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Condensation of fluctuations is an interesting phenomenon conceptually distinct from condensation on average.
One striking feature is that, contrary to what happens on average, condensation of fluctuations may occur even in
the absence of interaction. The explanation emerges from the duality between large deviation events in the given
system and typical events in a new and appropriately biased system. This phenomenon is investigated in the context
of the Gaussian model, chosen as a paradigmatical noninteracting system, before and after an instantaneous
temperature quench. It is shown that the bias induces a mean-field-like effective interaction responsible for the
condensation on average. Phase diagrams, covering both the equilibrium and the off-equilibrium regimes, are
derived for observables representative of generic behaviors.
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I. INTRODUCTION

Condensation is a ubiquitous phenomenon in nature. It may
take place in equilibrium, off-equilibrium, in real space, or in
momentum space. Starting from the most familiar conden-
sation of supersaturated vapor, there is a great abundance of
examples which includes, among others, the Bose-Einstein
condensation (BEC) [1] and the related transition in mean-field
systems, such as the spherical [2] or the large-N model [3].
More recently there has been much interest in condensation
transitions arising out of equilibrium, both in classical [4]
and in quantum systems [5]. In the nonequilibrium context
the phenomenology of condensation turns out to be very
rich with a variety of manifestations in fields as diverse
as economics, information theory, traffic models, granular
materials, networks, and mass transport [4,6]. Much progress
in the understanding of the basic features common to most
of these different instances of condensation has been achieved
through the study of driven diffusive systems and, in particular,
of the zero-range process or variants of it [4].

In this paper we will focus on a yet another manifestation
of condensation, which is somewhat conceptually different.
In the usual contexts mentioned above, condensation is a
phenomenon observed in the average behavior of the system.
Instead, we will be concerned with condensation occurring in
the fluctuations, namely, with condensation as a rare event
[7–11]. The conceptual and substantial difference is that
condensation of fluctuations may occur even in systems which
cannot sustain condensation on average, such as noninteracting
systems. In order to emphasize this point, we will work with the
Gaussian model, which is the paradigmatical noninteracting
system in the theory of phase transitions [12]. Although the
average properties of this system are well known to be trivial
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in and out of equilibrium, we will find that fluctuations of
extensive quantities may condense.

Most of the work quoted above on condensation, both on
average and in the fluctuations, has been carried out in the
context of nonequilibrium steady states, obtained by driving an
externally generated current into the system. Here, instead, we
will carry further the program initiated in Ref. [9] of exploring
fluctuations in the largely unknown area of the processes
without time translation invariance [13]. Specifically, we will
consider the relaxation following the instantaneous quench
from an initial temperature TI to a lower temperature TF . With
such a choice, we can overview the entire evolution from the
equilibrium behavior before the quench to the off-equilibrium
relaxation after the quench. We will see that, depending on the
nature of the observable, fluctuations may condense either
in and out of equilibrium or just as an out-of-equilibrium
phenomenon. We will analyze in detail the mechanism of
condensation, and we will derive phase diagrams, extending
into the time direction. These diagrams show that during
relaxation condensation is enhanced by the dynamics if
occurring also in equilibrium or dynamically generated if
absent in equilibrium.

The paper is organized as follows: In Sec. II we set up the
ensemble theory apparatus needed in the rest of the paper. The
Gaussian model is introduced in Sec. III. Section IV is the
central section of the paper where the notions of condensation
on average and condensation of the fluctuations are discussed
in general. The example of a macrovariable condensing both
in equilibrium and off-equilibrium is treated in Sec. V,
whereas the example of condensation as an out-of-equilibrium
phenomenon is discussed in Sec. VI. Concluding remarks are
made in Sec. VII.

II. ENSEMBLES

The apparently puzzling feature of condensation appearing
in the fluctuations of a noninteracting system finds explanation
in the framework of large deviation theory [14], through the
mapping of rare fluctuations in the given system (in our case the
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Gaussian model) into typical events in a new system, obtained
by the application of an appropriate bias. The key point, as
we will see, is that the bias produces an effective interaction,
which is responsible for the condensation on average in the
biased system. The basic idea amounts to an extension of
ensemble theory beyond the realm of equilibrium statistical
mechanics, according to a scheme which has been recently
used in a variety of different contexts, classical [15–17] and
quantum [18].

