropolis dynamics, a change of μ

results in a change of Pi by Ui where Ui can only take three
values, a, a−1, and 1. Conversely, for Glauber dynamics,
the value of Ui = [cosh(βf

(0)
i si)/ cosh(βfisi)] exp[−β(μ −

μ0)si], which, in general, differs for every cell and thus requires
recalculation of every value of Pi for any new value of μ.
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