In order to give a general presentation of the method, let us
consider a generic probability distribution P (ϕ,J ), referred to
as the prior and describing the state of a system of volume V

with microstates consisting of sets of degrees of freedom ϕ =
{ϕi}, where i is a generic label, and control parameters J . In
this paper i is the position vector �x in real space or the wave
vector �k in Fourier space, and J stands for temperature T in
equilibrium or for time t off-equilibrium. The probability of a
fluctuation M of a random variable M(ϕ) is given by

P (M,J ) =
∫

�

dϕ P (ϕ,J )δ[M − M(ϕ)], (1)

where � is the phase space. Introducing the integral represen-
tation of the δ function δ(x) = ∫ α+i∞

α−i∞
dz

2πi
e−zx this becomes

P (M,J ) =
∫ α+i∞

α−i∞

dz

2πi
e−zMKM(z,J ), (2)

where

KM(z,J ) = 〈ezM(ϕ)〉 (3)

is the moment generating function of M and the brackets
〈·〉 denote the average in the prior ensemble. If the system is
extended and M(ϕ) is an extensive macrovariable, for large
volumes Eq. (2) can be rewritten as

P (M,J,V ) =
∫ α+i∞

α−i∞

dz

2πi
e−V [zm+λM(z,J )], (4)

where m is the density M/V and

−λM(z,J ) = 1

V
ln KM(z,J,V ) (5)

is the volume-independent scaled cumulant generating func-
tion. Carrying out the integration by the saddle point method,
the large deviation principle is obtained

P (M,J,V ) ∼ e−V IM(m,J ), (6)

with the rate function,

IM(m,J ) = z∗m + λM(z∗,J ), (7)

and where z∗(m,J ) is the solution, supposedly unique, of the
saddle point equation,

∂

∂z
λM(z,J ) = −m. (8)

We stress that the large deviation principle originates from
extensivity with respect to volume. Extensivity with respect
to time [14] will not be considered. Therefore, regarding the
latter quantity as the “free energy” of the new ensemble,

P (ϕ,z,J,V ) = 1

KM(z,J,V )
P (ϕ,J,V )ezM(ϕ), (9)

obtained by imposing the exponential bias on the prior, the
rate function remains identified with the “thermodynamic
potential” associated with yet another ensemble,

P (ϕ,M,J,V ) = 1

P (M,J,V )
P (ϕ,J,V )δ[M − M(ϕ)], (10)

in which the bias is implemented rigidly through the phase
space restriction M = M(ϕ). To make contact with familiar
ground, if the prior was the uniform ensemble P (ϕ,V ) =
1/|�(V )| and M was the energy of the system, then P (ϕ,z,V )
and P (ϕ,M,V ), respectively, would be the usual canonical
ensemble at the inverse temperature β = −z and the micro-
canonical ensemble with energy E = M .

We stress that the above chain of relations holds in general,
without limitations to equilibrium. Therefore, the quantity
IM(m,J ) plays two distinct roles [8,11,16]: On one hand
it acts as the rate function regulating the occurrence of rare
events in the prior ensemble, and on the other hand it is the
thermodynamic potential accounting for the average properties
in the constrained ensemble P (ϕ,M,J,V ). In particular, if
the extra correlations due to the bias are responsible for
singularities in the free energy, amenable to a phase transition,
the same singularities arise in the unbiased fluctuations.
Consequently, the same phenomenon, in principle, could be
observed following different experimental protocols, either
by leaving the system unbiased and monitoring fluctuations
or, alternatively, by arranging the appropriate bias aimed to
typically render the effect of interest.

III. THE GAUSSIAN MODEL

In order to produce a concrete and simple realization of
the above ideas, let us consider the Gaussian model, which
describes a system of volume V , with a scalar order parameter
field ϕ(�x) and the bilinear energy functional,

H[ϕ] = 1

2

∫
V

d �x[(∇ϕ)2 + rϕ2(�x)], (11)

where r is a non-negative mass. The system is prepared
in equilibrium at the temperature TI . At the time t = 0 is
instantaneously quenched to the lower temperature TF . The
dynamics, without conservation of the order parameter, are
governed by the overdamped Langevin equation [12,19],

ϕ̇(�x,t) = [∇2 − r]ϕ(�x,t) + η(�x,t), (12)

where η(�x,t) is the white Gaussian noise generated by the cold
reservoir with zero average and correlator,

〈η(�x,t)η(�x ′,t ′)〉 = 2TF δ(�x − �x ′)δ(t − t ′). (13)

Due to linearity, the problem can be diagonalized by Fourier
transformation. Keeping in mind that the Fourier components
ϕ�k = ∫

V
d �x ϕ(�x)ei�k·�x are complex, some care is needed in

the identification of the independent variables. Let us denote
by B the set of all wave vectors with magnitude smaller
than an ultraviolet cutoff �, caused by the existence of a
microscopic length scale in the problem, such as an underlying
lattice spacing. Since the reality of ϕ(�x) requires ϕ−�k = ϕ∗

�k ,
the independent variables are ϕ0 and the set of pairs {u�k =
Re ϕ�k, v�k = Im ϕ�k} with �k ∈ B+, where B+ is half of B.
More precisely, if B− is the set obtained by reversing all the
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wave vectors in B+, then B+ is such that B+ ∩ B− = ∅ and
B+ ∪ B− = B − {�0}. However, rather than working with B+,
it is more convenient to let �k vary over the whole of B by
taking as independent real variables,

x�k =
⎧⎨⎩

ϕ0 for �k = 0,

u�k for �k ∈ B+,

v�k, for �k ∈ B−.

(14)

With this convention, from Eq. (12) we get the equations of
motion for a set of independent Brownian oscillators,

ẋ�k(t) = −ωkx�k(t) + ζ�k(t), (15)

with the dispersion relation ωk = (k2 + r). The noise correla-
tor is given by

〈ζ�k(t)ζ�k′(t ′)〉 = 2TF,kV δ�k,−�k′δ(t − t ′), (16)

where

TF,k = TF

2θk

, (17)

and θk is the Heaviside step function with θ0 = 1/2. The energy
functional (11) then takes the separable form

H(x) =
∑

�k
H�k(x�k), (18)

with

H�k(x�k) = 1

V
θkωkx

2
�k , (19)

and where x stands for the whole set {x�k}.
Due to mode independence, the state of the system is

factorized at all times P (x,t) = ∏
�k P�k(x�k,t) with the single-

mode contributions given by

P�k(x�k,t) = Z−1
�k (t)e−βk(t)H�k (x�k ), (20)

Z�k(t) =
√

πV

βk(t)θkωk

, (21)

where β−1
k (t) is the effective temperature of the modes with

wave vector magnitude k, defined from the average energy per
degree of freedom [20],

β−1
k (t) = 2〈H�k(t)〉 = 2

V
θkωk

〈
x2

�k (t)
〉
, (22)

which yields

β−1
k (t) = (TI − TF )e−2ωkt + TF . (23)

In this paper we will take kB = 1 for the Boltzmann constant.
As illustrated in the top panel of Fig. 1, initially the spectrum
of effective temperatures is flat with βk(t = 0) = βI , which is
the statement of energy equipartition. Then, as the system
relaxes, the temperatures of the different modes acquire a
k dependence, signaling the breaking of equipartition and
departure from equilibrium. Eventually, convergence to the
same final value βF takes place as the system equilibrates and
equipartition is restored. The probability distribution P (x,t)
will be taken as the prior in the following.
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FIG. 1. (Color online) Spectra of inverse effective temperatures
(top) and of ρk for the order parameter sample variance (bottom) with
r = 1,TI = 1, and TF = 0.2.

IV. FLUCTUATIONS OF A MACROVARIABLE

Let us now consider a quadratic and separable macrovari-
able M(x) = ∑

�k M�k(x�k) with M�k(x�k) = 1
V

θkμkx
2
�k , whose

coefficients μk are to be specified. According to the scheme
of Sec. II, all the information on the fluctuations of M(x)
at the generic time t is contained in the rate function (7)
with J = t . The computation of this quantity requires the
preliminary computation of the moment generating function.
From the factorization of the prior and the separability of M
follows:

KM(z,t) =
∏

�k
KM,�k(z,t), (24)

with the single-mode factors given by

KM,�k(z,t) =
∫ ∞

−∞
dx�kP�k(x�k,t)e

zM�k(x�k )

= 1√
1 − ρ−1

k (t)z
, (25)

where

ρk = βkωk/μk = 1
2 〈M�k〉−1. (26)
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Inserting this result into Eq. (5), the saddle point equation (8)
can be written as

m = F̃M(z,t,V ), (27)

where the function on the right hand side is given by

F̃M(z,t,V ) = 1

V

∑
�k

〈M�k〉z, (28)

and

〈M�k〉z = 1

2[ρk(t) − z]
(29)

is the average per mode in the biased ensemble (9). Recalling
the definition (26) of ρk , the above equation can be rewritten as

〈M�k〉z = 1

〈M�k(t)〉−1 − 2z
, (30)

in which the biased and the prior averages enter in the same
formal relationship as the dressed and the bare average in
a Dyson-Schwinger-type equation [21,22] with 2z playing
the role of the tadpole self-energy. Now, since truncating the
self-energy skeleton expansion to the tadpole contribution
amounts to a self-consistent mean-field approximation as
in the large-N limit of an O(N ) model [22,23], we have
that biased expectations can be viewed as arising from the
mean-field approximation on an underlying interacting theory,
whose free limit is given by the prior expectations. This turns
out to be essential for the distinction between condensation as
a typical phenomenon or as a rare fluctuation.

Transforming the sum in Eq. (28) into an integral, the saddle
point equation (27) can be rewritten as

m = FM(z,t), (31)

with

FM(z,t) = ϒd

2

∫ �

0

dk

(2π )d
kd−1

ρk(t) − z
, (32)

where d is the space dimensionality, ϒd = 2πd/2/�(d/2) is
the d-dimensional solid angle, and � is the Euler � function.
The formal solution is given by

z∗(m,t) = F−1
M (m,t), (33)

where F−1
M is the inverse, with respect to z, of the function

defined by Eq. (32). The existence of this solution depends
on the domain of definition of F−1

M . If we assume M to be
positive, F−1

M is defined for z � ρkM
, where kM is the wave

vector which minimizes ρk , and

FM(z,t) � mC(t), (34)

with

mC(t) = FM
(
z = ρkM

,t
)
. (35)

The issue is whether this upper bound is finite or infinite. In
this paper, for simplicity, we will limit the discussion to cases
with kM = 0. Then, if [ρk(t) − ρ0(t)] vanishes with k like kα ,
for d � α the singularity is not integrable, mC(t) diverges,
and the solution (33) exists for any m � 0. This is shown in
the top panel of Fig. 2. Instead, if d > α, the singularity is
integrable, mC(t) is finite, and the solution (33) exists only
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FIG. 2. (Color online) Typical behavior of FM(z,t), obtained
with μk = 2,t = 2,r = 1,TI = 1, and TF = 0.2. Top panel: graphical
solution of Eq. (31) with d = 1. Bottom panel: graphical solution of
Eq. (36) with d = 3 and for m < mC, m = mC , and m > mC .

for m � mC(t) (bottom panel of Fig. 2). In order to find the
solution for m > mC(t) one must proceed as in the standard
treatment of the BEC [1], separating the k = 0 term from the
sum and rewriting Eq. (31) as

m = 1

V
〈M0〉z∗ + FM(z∗,t). (36)

Then, mC(t) defines a critical line on the (t,m) plane separating
the normal phase (below) from the condensed phase (above).
Below, the first term on the right hand side of Eq. (36) is
O(1/V ) and negligible, whereas above (see Fig. 2) takes the
finite value [m − mC(t)] due to the “sticking” [1,2] of z∗ to
the m-independent value z∗ = ρ0(t). Summarizing,

z∗(m,t) =
{
F−1
M (m,t) for m � mC(t),

ρ0(t) for m > mC(t),
(37)

as is illustrated in the bottom panel of Fig. 2. What we have
derived, so far, is condensation on average in the framework of
the biased ensemble. That is, the transition from microscopic to
macroscopic of the expectation 〈M0〉z∗ , analogous to the BEC
for the zero momentum occupation number. We emphasize, for
future reference, that the occurrence of the transition requires:
(i) that the intensive parameter ρ conjugate to M does depend
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FIG. 3. (Color online) Rate function IS (s,t) for the sample vari-
ance discussed in Sec. V, sC denotes the critical threshold. Parameters
μk = 2, t = 2, r = 1, TI = 1, TF = 0.2, and d = 3.

on k, i.e., that there exists a spectrum of parameters ρk and (ii)
that the spectrum vanishes with k as kα with α < d.

In order to see the dual image of this transition in the
fluctuations occurring in the prior ensemble [24], we must take
a look at the rate function. Taking into account the definition
(7) and the above result for z∗(m,t), we have

IM(m,t) =
{
z∗(m,t)m + λM[z∗(m,t),t] for m � mC(t),
ρ0(t)(m −mC) + IM(mC,t) for m > mC(t),

(38)

whose typical behavior is displayed in Fig. 3, obtained for
the sample variance discussed below in Sec. V. Thus, the
probability of a fluctuation with m > mC(t) is given by

P (M,t) ∼ e−Vρ0(t)(m−mC )e−V IM(mC,t). (39)

On the other hand, the fluctuation probability can also be
written as

P (M,t) =
∫ ∏

�k
dM�kP ({M�k},t)δ

⎛⎝M −
∑

�k
M�k

⎞⎠ , (40)

where {M�k} is a configuration of the values taken by the single-
mode observables M�k . The statement is simply that, once M

has been fixed, the allowed microscopic events {M�k} are those
on the hypersurface defined by the constraint M = ∑

�k M�k and
that the probability P (M,t) is obtained by summing over the
shell. The probability of one such configuration is given by

P ({M�k},t) =
∏

�k
P�k(M�k,t), (41)

where P�k(M�k,t), appearing on the right hand side, using
Eqs. (2), (24), and (25) is given by

P�k(M�k,t) = e−ρkM�k√
πρ−1

k M�k
θ
(
ρ−1

k M�k
)
, (42)

and θ is, again, the Heaviside step function. Now, inserting this
result into Eq. (40) and comparing with Eq. (39), we obtain

P (M,t) =
∫

dM0P0(M0,t)δ[M0 − (M − MC)]

×
∫ ∏

�k =0

dM�kP�k(M�k,t)δ

⎛⎝MC −
∑
�k =0

M�k

⎞⎠ ,

which means that, for m > mC(t), the probability of the
configurations {M�k} is concentrated on the subset of the shell
singled out by the additional condition M0 = M − MC . This
is condensation of fluctuations, in the sense that a fluctuation
above the threshold MC can occur only if the macroscopic
fraction M − MC of it is contributed by the zero mode. As
anticipated in Sec. I, the remarkable feature of this transition is
that it takes place in a noninteracting system like the Gaussian
model in which no transition on average can take place in and
out of equilibrium. The explanation is in Eq. (30), which shows
how the bias generates the interaction sustaining the transition,
and the bias is generated once the size of the fluctuation has
been fixed.

As an illustration, in the next sections we will analyze two
specific cases. In the first one condensation occurs both in
equilibrium and out of equilibrium, whereas in the second one
it occurs exclusively as an out-of-equilibrium phenomenon.

V. ORDER PARAMETER SAMPLE VARIANCE

Let us consider the sample variance,

S[ϕ] =
∫

V

d �x ϕ2(�x) = 1

V

∑
�k

θkx
2
�k , (43)

as the fluctuating macrovariable. This corresponds to μk = 2,
which is independent of k and yields ρk(t) = βkωk/2. From
the small k behavior [ρk(t) − ρ0(t)] ∼ k2 follows α = 2 for
all times, including the initial and the final equilibrium states
(bottom panel of Fig. 1). Therefore, denoting by s the density
S/V , the critical value sC(t) is finite for d > 2 at all times. The
critical line for d = 3 is displayed in the top panel of Fig. 4.
In order to understand this phase diagram, one should keep
in mind that fixing the value of s amounts to implementing
a spherical constraint à la Berlin and Kac [2]. Let us first
consider equilibrium in the time region t � 0 preceding the
quench. Here, the critical line is horizontal and corresponds
to the critical threshold sC(TI ) of the spherical model at the
temperature TI [25]. Then, according to the dual point of
view expounded above, the two alternative readings of the
equilibrium transition are that condensation can be observed
either as the usual transition of the spherical model or as a rare
event in the Gaussian model where the sample variance is free
to fluctuate.

Consider, next, the relaxation regime after the quench for
t > 0. As is evident from Fig. 4, there are two time regimes
separated by the minimum of the critical line, about the
characteristic time τ ∼ r−1, which is the relaxation time of
the slowest mode. In the first regime (0 < t < τ ) the system
is strongly off-equilibrium, and the threshold sC(t) drops
abruptly. In the second regime (t > τ ) the system gradually
equilibrates to the final temperature, and sC(t) saturates slowly
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FIG. 4. (Color online) Top panel: Phase diagram of order param-
eter sample variance. The upper horizontal dashed line corresponds
to sC(TF ). The green line is the plot of 〈s(t)〉. The lower dashed line is
the difference [sC(t) − 〈s(t)〉]. Bottom panel: Energy phase diagram.
In both cases: r = 1, TI = 1, TF = 0.2, and d = 3.

toward the final equilibrium value sC(TF ) < sC(TI ). A few
observations are in order: (i) The plot of the unbiased average
〈s(t)〉 lies below the critical line, showing that condensation
of fluctuations is always a rare event. However, the plot of
[sC(t) − 〈s(t)〉] shows that the rarity of the condensation event
varies with time and that the most favorable time window for
condensation is around τ where the difference is minimized.
Hence, condensation of the fluctuations is enhanced by the
off-equilibrium dynamics. (ii) The nonmonotonicity of the
critical line is a remarkable dynamical feature, leading to
a reentrance phenomenon. Namely, when the transition is
driven by t and s is kept fixed to a value in between sC(TF )
and sC(TI ), a fluctuation of this size at first is normal and
then condenses, whereas for s in between the minimum
of the critical line and sC(TF ), the fluctuation undergoes a
second and reverse transition becoming normal again at late
times. (iii) The dynamical condensation analyzed here is not
related to the properties of the dynamical spherical model
[26], which requires the spherical constraint to be imposed
pathwise, namely, at all times after the quench. Here, instead,
the evolution is unconstrained, and the spherical constraint
is imposed only at the observation time t . Therefore, while
in equilibrium the two experimental protocols, fluctuations

monitoring vs bias implementation, are in principle both
realizable, the latter one requiring an instantaneous bias is
hardly realizable off-equilibrium.

VI. ENERGY

As a second example, let us consider the energy (18)
as the fluctuating macrovariable. This is representative of
a different class of observables, whose fluctuations behave
normally in equilibrium and undergo a condensation transition
as an out-of-equilibrium phenomenon. This is due to μk = ωk

from which follows ρk = βk . Therefore, the k dependence
of ρk disappears in equilibrium (Fig. 1) shifting the critical
threshold to infinity. More in detail, denoting by e the energy
density, the critical line is given by

eC(t) =
∫ �

0

dk

4π2

k2

βk(t) − β0(t)
. (44)

The corresponding phase diagram in the bottom panel of Fig. 4
is qualitatively different from the one in the top panel for the
absence of the phase transition in equilibrium. This is due
to the fact that, in equilibrium, the denominator (βk − β0)
under the integral vanishes identically for all k. This implies
α → ∞ and the divergence of both eC(TI ) and of eC(TF ) for
any space dimensionality d. However, as soon as the system is
put off-equilibrium, equipartition is broken, and the spectrum
of inverse effective temperatures develops a minimum at k = 0
(Fig. 1). Then, the integral becomes convergent for d > 2.
Consequently, eC(t) drops down from infinity to a minimum
around τ and, then, rises again toward infinity as the system
reaches the final equilibrium state. The nonmonotonic shape
of the critical line implies, also in this case, reentrance of the
t-driven transition for all fluctuations above the minimum of
the critical line.

VII. CONCLUSIONS

To summarize, we have analyzed the behavior of fluc-
tuations of macrovariables in the Gaussian model, both in
equilibrium and in off-equilibrium relaxation following a
sudden temperature quench. For a certain class of bilinear
variables there is condensation in the behavior of large
deviations in the sense that the k = 0 mode contributes a
macroscopic amount to the fluctuations. The transition in the
fluctuations is dual to an ordinary transition, sustained by an
effective mean-field interaction in the constrained or biased
system. Different from previous work on condensation, we
have considered equilibrium followed by relaxation through
a nonstationary process in which the time evolution plays
an essential role. Also, essential is the k-space structure of
macrovariables and the dispersion relation in the prior model,
which is a feature not present in models with identically
distributed variables [11]. In this respect, the case of energy
fluctuations is particularly interesting as an instance in which
the k dependence of the conjugate intensive parameters ρ

is dynamically generated and, with it, the occurrence of
condensation. Finally, duality is a general property, not limited
to the case of a noninteracting prior. Future work will be
devoted to the investigation of fluctuation singularities in the
case of interacting systems.
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